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Abstract—Entity synonym discovery (ESD) from text corpus is an essential problem in many entity-leveraging applications, e.g., web
search and question answering. This paper aims to address three limitations that widely exist in the current ESD solutions: 1) the lack
of effective utilization for synonym set information; 2) the feature extraction of entities from restricted receptive fields; and 3) the
incapacity to capture higher-order contextual information. We propose a novel set-aware ESD model that enables a flexible receptive
field for ESD by making a breakthrough in using entity synonym set information. The contextual information of entities and entity
synonym sets are arranged by a two-level network from which entities and entity synonym sets can be mapped into the same
embedding space to facilitate ESD by encoding the high-order contexts from flexible receptive fields. Extensive experimental results on
public datasets show that our model consistently outperforms the state-of-the-art with significant improvement.
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1 INTRODUCTION

R ECENT years have witnessed a rapidly increasing
amount of research attention and industry demand

on entity-leveraging applications, which provide feasible
approaches to understanding users’ desires and organizing
knowledge from multiple data sources in information sys-
tems. However, one major obstacle in entity understanding
is that users or content creators always have different lan-
guage habits to express their needs and thoughts by using
various alternate forms, i.e., entity synonyms, to reference
one same real-world entity. For example, people can query
the location of “Washington” with a question “Where is the
District of Columbia?” or “Where is Washington or D.C.?”.
In this example, “District of Columbia” and “D.C.” are
different forms of the query entity “Washington”. It is non-
trivial to recognize entity synonyms. The string matching
strategy fails when some synonyms have different surface
forms, such as “D.C” and “Washington”. Leveraging ex-
isting synonyms in knowledge bases is another inefficient
way since most of such information is manually created
and typically suffers from limited coverage and diversity.
The demand for entity understanding and the difficulty
of automatically recognizing synonyms motivate the study
of entity synonym discovery (ESD). In particular, for a
query entity, entity synonym discovery refers to finding a
set of entities from structured or unstructured data, which
have the same semantic meaning as the query entity but
with different surface forms. ESD can connect each other
the different surface forms for the same entity and benefit
downstream applications such as web search and question
answering by the linked text surfaces with less-noisy and
well-recognized entities [1], [2], [3], [4].

Most of ESD pioneering works focus on structured data
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such as query logs [3], [5], which provide more focused
entity information. Yet, discovering entity synonyms from
raw text corpora is more practical and challenging, also
can provide more abundant synonym information for real-
world application. Solutions of ESD on unstructured data
mainly involve two key components: 1) entity feature extrac-
tion, which transforms collected entity mentions in a text
corpus to vectorized representations by leveraging different
features [6], [7], [8], [9], [10]; and 2) relation discrimination,
which tries to distinguish the relation between the query
entity and candidate entities in the text corpus by ranking-
based [7] or classification-based discriminators [11] with
given synonym seeds as the training set. Although effective,
current solutions have the following shortcomings:

• The lack of effective utilization for synonym set in-
formation. The given synonym seeds can be regarded as
the distant-supervised training set, including entity pairs
that identify the synonymous relation. Some entity pairs
can be collected as a synonym set by transitivity. For
instance, “D.C.” is a synonym of “Washington” which
is a synonym of “District of Columbia”, so these three
entities form a synonym set, which indicates that all
entities in the set refer to the same real-world entity.
The synonym set guides training and contains more com-
prehensive information about the referenced real-world
entity than a single entity. For example, in Figure 1(a),
“DC” and “D.C.” have almost the same surface forms
and the same contexts “The United States”, it is toilless
to misrecognize “D.C.” as the synonym of “DC”. Yet,
it is not hard to tell that “Washington” and “District of
Columbia” are not synonyms of “DC” if using synonym
set S1 to replace “D.C.”. Hence, “D.C.” is not the synonym
of “DC” because of the collective decision with the help
of the synonym set S1. A majority of current solutions
neglect the synonym set information. SynSetMine [11] is
the unique one that designed a complicated set-instance
classifier to compare the query entity with synonym sets
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Fig. 1: A toy example of entity synonym discovery in the text
corpus. (a) With the same surface form and context entity,
”DC” might be mismatched to ”D.C.” but will not happen if
using a synonym set. (b) Set-level context provides more
comprehensive information than entity-level context. (c)
First-order and second-order proximity cannot model entity
”USA” and ”The United States” from different sentences
across many other entities.

on their surface forms without representation learning.
Nevertheless, learning the representation for entities and
synonym sets is an essential step in a unified framework
because only a direct and straightforward comparison
operator in the same feature space is needed instead
of complex and manually designed classifiers. Also, the
contextual information of synonym sets, which is crucially
complementary information for surface forms and plays
a significant role in matching entities, can be naturally
captured by representation learning.

• Restricted receptive field. Entity feature extraction, as
mentioned earlier, is a crucial component of ESD. Most of
the existing works extract features for entities only from
the entity-level contexts, e.g., learning feature vectors for
entity e1, e2, e3 from the local restricted receptive field L1, L2,
and L3, respectively, in Figure 2. The entity-level context
forms the entity-level contextual relation, such as the blue
edge r1 in Figure 2. However, such restricted receptive
fields confine the expressive power of the learned features
because the set-level context has not been taken into
consideration and it can provide more comprehensive
contextual information than the entity-level context. For
example, in Figure 2, entities a, b, and c are synonyms and
form a synonym set S1. We can find that a is one of the
entity-level contexts of entity e1. Intuitively, the red circle
S1 is a set-level context that contains more information
about surface forms and contexts of the referenced real-
world entity than single entity a. We can find another
similar example in Figure 1(b), where a synonym set about
“The United States” can enrich the contextual information
of “D.C.”, which only has an entity-level context “The
United States” in Figure 1(a). The set-level context forms
the set-level contextual relation, such as red edges r2 and

r3
a

b

c

e1

Entity-level Context Set-level Context

L1 L2

L3

S1

S3

r1

r2
e2

D.C.

Washington

The District 
of Columbia

The United States

U.S. Congress

U.S. Federal Government

American 
Government

Entity Mention Synonym Set Restricted 
Receptive Field

e3

Fig. 2: An illustration of the restricted receptive field and
two kinds of contextual relations. Node in yellow denotes
entity mention. Edge denotes the contextual relation. The
red circles S1 and S3 denote synonym sets. For instance, S1
is a synonym set of entities {a, b, c}. L1-L3 are restricted
receptive fields defined by the local neighbors of e1, e2,
e3, respectively. Blue edge, like r1, refers to the entity-level
contextual relation between two entities, and red dotted
edges are the set-level contextual relations between two sets
such as r3 or between an entity and a set such as r2.

r3 in Figure 2. However, noisy contexts may be introduced
into the receptive field of entities because of the expanded
contextual scope. Hence, feature vectors of entities and
synonym sets should be learned from a flexible receptive
field that embodies all entity-level contexts and a part of
set-level contexts. In other words, entities and synonym
sets are allowed to flexibly capture the useful contextual
information from the set-level context, to complement the
entity-level context, and to simultaneously avoid the noise
and enhance the expressiveness of learned feature vectors.

• The incapacity to capture higher-order contextual in-
formation. Collected entities from text corpus usually go
across different sentences, even documents. Synonyms
may be far from each other. As shown in Figure 1(c),
“USA” and “The United States” come from different
sentences, and it is hard to use first-order and second-
order proximity [7], [12] to model their relationship be-
cause of the long distance between them. The n-order
(n > 2) context [13], [14], which preserves more complex
co-occurrence patterns, deserves more attention.

We target to break the above limitations by designing
a set-aware model with the flexible receptive field for entity
synonym discovery but face the following major challenges.
First, entities in a synonym set usually have distinct features
and lay in different areas of feature space. How to aggregate
features of these entities and obtain the representation for
a synonym set is problematic. The pooling mechanism has
emerged as a powerful paradigm to aggregate features of
elements in an arbitrary set. Nevertheless, the direct pooling
would result in that the aggregated feature may be far from
the original features of entities or ignore some features of
entities. It could not represent the complete information of a
synonym set. Second, the construction of flexible receptive
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fields needs to model the entity-level context and set-level
context jointly. However, entities in text corpus and entity
synonym sets form a complicatedly inclusive structure. It is
challenging to arrange the connections between them, e.g.,
there are relations between entity e1 and entity a, entity e1
and set S1, set S1 and entity e3, also set S1 and set S3 in
Figure 2. Third, entities in text corpus and entity synonym
sets should be mapped into the same feature space, and
entity should form a compact cluster in the feature space
if they are synonyms. However, encoding entities and syn-
onym sets from the flexible receptive field causes difficulty
in integrating the complex contextual structure.

The aforementioned challenges motivate us to propose
an entity synonym discovery model named EnSyn, whose
framework is presented in Figure 3. First, we construct
a two-level network shown in Figure 3(b) to arrange the
entity-level and set-level contextual relations to construct
the flexible receptive field. Specifically, the upper level is
constructed by entity mentions detected in text corpus based
on entity recognition tools [7]. This level only provides
entity-level contextual information for entities. The lower
level is constructed by entity synonym sets (collected by
entity linking tools [15]) and the entities which do not
belong to any set (the entity can be regarded as a set that
only contains the entity itself). This level provides set-level
contextual information for entities and synonym sets. The
links between two levels propagate the entity-level context
of entities down to characterize the meaning of synonym
sets and propagate the set-level context up to enhance the
feature representation learning of entities. This process of
bidirectional propagation of contextual information makes en-
tities and synonym sets learn representations from flexible
receptive fields in a mutually reinforced manner, rather than
from the single lower level, to avoid the noise imported by
enriched contextual information. For the two-level network,
we propose a within-level model based on Graph Neural
Networks (GNNs) [16] to encode high-order contextual
information of each level, and design a between-level as-
sociation model to implement the bidirectional propagation
between two levels. Lastly, the entity feature extraction and
relation discrimination stages are unified in a network rep-
resentation stage of EnSyn where representations of entities
and synonym sets are learned and mapped into the same
feature space. The whole process is optimized by Bayesian
Personalized Ranking (BPR) loss [17] instead of training
extra relation discriminators.

We highlight the following unique advantages of our
proposed EnSyn model:

• It considers the synonym set information and jointly
learns the representations for entities and synonym
sets by encoding the entity-level and set-level contex-
tual information in a network representation learning
framework.

• It allows a flexible receptive field for ESD, by learning
two within-level models and one between-level associ-
ation model. Also it captures the high-order contextual
information of entities.

• Its evaluation on three real-world datasets shows its
superior performance over the state-of-the-art methods,
with significant improvement on ESD.

The rest of the paper is organized as follows: Section
2 presents the related work. We provide preliminaries and
define the problem, meanwhile illustrate the framework of
our proposed entity synonym discovery method in Section
3. We report the experimental design and results in Section
4 and Section 5 concludes our work.

2 RELATED WORK

In this section, we discuss three lines of related work, in-
cluding other solutions to ESD, a basic introduction of entity
linking with the discussion about differences between ESD
and entity linking, and different graph neural networks.

2.1 Entity Synonym Discovery
With the rapid development of entity-leveraging applica-
tions, e.g., web search and question answering, recognizing
synonyms that refer to the same real-world entity has be-
come an essential task for such applications. The discovered
synonym helps understand the query from users.

Most ESD pioneering works focus on structured data
such as query logs [3], [5], which provide more focused en-
tity information. StrucSyn [18] explored the sub-query and
resolved ambiguous entity names by proposing a heteroge-
neous graph-based data model that can capture the interac-
tions between synonyms, web pages and keywords. Besides,
various features for entities in the structured data have
been proposed, such as query context similarity [19], [20],
query click similarity [3], [5], [21], and pseudo-document
similarity [19]. Our work, distinguishing with them, aims to
discover entity synonyms from raw text corpora, which is
more practical and challenging for real-world application.
Ranking-based and classification-based approaches were
proposed to distinguish between candidate entities and the
query entity by representing entities with different features,
such as co-occurrence statistics [8], textual pattern [6], dis-
tributional similarity [9], and semantic types of entities [10],
[22]. Recently, Qu et al. [7] proposed integrating distri-
butional features and textual patterns to discover the en-
tity synonym with knowledge bases automatically. SurfCon
[12] combined surface form information and distributional
features for synonym discovery on privacy-aware clinical
data. Our work focuses on learning the distributional fea-
tures in a network representation model and can smoothly
integrate the surface form. And SynonymNet [23] made
use of multiple pieces of contexts in which the entity is
mentioned, and compared the context-level similarity via a
bilateral matching schema. SynSetMine [11] was the first to
take the entity synonym set information into account. They
developed a Set-Instance Classifier to distinguish between
entity synonym sets and the query entity. However, the
method did not learn the representation for synonym sets
and ignore the set-level contextual information for entities
and synonym sets.

2.2 Entity Linking
Entity linking or entity disambiguation is the task of map-
ping entity mentions in text corpus to corresponding entities
in a given knowledge base, facilitating a variety of down-
stream applications such as knowledge base population
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[24], question answering [25], and information integration
[26]. Like ESD, early studies [24], [27], [28] applied a large
number of hand-designed features to disambiguate entity
mentions based on the lexical matching between mention’s
surrounding words and the entity profile in the reference
knowledge base. With the surge of deep learning models,
representation-based methods [29], [30] have shown effec-
tiveness by modeling textual information and knowledge
bases. Furthermore, factor graph models [31], [32] were
proposed with the assumption of topical coherence. And
the pairwise conditional random field [33], PageRank [34],
and random walk [35] were employed to enhance entity
linking performance. Moreover, some studies leveraged the
sequence model [36] or reinforcement learning [37] to link
mentions and entities in knowledge bases.

The main difference between ESD and entity linking
is that entity linking aims to map entity mentions in text
corpus to corresponding unique entities in a knowledge
base. Still, ESD aims to find entities in text corpus that
share the same semantic meaning with a given query entity.
In other words, ESD does not leverage knowledge bases
and assign any unique identity to the discovered entities
but rather indicates whether they refer to the same entity
or not. Although knowledge bases have been exploited to
provide distance supervision in the recent ESD solutions
[7], [11], knowledge bases are inherently not involved in the
process of synonym discovery and only used for extracting
training (synonym) seeds. Therefore, any method that can
collect the training seeds can be used as a substitution for the
knowledge bases. Following the previous work [7], [11], in
our work, an entity linking tool is used as a sub-component
in our framework to obtain the weak supervised training
signal from knowledge bases.

2.3 Graph Neural Networks

Graph neural networks (GNNs) are a class of neural net-
works for learning from arbitrary structured graph data
[38], [39]. It was proposed because of the success of Convo-
lutional Neural Networks [40], and was developed due to
the computational inefficiency and ability to generalize [41].
GNNs have been widely used in many tasks which include,
but not limited to, social network prediction [16], [42], rec-
ommendation system [43], graph representation [44], graph
classification [45], and sentiment classification [46].

Many GNN formulations are based on the notion of
graph convolutional operations. Bruna et al. [47] first in-
troduced the convolution operator in the Fourier domain
by computing the eigendecomposition of the graph Lapla-
cian. Then GCN [16] was proposed to simplify spectral
convolutions by restricting the layer-wise convolution op-
eration to alleviate overfitting on local neighborhood struc-
tures. Furthermore, due to the computational-consuming
full graph Laplacian for large graph, GraphSage [42] pro-
posed an inductive framework that generates embeddings
by employing uniform neighbor sampling and feature ag-
gregation from the local neighborhood. Also, PinSage [43]
and FastGCN [48] attempted to resolve the limitation by
leveraging the importance-based sampling approach. Mean-
while, AdaptGCN [49] designed an adaptive parameterized
and trainable sampler to find sampling importance rather

TABLE 1: Notations

Symbol Description
e An entity
S An entity synonym set
D Text corpus
E A set of entity mentions
Ge Entity-level co-occurrence network
Gs Set-level co-occurrence network
v A node for a set S
R A set of entities that do not belong to any set S
I A set of between-level relations
C A set of nodes in graph Gs

K A knowledge base

than fixed sampling methods. Besides, GAT [50] further
applied the self-attention mechanism into the neighborhood
aggregation step. JK [51] showed that the high-order prop-
agation benefits graph representation learning. Moreover,
several GNN-based methods have been designed for differ-
ent graph types, such as directed graph [52], heterogeneous
graph [53], dynamic graph [54], and edge-informative graph
[55]. Yet, to the best of our knowledge, we are the first to
explore utilizing GNNs for entity synonym discovery.

3 METHODOLOGY

In this section, we first introduce the preliminaries, and
formulate the task, then discuss our proposed method En-
Syn. Figure 3 shows its overall framework which involves,
1) data preparation, including collecting entity mentions
and synonym seeds using existing entity recognition and
entity linking tools; 2) constructing a two-level network
using the collected entity mentions and extracted synonym
sets from the synonym seeds; 3) learning the representation
of entity mentions and entity synonym sets by unifying
within-level models and a between-level association model;
and 4) inference stage. We will discuss each part in detail.

3.1 Preliminaries

We first present some definitions and the data preparation
process, and then describe the construction of two-level net-
work. Notations used throughout the paper are summarized
in Table 1.

Definition 1. Entity. An entity e represents a concept or a
subject in the real-world. An entity can be a word or a phrase
and can be used in a sentence.

Definition 2. Entity Synonym. For an entity ei in a text
corpus, its synonym refers to entity ej , which has a different
surface form but has the same semantic meaning as ei.

Definition 3. Entity Synonym Set. An entity synonym set Si
contains a set of entities {ei1 ...ein} that are synonyms.

Definition 4. Entity Synonym Seeds. A set of entity pairs
identifying the synonymous relation between two entities, which
can be used as the training set for ESD.

Definition 5. Knowledge Base. A knowledge baseK consists of
numerous facts about a set of entities. In our work, we only focus
on the entity synonym facts, which are collected as the synonym
seeds to discover previously unknown synonyms.
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ID Document Text

1 Washington(1)  is the capital of USA(2).

2 Washington(1) is a city located in the District of Columbia(3).

3 Washington(1) is near to New York City(4).

4 D.C.(5) is the capital of United States(6).

5 USA(2) is also called United States of America(7).

Text Corpus

Entity Linker Entity ID Entity Synonym Set

S1 Washington, D.C., District 
of Columbia

S2 USA, United States, 
United States of America

S3 New York City
Knowledge  Bases

1 2

3 4
5

6

7

S2

S1

S3

Entity 
Mentions

Entity 
Synonym Sets

Within-level
Model for Ge

Ge

Gs

Within-level 
Model for Gs

Between-level 
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(a) Data Preparation (b) Two-level Network 
Construction

(c) Within-level models and Between-level model

Name Entity Recognition Tools
1

2

3

4

Embedding Space of Ge

Embedding Space of Gs

Between-level Relations

Fig. 3: The framework of the proposed model for entity synonym discovery. In detail, the framework includes (a) data
preparation: extracting the entity mentions and obtaining the synonym sets; (b) Two-level network construction: organizing
the entity-level contextual information and set-level contextual information; (c) Within-level and Between-level association
models: encoding the contextual information from the flexible receptive field.

Definition 6. Set-level Context. Set-level context refers to a
kind of relationship in a co-occurrence network. If entity e has a
link with a synonym set in the co-occurrence network, we regard
the synonym set as the set-level context of entity e. Likewise, if
a synonym set S1 has a link with synonym set S2 in the co-
occurrence network, we regard the synonym set S2 as the set-level
context of S1.

Definition 7. Receptive Field. The receptive field of entity ei
in a co-occurrence network is a set of first-order neighbors of ei.

3.1.1 Data Preparation
Building an ESD model needs training data and validation
data for evaluating the performance of the ESD model.
Therefore, we start with data preparation, which recognizes
the entity mentions in the text corpus, collects synonym
seeds, and prepares entity synonym sets. We organize all
collected synonym seeds in the form of synonym set, and
use a part of them to train the proposed EnSyn model. The
remaining is used for evaluation, verifying if the discov-
ered synonyms by EnSyn are correct. In detail, we follow
the procedure in [7] to automatically collect the synonym
seeds. First, existing named-entity recognition tools [56] are
employed to detect entity mentions in the given text corpus
D. We denote the set of detected entity mentions as E . Then
an existing entity linker such as DBpedia Spotlight [15] can
be leveraged for linking the detected entity mentions to a
given knowledge base K. Furthermore, the synonym seeds
are collected from the linked corpus. All entity mentions
linked to the same entity in K are grouped as an entity
synonym set. Finally, we obtain entity mentions E and entity
synonym sets {S1...Sn} for the next network construction.

3.1.2 Two-level Network Construction
1) Entity-level co-occurrence network construction: We
first leverage all detected entity mentions E as nodes to con-
struct an entity-level co-occurrence network Ge. Specifically, for
each entity ei in E , we link it with its k-nearest entity men-
tions in the text corpus as edges. The constructed network

Ge including entity mentions E and their co-occurrence
relations implies the entity-level contextual information.

2) Set-level co-occurrence network construction. Next,
we construct a set-level co-occurrence network Gs to embody
the set-level contextual information. Starting from a set of
entity synonym sets {S1...Sn}, we create a set of nodes V =
{v1...vn}, where vi denotes a set Si. We then copy the set of
entities R = E \ {S1 ∪ ... ∪ Sn} from Ge. Note that entities
in R do not belong to any set S , or in other words, each
entity in R is a set that only contains one entity by itself .
Hence, we use all elements in R and V as nodes of network
Gs. The set-level co-occurrence network Gs is then constructed
on nodes C = V ∪ R. For edges, vi is linked with vj if
entities in Si and Sj have an edge in Ge (e.g., S1 and S2
in Figure 3 are linked because 1 and 2 in Ge have an edge).
Besides, nodes in R are linked with any vi or any others
in R if their corresponding entities (linked by the between-
level relations discussed below) in Ge have an edge (e.g., S3
in Figure 3 is linked with S1 because 4 in Ge is linked with
1). The constructed network Gs implies set-level contextual
information of synonym sets and entities.

3) Between-level relation construction. Every vi in Gs

is linked with el in Ge if el belongs to Si (e.g., S1 in Figure
3 is linked with {1,3,5} in Ge). Entities in R are linked with
their copies in Ge (e.g., S3 in Figure 3 is linked with 4 in
Ge). We denote such links as between-level relations I .

Therefore, the two-level network with Ge, Gs and I
preserves the complete entity-level and set-level contextual
information, and provides a flexible receptive field by the
bidirectional propagation of contextual information on I for
further entity and set encoding.

3.2 Task Formulation
The entity synonym discovery task aims to find synonyms
for a given query entity. Specifically, with a given query en-
tity in entity mentions E , previous solutions aim at finding
out the most relevant candidates in E as the discovered syn-
onyms. Because of the utilization of the synonym sets and
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the advantage of direct comparison between embeddings
of entities and synonym sets in the same feature space,
our work aims to find out the most relevant candidate in
C of Gs as the discovered synonyms with a given query
entity. We unify the representation learning of entities and
their relation discrimination in a single objective function,
and the constructed Ge and Gs can capture the entity-level
and set-level contextual information. We use the relations
presented in the two-level network for learning entity and
set embeddings which serve to discover unknown relations
among entities, i.e., synonyms. We next introduce our mod-
els for entity and synonym set embedding with within-
level relations (in Ge and Gs) and between-level relations
(between Ge and Gs).

3.3 Within-level Model

The aim of the within-level model is to encode the entity-
level contexts of Ge and the set-level contexts of Gs into
separated embedding spaces. We define the within-level
model as:

E = fwithin(Ge) and C = fwithin(Gs) (1)

where E is the embedding of entities inGe, and C is the em-
bedding of nodes in Gs, function fwithin is the within-level
model. Taking network Ge as an example, we build upon
the message-passing architecture of GNN [42] in order to
capture contextual information along the network structure
and refine the distributional representation of entities. We
encode network Gs in the same way but another GNN with
different weights. We first illustrate the design of first-order
propagation and then generalize it to high-order propaga-
tion which benefits the network representation learning [51].

3.3.1 First-order Propagation

For a connected entity-entity pair (ei, ej), we define the
message from i to j as:

mj←i = fm(ei, ej , pij) (2)

where ei and ej are the embedding of ei and ej , m is the
information to be propagated and mj←i is the message
embedding. fm is the message encoder which takes ei
and ej as the input, and pij is introduced to control the
decay factor on each propagation on pair (ei, ej), because
the message being propagated should decay with the path
length. In our work, we define fm as follow:

mj←i =
1√

|Ni| |Nj |
(W1ei + W2(ei � ej)) (3)

where W1 and W2 are trainable weight parameters. We
set pij as the graph Laplacian norm 1/

√
|Ni| |Nj | following

the graph convolutional network (GCN) [16], where Ni

and Nj refer to the first-hop neighbors of entity ei and ej ,
respectively. And we design that the propagated message
not only depends on the ei, like the conventional GCN
models, but also encodes the affinity between ei and ej ,
with � indicating the element-wise product in Eq. (3). This
operator encodes the message with more information about
the pair instead of only the source entity.

e6
1

e6
1 e2

1 e5
1

W12 W22

+

e6
1 e6

2
Concatenate

e6

e6
0

e6
0 e2

0

W11 W21

+

e5
0

Attention Layer Attention Layer

m6-20m6-60 m6-50 m6-61 m6-21 m6-51

Fig. 4: An example of using entity e6 to describe a simple
two-layer embedding propagation with the self-attention
layer.

Next, we define the message aggregation operator. In
particular, we aggregate messages propagated from ej ’s
neighborhood to update ej ’s representation as follow:

e1j = LeakyReLU(mj←j +
∑
i∈Nj

mj←i) (4)

where message passed over the activation function of
LeakyReLU [57], and e1j denotes the embedding of entity
ej obtained after the first propagation layer. All messages
coming from Nj (neighbors of ej) are aggregated in Eq. (4).
Meanwhile, we take the self-connection of ej into consider-
ation, for maintaining the information of original features.
The self-connection message is:

mj←j = W1ej (5)

where W1 is the same weight parameter with that in Eq. (3).
However, due to the fact that contexts usually have different
importance scores which reflect the different relevancy and
proximity between entities. We further design an attention-
based message aggregation operator following graph atten-
tion network [50] as an alternative aggregator as follow:

e1j = LeakyReLU(αjjmj←j +
∑
i∈Nj

αijmj←i) (6)

where α is the attention coefficient computed as follow:

αij = softmaxi(mj←i) =
exp(σ1(mj←i))∑

k∈{Nj∪{j}} exp(σ1(mj←k))
(7)

Note that the self-attention parameter is calculated by a
masked manner, i.e., it only computes attention weights for
the neighborhoods of entity ej . The different importance
scores are assigned to the neighborhood, and the embedding
for entity ej can be obtained via the self-attention mecha-
nism. We apply LeakyReLU as the activation function σ1.
Next we discuss how to extend the first-order propagation
to high-order propagation.
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3.3.2 High-order Propagation
To capture the high-order contextual information, we stack
more propagation layers [51]. By stacking l propagation
layers, an entity can receive the messages propagated from
its l-hop neighbors. We define the embedding of entity ej
and the messages at l-th propagation as:

elj = LeakyReLU(ml
j←j +

∑
i∈Nj

ml
j←i) (8)

elj = LeakyReLU(αl
jjm

l
j←j +

∑
i∈Nj

αl
ijm

l
j←i) (9)

ml
j←i =

1√
|Ni| |Nj |

(Wl
1e

l−1
i + Wl

2(el−1i � el−1j )) (10)

ml
j←j = Wl

1e
l−1
j (11)

where Wl
1 and Wl

2 are the trainable weight parameters.
el−1i is the entity ei’s embedding generated from the (l-1)-
th message propagation, and contains the messages prop-
agated from its (l-1)-hop neighbors. αl

jj and αl
ij are self-

attention coefficients at l-th propagation. With the repre-
sentations

{
e1j ...e

l
j

}
from propagation layers {1...l}, we

concatenate them to compose the final representation ej =
[e1j ; ...; elj ] for entity ej , because concatenation can preserve
the representations reflecting the connectivity between the
entity and its varying order neighbors. A simple example
is shown in Figure 4 to illustrate the structure of two-layer
embedding propagation. Similarly, we can obtain the high-
order representation of nodes in network Gs.

Two entities with a link are expected to be closer in their
embedding space than those without a link. We thus define
the objective function of within-level model based on BPR
loss [17], which has been widely used in pairwise ranking
models. For Ge, the objective function is

LGe
=

∑
(ei,ej ,en)∈Te

−lnϕ(ŷeij − ŷein) + λe ‖Θe‖22 (12)

where ŷ predicts the relation of two entities: ŷeij = eTi ej .
Te = {(ei, ej , en)|(ei, ej) ∈ Z+, (ei, en) ∈ Z−} indicates the
pairwise training data, Z+ denotes the observed links and
Z− denotes the unobserved links; ϕ refers to the sigmoid
function, λe controls the strength of L2 regularization to
prevent over-fitting, Θe is all trainable parameters of net-
work for Ge. We define the same objective function for Gs

as LGs as follow:

LGs =
∑

(ci,cj ,cn)∈Ts

−lnϕ(ŷsij − ŷsin) + λs ‖Θs‖22 (13)

where Ts = {(ci, cj , cn)|(ci, cj) ∈ Z+, (ci, cn) ∈ Z−} and
ŷsij = cTi cj .

3.4 Between-level Association Model

The aim of the between-level association model is to capture
the associations between the entity-level network Ge and set-
level network Gs based on the between-level relations I in
the two-level network. Due to the restricted receptive fields
in Ge and the desire to mitigate the effect of noise in the
enriched set-level contexts inGs, the between-level relations

can assist the representation learning from the flexible recep-
tive field so that entities can learn to select and balance the
contextual information from the entity-level and set-level
contexts. In particular, contextual information in entity-level
and set-level networks can be bidirectionally propagated on
the between-level relations to refresh the representations of
entities and sets. Next, we devise two kinds of between-
level assoication models which adopt different strategy to
associate entities and sets, respectively.

3.4.1 Transformation-based Association Model
We first propose a transformation-based approach, which
aligns embedding spaces of Ge and Gs obtained from the
previous within-level models. Specifically, the embedding
of an entity e in Ge will be mapped to an embedding in em-
bedding space of Gs after transformation. The motivation is
that the embedding of e should be close to the embedding
of c in Gs if there is a link between them in I . We define the
transformation as below:

c← fT (e),∀(e, c) ∈ I (14)

fT (e) = σ2(WT e+ bT ) (15)

where fT is a non-linear affine transformation function, WT

is a weight parameter and bT is a bias vector. We apply tanh
as the activation function σ2.

The loss function of the transformation-based association
model is defined based on margin-based ranking loss, and
it aims at making the score of positive samples smaller than
the score of negative samples:

LT
Bet =

1

|I|
∑

(e,c)∈I
(e,c′)/∈I

[
γT + ‖c− fT (e)‖2 − ‖c

′ − fT (e)‖2
]
+

(16)
where [x]+ = max {0, x} denotes the positive part of x, γT

is a margin hyper-parameter which is greater than 0, and c′

is a negative sample of e.

3.4.2 Grouping-based Association Model
Different from transformation-based association model, the
grouping-based model assumes that the network Ge and
network Gs can be embedded into the same space, and
forces any entity e ∈ E to be close to its corresponding
set c ∈ C. Specifically, the association loss for a given pair
of between-level relation (e, c) is defined as the distance
between the embeddings of e and c compared with margin
γG. The loss is defined as follow:

LG
Bet =

1

|I|
∑

(e,c)∈I

[
‖c− e‖2 − γ

G
]
+

(17)

3.5 Optimization and Inference
The overall objective function combines that for the within-
level models and the between-level model, as follows:

L = LGe
+ LGs

+ λLBet (18)

The optimization process is given in Algorithm 1. Em-
beddings are initialized by Xavier initializer [58]. We lever-
age SGD as our optimizers and iteratively train the three
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Algorithm 1: EnSyn
Input: Co-occurrence networks Ge and Gs, the set of

between-level relations I.
Output: Embedding of entities E and sets C.

1 Initialize embeddings E, C, and weight parameters for
within-level model and between-level association
model;

2 for iteration = 1, ... MaxIter do
// Within-level model for Ge.

3 for batch = 1, ... NumBatch Ge do
4 Sample a batch Te of triples (ei, ej , en) in Ge;
5 Update embedding E, according to LGe with

the batch Te.;
6 end

// Within-level model for Gs.
7 for batch = 1, ... NumBatch Gs do
8 Sample a batch Tc of triples (ci, cj , cn) in Gs;
9 Update embedding C, according to LGs with

the batch Tc.;
10 end

// Transformation-based between-level
association model.

11 for batch = 1, ... NumBatch I do
12 Sample a positive batch Îp and a negative batch

În from I;
13 Update WT , bT according to LT

Bet with the
batch Îp and În.

14 end
15 end

TABLE 2: Used Datasets and Knowledge Bases.

Dataset Wiki NYT PubMed
#Documents 100,000 118,664 1,554,433
#Sentences 6,839,331 3,002,123 15,051,203

#Entity Mentions 98,664 31,702 96,588
#Entity Synonym Sets 4,920 1,494 17,972

#Edges in Ge 7,466,706 2,665,409 9,892,634
#Edges in Gs 7,257,121 2,581,956 8,840,049

#Training Entities 9,886 2,999 37,058
#Test Synonym Sets 615 184 5,408

#Test Entities 755 222 8,009
Knowledge base Freebase Freebase UMLS

components until convergence. In the inference stage, a
given query entity e in Ge is matched with candidates c
in network Gs, based on their inner product value of em-
bedding vectors: eT c (grouping-based association model)
or cT fT (e) (transformation-based association model).

4 EXPERIMENTS

In this section, we conduct experiments on three real-world
datasets different in size and evaluate our proposed method
for entity synonym discovery. Specifically, we aim to answer
the following research questions:
• RQ1: How does our proposed EnSyn perform as com-

pared with state-of-the-art approaches?
• RQ2: How can set-level co-occurrence network and the

surface information (i.e., text information of each entity)
be helpful for improving EnSyn?

• RQ3: How do the attention layer and different between-
level association models influence our proposed model?

• RQ4: How do different hyper-parameter settings affect
our proposed model?

4.1 Experimental Design
We first describe the datasets, baseline methods, and model
variants, also outline the experimental settings of our pro-
posed EnSyn in the section.

4.1.1 Datasets.
We use public benchmark datasets provided in [7], [11]:
• Wiki: 100K articles from Wikipedia;
• NYT: 118,664 articles from 2013 New York Times;
• PubMed: about 1.5M paper abstracts from PubMed

dataset.
DBpedia Spotlight [15] is applied as the entity linker for
Wiki and NYT datasets, and PubTator [59] is used for
PubMed. The entity mentions which appear less than ten
times are filtered out. Freebase [60] and UMLS [61] are used
as the knowledge base, shown with the datasets summary
in Table 2.

4.1.2 Baselines.
To comprehensively evaluate the effectiveness of our pro-
posed method, we include two categories of methods for
performance comparison:
1) Context-based methods:
• Word2vec [62]: A distributional word embedding

method. We obtain the embedding by doing SVD de-
composition over the PPMI co-occurrence network [63].
We train a bilinear scoring function following [7], taking
obtained embeddings as features;

• Node2vec [64]: A widely used graph embedding
method. It defines a flexible notion of the neighborhood
and proposes a biased random walk algorithm to learn
the representation. The same bilinear scoring function
is trained using obtained embeddings as features;

• DPE [7]: A method combines textual patterns and
distributional features. We first adopt the version
DPE-NoP without textual patterns as a context-based
method, then employ the full version of DPE for the
comparison.

• Hierarchical Multi-Task Word Embedding (HMT)
[22]: A method jointly models the neighboring word
semantic type and neighboring word. We leverage the
version without type prediction due to the lack of type
information in the datasets we used.

• SynonymNet [23]: A method makes use of multiple
pieces of contexts in which the entity is mentioned,
and compares the context-level similarity via a bilateral
matching schema.

2) Surface-involved methods: To validate the effectiveness
of our proposed method with surface information, we com-
pare with several methods that utilized the surface form
information.
• CharNgram [65]: we take the average of the pretrained

character n-gram embeddings as the feature for each
entity, then train the same bilinear scoring function as
above.

• Concept Space [10]: A medical synonym extraction
method jointly leverages word embeddings and heuris-
tic rule-based string features.

• Planetoid [66]: An inductive network embedding
method incorporates embedding techniques into the
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TABLE 3: Ranking performance comparison (the best results of baselines are marked as * along with underline). The results
in bold are our method and the improvement over the best baseline algorithm.

Methods Wiki NYT PubMed
Measures Hits@5 NDCG@5 MRR Hits@5 NDCG@5 MRR Hits@5 NDCG@5 MRR
Word2vec 0.2386 0.1854 0.1743 0.2063 0.1472 0.1537 0.3546 0.2915 0.2745
Node2vec 0.2644 0.2087 0.1952 0.2336 0.1698 0.1709 0.3622 0.2896 0.2663

HMT 0.2843 0.2238 0.2197 0.2301 0.1724 0.1685 0.3682 0.3001 0.2845
DPE-NoP 0.3125 0.2404 0.2369 0.2486 0.1989 0.1885 0.3895 0.3227 0.3162

SurfCon w/o pre 0.3446 0.2815 0.2656 0.2719 0.2308 0.2008 0.3956 0.3394 0.3282
DPE 0.3574 0.2845 0.2781 0.2794 0.2275 0.2104 *0.4092 0.3457 0.3324

SynonymNet *0.3726 *0.3104 *0.2875 *0.3035 *0.2527 *0.2368 0.4073 *0.3521 *0.3384
EnSyn 0.4759 0.3722 0.3635 0.3605 0.2996 0.2714 0.4753 0.4196 0.3850

Improvement % 27.72 19.91 26.43 18.78 18.56 14.61 16.15 19.17 13.77
EnSyn-restricted 0.3662 0.3006 0.3001 0.2966 0.2449 0.2221 0.4322 0.3663 0.3408

EnSyn-G w/o Att 0.4395 0.3420 0.3280 0.3242 0.2661 0.2458 0.4460 0.3928 0.3542
EnSyn-G 0.4576 0.3580 0.3461 0.3438 0.2855 0.2612 0.4585 0.4032 0.3690

EnSyn w/o Att 0.4623 0.3614 0.3521 0.3408 0.2878 0.2568 0.4671 0.4080 0.3761
CharNgram 0.4411 0.3557 0.3399 0.4414 0.3288 0.3091 0.4140 0.2992 0.2966

Concept Space 0.4052 0.3093 0.2874 0.3226 0.2658 0.2471 0.3743 0.3016 0.2987
Planetoid 0.4524 0.3461 0.3376 0.4435 0.3310 0.3038 0.4225 0.3086 0.3162
SurfCon *0.4608 *0.3664 *0.3469 *0.4498 *0.3361 *0.3134 *0.4354 *0.3562 *0.3381

EnSyn with pre 0.5270 0.4153 0.4021 0.4651 0.3475 0.3248 0.4781 0.4052 0.3770
Improvement % 14.37 13.35 15.91 3.40 3.39 3.63 9.81 13.76 11.51

graph-based semi-supervised learning setting. We use
the output of CharNgram [65] as the input feature and
take the intermediate hidden layer as representations.
Similarly, a bilinear scoring function is used for training
the model.

• SurfCon [12]: An approach utilizes surface form infor-
mation and entity-level context information. A version
without the pretrained surface form information, Surf-
Con w/o pre is also evaluated as one addition baseline
in Context based methods.

We do not compare with SynSetMine [11], as it focuses on
clustering and cannot generate the embedding for entities.
Also, it only models entities in the synonym set rather than
all entity mentions from a text corpus.

4.1.3 Model Variants
To validate the effectiveness of different components of
EnSyn, we use EnSyn to denote the model with attention
layers and the transformation-based between-level associ-
ation model. EnSyn-G is the model with attention layers
and the grouping-based between-level association model.
EnSyn w/o Att refers to the model EnSyn without attention
layers. Similarly, EnSyn-G w/o Att refers to the model
EnSy-G without attention layers. Furthermore, EnSyn with
pre denotes the model EnSyn with the pretrained n-gram
embedding for initialization. EnSyn-restricted is a variant
of EnSyn without using the set-level network Gs, but only
the entity-level network Ge. Specifically, we train EnSyn-
restricted by a bilinear scoring function, taking obtained
embeddings as features.

4.1.4 Experimental Settings
We adopt widely-used evaluation metrics: Mean Reciprocal
Rank (MRR), Hits, and Normalized Discounted Cumulative
Gain (NDCG) for evaluating entity synonym discovery task.
Large values indicate better performance. In our evaluation,
Hits@N measures whether the testing entity is ranked in

the Top-N list with 1 for yes and 0 for no, and NDCG@N
accounts for the position of the hit by assigning a higher
score to the hit at top positions, while MRR is the average
of the reciprocal ranks of the returned list.

We implement the proposed EnSyn framework using the
Python library Tensorflow and conduct all the experiments
on a Linux server with GPUs (GeForce RTX 2080 Ti) and
CPU (Intel Xeon). We set the dimension of entity embedding
as 100 for all methods and the dimension of character n-
gram as 100. We find the optimal parameters or follow the
setting in the original paper of baselines. For our EnSyn
method, we apply a grid search for hyper-parameters and
find the best configuration: the coefficient λe and λc are
0.001, the number of layers is 4, margin hyper-parameter
γG and γT is 0.5, window size k is 5, trade-off parameter
λ is 1.0. We use Adam optimizer [67] to optimize the loss
function L with learning rate 0.001. Meanwhile, we use L2

norm to avoid over-fitting. We randomly sample 50% of
entities in entity synonym sets as the training set and use
the rest of entities for testing, and randomly sample 10,000
non-synonyms as negative samples, then mix them with the
synonym for each query entity in testing for efficiency [12].
Each evaluation is repeated five times, and averaged results
are reported.

4.2 Performance Evaluation Results (RQ1)

In this section, we explore if our proposed EnSyn outper-
forms the state-of-the-art approaches. Table 3 shows the
experimental results. In the first part of Table 3, we can
observe our proposed EnSyn consistently outperforms all
baseline methods on all datasets under different evalu-
ation metrics. Specifically, our method built upon GNN
can capture the high-order contextual information from the
flexible receptive field. Hence, it outperforms those only
modeling the first-order entity-level contextual information,
as shown in the comparison of results between EnSyn and
the first three baselines in Table 3. Furthermore, SurfCon
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Fig. 5: Entity synonym discovery evaluation with different values of N on NDCG@N and Hits@N .

w/o pre and SynonymNet have better results than other
baselines because it adopts a context matching mechanism
to take second-order entity-level contextual information into
consideration. Besides, SynonymNet makes use of multiple
pieces of contexts, which could provide more contextual
information than that in SurfCon w/o pre. However, they
still ignore the essential entity synonym set information
and the set-level contextual information, so it is inferior to
our method. Besides, Figure 5 shows that EnSyn is stably
superior to other baselines with different lengths of the
retrieval list.

4.3 Component Analysis (RQ2 and RQ3)

First, we investigate how the synonym set information in the
set-level networkGs and the surface information are helpful
for improving EnSyn. To answer the question, we compare
EnSyn with its variants EnSyn-restricted and EnSyn with
pre. In the first part of Table 3, EnSyn is consistently better
than EnSyn-restricted, showing the contextual information
from the restricted receptive field is insufficient for learning
representation, also demonstrating the usefulness of the
flexible receptive field and entity synonym set information
in our constructedGs. In the third part of Table 3, our model
EnSyn with pre achieves significantly better performance
than all other baselines. Comparing with the results of En-
Syn in the first part of Table 3, more accurate synonyms can
be discovered by EnSyn with pre with the help of surface
form, especially in datasets Wiki and NYT. The usefulness of
surface form is also shown in the results of CharNgram, and
in the comparison between SurfCon w/o pre and SurfCon.
In addition, EnSyn with pre outperforms Concept Space
and Planetoid because the concept space model simply
concatenates the distributional embeddings with the rule-
based features (the number of shared words), and Planetoid
relies on one embedding vector for each entity which only
uses the surface form embedding as input. Besides, noise
in the raw text is not avoidable. On PubMed dataset, both
SurfCon and EnSyn with pre do not benefit much from the
pretrained embedding of surface form.

Next, we explore the effect of the attention layer in
the within-level model by comparing EnSyn and EnSyn
w/o Att, EnSyn-G and EnSyn-G w/o Att. In the second
part of Table 3, we can find that the models with atten-
tion layers achieve better performance than the models
without attention layers. It shows the effectiveness of the
self-attention mechanism in the entity synonym discovery
scenario because the self-attention is able to automatically
assign different relevant scores to the contexts. The high
relevant contexts could obtain the high score, which benefits
the representation learning for entities and synonym sets.
Furthermore, we analyze the effect of different between-
level association models by comparing EnSyn and EnSyn-
G. As the results shown in the second part of Table 3,
the model EnSyn using the transformation-based associ-
ation model outperforms EnSyn-G, which leverages the
grouping-based association model. The reason could be that
the transformation-based model utilizing trainable weight
parameters to align two different embedding spaces has
a smaller impact on the characterization of the struc-
ture of entity-level and set-level networks. Besides, the
transformation-based model can search from larger feature
space to find the optimal transformation, compared with the
direct minimization for the distance between linked entities
in the grouping-based model.

4.4 Study of EnSyn (RQ4)

In this section, we investigate the impact of different param-
eters on the performance from several aspects, such as the
number of layers, the message aggregation operators, and
the number of k-nearest entity mention, etc.

4.4.1 Effect of Layer Numbers

We vary the number of GNN layers in our model to eval-
uate whether EnSyn can benefit from multiple embedding
propagation layers. EnSyn-K indicates the model with K
embedding propagation layers. Figure 6 shows that the
performance can be enhanced with the number of layers
increasing. Specifically, EnSyn-1, which only considers the
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TABLE 4: Effect of different message aggregation operators.

Wiki NYT PubMed
Measures Hits@5 NDCG@5 Hits@5 NDCG@5 Hits@5 NDCG@5

EnSyn-GCN 0.3567 0.2973 0.2632 0.2108 0.3972 0.3358
EnSyn-GraphSage 0.3715 0.3046 0.2747 0.2142 0.4163 0.3427

EnSyn-GIN 0.3965 0.3125 0.2834 0.2381 0.4147 0.3484
EnSyn-1 w/o Att 0.4179 0.3181 0.2891 0.2367 0.4237 0.3562

EnSyn-GAT 0.4272 0.3254 0.3024 0.2492 0.4328 0.3659
EnSyn-1 0.4304 0.3298 0.2997 0.2514 0.4345 0.3690
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Fig. 6: Effect of embedding propagation layer numbers.
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Fig. 7: Effect of k-nearest entity mention numbers.

first-order neighbors, is inferior to all other variants. Again,
we see it is necessary to model the high-order contextual
information. Furthermore, EnSyn-4 does not improve much,
comparing with EnSyn-3. This is due to the limitation of
GNNs, which may introduce noise when propagating too
many layers.

4.4.2 Effect of Message Aggregation Operators

To investigate the effect of different message aggregation op-
erators, we replace the aggregation operator in our method
with GCN [16], GraphSage [42], GIN [68], and GAT [50]. We
set all models with one propagation layer, and use single-
head attention for GAT. Table 4 summarizes the experimen-
tal results. First, we can observe that our model EnSyn-1 w/o
Att consistently outperforms the first three methods with
different aggregation operators on three different datasets.
We attribute the enhancement to the design of fusing pairs
of connected entities into message aggregation instead of
a single entity. The fusion can encode the affinity between
connected entities and make the message containing more
information about the connection. Then, due to the advan-
tages of the self-attention mechanism, our model EnSyn-
1 and GAT achieve better performance than the variants
EnSyn-1 w/o Att, EnSyn-GCN, EnSyn-GraphSage, and
GIN, which neglect the important weights of different con-
texts, and would harm the effectiveness of aggregation. Fur-
ther, the performance of EnSyn-1 is on par with that of GAT
because of the adopted similar self-attention mechanism. We
notice that EnSyn-1 slightly outperforms GAT. The reason
could be the design of fusing pairs of connected entities into
the message aggregation.
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Fig. 8: Results of different methods on dataset Wiki and NYT
when varying the dimension of embeddings.

4.4.3 Effect of k-Nearest Entity Mention Numbers
We vary the number of k-nearest entity mentions in our
model to evaluate the effect of k. Figure 7 shows that the
model with k=5 performs the best. Setting k=5 is reasonable
because a small k (k=1) is insufficient to collect semantically
related neighbors. However, a large k (k = 10 or 15) will
introduce noisy contexts for entities. Hence, we set k=5 in
our experiments.

4.4.4 Effect of Dimension of Embeddings
The dimension of embedding is an essential factor for
representation learning, which could directly affect the per-
formance of machine learning models. To investigate the
effect of dimension of embedding, we fixed all other hyper-
parameters and changed the dimension of embedding in
{50, 75, 100, 125, 150}. Figure 8 shows how the dimension
of embedding influences the performance of different ESD
methods on Wiki and NYT datasets. We see that our EnSyn
is consistently better than other baselines, and the model
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TABLE 5: Case studies on the Wiki and NYT dataset. Bold strings with underline are correct synonyms or synonym sets.

Query Federal Government Geoscience
US Federal Government Earth Science

Synonym Set U.S. Federal Government Earth Sciences
American Government Geological Science

Method EnSyn-restricted EnSyn EnSyn-restricted EnSyn
U.S All entities in Set Science Science

Ranked Government U.S.A Department All entities in Set
Output US Federal Government U.S. College Earth

California Government Earth Science Planet Earth
White House President Earth Natural Resouce

Query Forex WW2
Foreign Exchange Market World War II

Synonym Set FX The Second World War
Currency Market WWII

Method EnSyn-restricted EnSyn EnSyn-restricted EnSyn
Central Bank Exchange-traded Fund WWII All entities in Set

Ranked Exchange-traded Fund All entities in Set WWI World Wars
Output Money US Dollar World War II WWI

Currency Market Forex Dealer Allies Army
FX Money History Country
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Fig. 9: Results of our proposed method on dataset Wiki and
NYT when varying the proportion of synonym sets in set-
level network.

would lead to underfitting and be hard to converge if the
dimension is not large enough. In addition, the results
also show the stability of our model when varying the
dimension.

4.4.5 Effect of Proportion of Synonym Sets in Set-level
Network
In the construction of the two-level network, we leverage
synonym sets to form the set-level network Gs to provide
the set-level contextual information. It is crucial to explore
the effect of the proportion of synonym sets explicitly in
the network Gs. We randomly sample 10%, 30%, 50%, 70%,
90% of the synonym sets from Wiki and NYT datasets to
construct the network Gs, and compare the performance of
EnSyn using different two-level networks with different set-
level networks. Figure 9 shows the results of Hits@5 and
MRR of EnSyn when varying the proportion of synonym
sets in Gs. First, as expected, EnSyn has better performance
with the growth of the proportion of synonym sets because a
small proportion is insufficient to offer the set-level contex-
tual information, and the constructed Gs still suffers from
the restricted receptive field. Instead, encoding the network
Gs with a large proportion of synonym sets can effectively
capture the set-level contextual information for the next step
on updating representations for entities and synonym sets
from the flexible receptive field.

4.5 Case Studies
Case studies are presented in Table 5. We output the ranked
results of EnSyn and EnSyn-restricted with a given query
entity. EnSyn-restricted only leverages the entity-level oc-
currence network Ge. Hence, it returns a list of entities
in Ge as the left part shown in “Ranked Output”. EnSyn
takes the synonym set information into consideration and
encodes the two-level network, and it will output the list
of nodes in Gs as the retrieval result as the right part
shown in “Ranked Output”. In particular, we denote the
correct output as “All entities in Set” for EnSyn. We can
find that EnSyn can correctly return all synonyms in the set
to the query, and rank out more meaningful synonyms, than
EnSyn-restricted. For example, EnSyn returns “Earth” and
“Planet Earth” to query “Geoscience”, rather than giving the
irrelevant but frequently co-occurred entities like “Depart-
ment” and “College”. We see that set-aware ESD has better
performance than those ignoring the entity synonym set.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel model for entity
synonym discovery in the text corpus. First, we proposed
to fuse the synonym set information into the network rep-
resentation learning framework because the synonym set
contains more comprehensive information about the refer-
enced real-world entity than single entity and is able to be
the context for other entities to enhance the expressiveness
of the learned embedding. Second, due to the restricted
receptive field of entities and the desire to mitigate the
influence of noise from the synonym sets, we introduced
a flexible receptive field to capture contextual information
in the modeling process in order to select and balance the
contextual information from the entity-level and set-level
contexts. We constructed a two-level network to describe
the connections between entities and entity synonym sets
and to organize the entity-level and set-level contextual
information. To encode the two-level network, we designed
a within-level model based on graph neural networks to
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encode the high-order context in each level and a between-
level association model to achieve the representation learn-
ing from the flexible receptive field by bidirectional propa-
gating the contextual information. Our experiments on real-
world datasets demonstrated that our approach achieved
superior results compared with other state-of-the-art meth-
ods. In future work, we are going to expand the exploration
and discussion about the utilization of attribute information
of entities to enhance the performance of entity synonym
discovery. We also will investigate how to aggregate the
synonym set if the attribute is given.
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