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Abstract 

This paper describes an algorithm for verification of signatures 
written on a pen-input tablet. The algorithm is based on a novel, 
artificial neural network, called a "Siamese" neural network. This 
network consists of two identical sub-networks joined at their out­
puts. During training the two sub-networks extract features from 
two signatures, while the joining neuron measures the distance be­
tween the two feature vectors. Verification consists of comparing an 
extracted feature vector ~ith a stored feature vector for the signer. 
Signatures closer to this stored representation than a chosen thresh­
old are accepted, all other signatures are rejected as forgeries. 

1 INTRODUCTION 

The aim of the project was to make a signature verification system based on the 
NCR 5990 Signature Capture Device (a pen-input tablet) and to use 80 bytes or 
less for signature feature storage in order that the features can be stored on the 
magnetic strip of a credit-card. 

Verification using a digitizer such as the 5990, which generates spatial coordinates 
as a function of time, is known as dynamic verification. Much research has been 
carried out on signature verification. Function-based methods, which fit a func­
tion to the pen trajectory, have been found to lead to higher performance while 
parameter-based methods, which extract some number of parameters from a signa-
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ture, make a lower requirement on memory space for signature storage (see Lorette 
and Plamondon (1990) for comments). We chose to use the complete time extent 
of the signature, with the preprocessing described below, as input to a neural net­
work, and to allow the network to compress the information. We believe that it is 
more robust to provide the network with low level features and to allow it to learn 
higher order features during the training process, rather than making heuristic de­
cisions e.g. such as segmentation into balistic strokes. We have had success with 
this method previously (Guyon et al., 1990) as have other authors (Yoshimura and 
Yoshimura, 1992). 

2 DATA COLLECTION 

All signature data was collected using 5990 Signature Capture Devices. They consist 
of an LCD overlayed with a transparent digitizer. As a guide for signing, a 1 inch by 
3 inches box was displayed on the LCD. However all data captured both inside and 
outside this box, from first pen down to last pen up, was returned by the device. 
The 5990 provides the trajectory of the signature in Cartesian coordinates as a 
function of time. Both the trajectory of the pen on the pad and of the pen above 
the pad (within a certain proximity of the pad) are recorded. It also uses a pen 
pressure measurement to report whether the pen is touching the writing screen or 
is in the air. Forgers usually copy the shape of a signature. Using such a tablet 
for signature entry means that a forger must copy both dynamic information and 
the trajectory of the pen in the air. Neither of these are easily available to a forger 
and it is hoped that capturing such information from signatures will make the task 
of a forger much harder. Strangio (1976), Herbst and Liu (1977b) have reported 
that pen up trajectory is hard to imitate, but also less repeatable for the signer. 
The spatial resolution of signatures from the 5990 is about 300 dots per inch, the 
time resolution 200 samples per second and the pad's surface is 5.5 inches by 3.5 
inches. Performance was also measured using the same data treated to have a lower 
resolution of 100 dots per inch. This had essentially no effect on the results. 

Data was collected in a university and at Bell Laboratories and NCR cafeterias. 
Signature donors were asked to sign their signature as consistently as possible or 
to make forgeries. When producing forgeries, the signer was shown an example 
of the genuine signature on a computer screen. The amount of effort made in 
producing forgeries varied. Some people practiced or signed the signature of people 
they knew, others made little effort. Hence, forgeries varied from undetectable to 
obviously different. Skilled forgeries are the most difficult to detect, but in real life a 
range of forgeries occur from skilled ones to the signatures of the forger themselves. 

Except at Bell Labs., the data collection was not closely monitored so it was no 
surprise when the data was found to be quite noisy. It was cleaned up according to 
the following rules: 

• Genuine signatures must have between 80% and 120% of the strokes of 
the first signature signed and, if readable, be of the same name as that 
typed into the data collection system. (The majority of the signatures were 
donated by residents of North America, and, typical for such signatures, 
were readable.) The aim of this was to remove signatures for which only 
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some part of the signature was present or where people had signed another 
name e.g. Mickey Mouse. 

• Forgeries must be an attempt to copy the genuine signature. The aim of 
this was to remove examples where people had signed completely different 
names. They must also have 80% to 120% of the strokes of the signature . 

• A person must have signed at least 6 genuine signatures or forgeries. 

In total, 219 people signed between 10 and 20 signatures each, 145 signed genuines, 
74 signed forgeries. 

3 PREPROCESSING 

A signature from the 5990 is typically 800 sets of z, y and pen up-down points. z(t) 
and y(t) were originally in absolute position coordinates. By calculating the linear 
estimates for the z and y trajectories as a function of time and subtracting this from 
the original z and y values, they were converted to a form which is invariant to the 
position and slope of the signature. Then, dividing by the y standard deviation 
provided some size normalization (a person may sign their signature in a variety 
of sizes, this method would normalize them). The next preprocessing step was to 
resample, using linear interpolation, all signatures to be the same length of 200 
points as the neural network requires a fixed input size. Next, further features were 
computed for input to the network and all input values were scaled so that the 
majority fell between + 1 and -1. Ten different features could be calculated, but a 
subset of eight were used in different experiments: 

feature 1 pen up = -1 i pen down = +1, (pud) 

feature 2 x position, as a difference from the linear estimate for x(t), normalized using 
the standard deviation of 1/, (x) 

feature 3 y position, as a difference from the linear estimate for y(t), normalized using 
the standard deviation of 1/, (y) 

feature 4 speed at each point, (spd) 

feature 5 centripetal acceleration, (ace-c) 

feature 6 tangential acceleration, (acc-t) 

feature 7 the direction cosine of the tangent to the trajectory at each point, (cosS) 

feature 8 the direction sine of the tangent to the trajectory at each point, (sinS) 

feature 9 cosine of the local curvature of the trajectory at each point, (cost/J) 

feature 10 sine of the local curvature of the trajectory at each point, (sint/J) 

In contrast to the features chosen for character recognition with a neural network 
(Guyon et al., 1990), where we wanted to eliminate writer specific information, the 
features such as speed and acceleration were chosen to carry information that aids 
the discrimination between genuine signatures and forgeries. At the same time we 
still needed to have some information about shape to prevent a forger from breaking 
the system by just imitating the rhythm of a signature, so positional, directional 
amd curvature features were also used. The resampling of the signatures was such 
as to preserve the regular spacing in time between points. This method penalizes 
forgers who do not write at the correct speed. 
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Figure 1: Architecture 1 consists of two identical time delay neural networks. Each 
network has an input of 8 by 200 units, first layer of 12 by 64 units with receptive 
fields for each unit being 8 by 11 and a second layer of 16 by 19 units with receptive 
fields 12 by 10. 

4 NETWORK ARCHITECTURE AND TRAINING 

The Siamese network has two input fields to compare two patterns and one output 
whose state value corresponds to the similarity between the two patterns. Two 
separate sub-networks based on Time Delay Neural Networks (Lang and Hinton, 
1988, Guyon et al. 1990) act on each input pattern to extract features, then the 
cosine of the angle between two feature vectors is calculated and this represents the 
distance value. Results for two different subnetworks are reported here. 

Architecture 1 is shown in Fig 1. Architecture 2 differs in the number and size 
of layers. The input is 8 by 200 units, the first convolutional layer is 6 by 192 
units with each unit's receptive field covering 8 by 9 units of the input. The first 
averaging layer is 6 by 64 units, the second convolution layer is 4 by 57 with 6 by 8 
receptive fields and the second averaging layer is 4 by 19. To achieve compression in 
the time dimension , architecture 1 uses a sub-sampling step of 3, while architecture 
2 uses averaging. A similar Siamese architecture was independently proposed for 
fingerprint identification by Baldi and Chauvin (1992). 

Training was carried out using a modified version of back propagation (LeCun, 1989). 
All weights could be learnt, but the two sub-networks were constrained to have 
identical weights. The desired output for a pair of genuine signatures was for a 
small angle (we used cosine=l.O) between the two feature vectors and a large angle 
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Table 1: Summary of the Training. 
Note: GA is the percentage of genuine signature pairs with output greater than 0, FR 
the percentage of genuine:forgery signature pairs for which the output was less than O. 
The aim of removing all pen up points for Network 2 was to investigate whether the pen 
up trajectories were too variable to be helpful in verification. For Network 4 the training 
simulation crashed after the 42nd iteration and was not restarted. Performance may have 
improved if training had continued past this point. 

2, arc 1 

3, arc 1 

pu acc-c acc-t sp 
cosH sinS cos'" sin~ 

4, arc 1 same as network 3, 
but a larger training 
set 

5, arc 2 same as 4, except ar­
chitecture 2 was used 

(we used cosine= -0.9 and -1.0) if one of the signatures was a forgery. The training 
set consisted of 982 genuine signatures from 108 signers and 402 forgeries of about 
40 of these signers. We used up to 7,701 signature pairsj 50% genuine:genuine pairs, 
40% genuine:forgery pairs and 10% genuine:zero-effort pairs. 1 The validation set 
consisted of 960 signature pairs in the same proportions as the training set. The 
network used for verification was that with the lowest error rate on the validation 
set. 

See Table 1 for a summary of the experiments. Training took a few days on a 
SPARe 1+. 

5 TESTING 

When used for verification, only one sub-network is evaluated. The output of this is 
the feature vector for the signature. The feature vectors for the last six signatures 
signed by each person were used to make a multivariate normal density model of the 
person's signature (see pp. 22-27 of Pattern Classification and Scene Analysis by 
Duda and Hart for a fuller description of this). For simplicity, we assume that the 
features are statistically independent, and that each feature has the same variance. 
Verification consists of comparing a feature vector with the model of the signature. 
The probability density that a test signature is genuine, p-yes, is found by evaluating 

1 zero-effort forgeries, also known as random forgeries, are those for which the forger 
makes no effort to copy the genuine signature, we used genuine signatures from other 
signers to simulate such forgeries. 
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Figure 2: Results for Networks 4 (open circles) and 5 (closed circles). The training 
of Network 4 was essentially the same as for Network 3 except that more data 
was used in training and it had been cleaned of noise. They were both based on 
architecture 1. Network 5 was based on architecture 2. The signature feature vector 
from this architecture is just 4 by 19 in size. 

the normal density function. The probability density that a test signature is a 
forgery, p-no, is assumed, for simplicity, to be a constant value over the range of 
interest. An estimate for this value was found by averaging the p-yes values for all 
forgeries. Then the probability that a test signature is genuine is p-yesj(p-yes + p­
no). Signatures closer than a chosen threshold to this stored representation are 
accepted, all other signatures are rejected as forgeries. 

Networks 1, 2 and 3, all based on architecture I, were tested using a set of 63 
genuine signatures and 63 forgeries for 18 different people. There were about 4 
genuine test signatures for each of the 18 people, and 10 forgeries for 6 of these 
people. Networks 1 and 2 had identical training except Network 2 was trained 
without pen up points. Network 1 gave the better results. However, with such a 
small test set, this difference may be hardly significant. 

The training of Network 3 was identical to that of Network I, except that x and y 
were used as input features, rather than acc-c and acc-t. It had somewhat improved 
performance. No study was made to find out whether the performance improvement 
came from using x and y or from leaving out acc-c and acc-t. Plamondon and 
Parizeau (1988) have shown that acceleration is not as reliable as other functions. 

Figure 2 shows the results for Networks 4 and 5. They were tested using a set of 
532 genuine signatures and 424 forgeries for 43 different people. There were about 
12 genuine test signatures for each person, and 30 forgeries for 14 of the people. 
This graph compares the performance of the two different architectures. 

It takes 2 to 3 minutes on a Sun SPARC2 workstation to preprocess 6 signatures, 
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collect the 6 outputs from the sub-network and build the normal density model. 

6 RESULTS 

Best performance was obtained with Network 4. With the threshold set to detect 
80% of forgeries, 95.5% of genuine signatures were detected (24 signatures rejected). 
Performance could be improved to 97.0% genuine signatures detected (13 rejected) 
by removing all first and second signature from the test set 2. For 9 of the remaining 
13 rejected signatures pen up trajectories differed from the person's typical signa­
ture. This agrees with other reports (Strangio, 1976 Herbst and Liu, 1977b) that 
pen up trajectory is hard to imitate, but also a less repeatable signature feature. 
However, removing pen up trajectories from training and test sets did not lead to 
any improvement (Networks 1 and 2 had similar performance), leading us to be­
lieve that pen up trajectories are useful in some cases. Using an elastic matching 
method for measuring distance may help. Another cause of error came from a few 
people who seemed unable to sign consistently and would miss out letters or add 
new strokes to their signature. 

The requirement to represent a model of a signature in 80 bytes means that the 
signature feature vector must be encodable in 80 bytes. Architecture 2 was specif­
ically designed with this requirement in mind. Its signature feature vector has 76 
dimensions. When testing Network 5, which was based on this architecture, 50% of 
the outputs were found (surprisingly) to be redundant and the signature could be 
represented by a 38 dimensional vector with no loss of performance. One explana­
tion for this redundancy is that, by reducing the dimension of the output (by not 
using some outputs), it is easier for the neural network to satisfy the constraint that 
genuine and forgery vectors have a cosine distance of -1 (equivalent to the outputs 
from two such signatures pointing in opposite directions). 

These results were gathered on a Sun SPARC2 workstation where the 38 values 
were each represented with 4 bytes. A test was made representing each value in one 
byte. This had no detrimental effect on the performance. Using one byte per value 
allows the signature feature vector to be coded in 38 bytes, which is well within 
the size constraint. It may be possible to represent a signature feature vector with 
even less resolution, but this was not investigated. For a model to be updatable 
(a requirement of this project), the total of all the squares for each component of 
the signature feature vectors must also be available. This is another 38 dimensional 
vector. From these two vectors the variance can be calculated and a test signature 
verified. These two vectors can be stored in 80 bytes. 

7 CONCLUSIONS 

This paper describes an algorithm for signature verification. A model of a person's 
signature can easily fit in 80 bytes and the model can be updated and become more 
accurate with each successful use of the credit card (surely an incentive for people 
to use their credit card as frequently as possible). Other beneficial aspects of this 
verification algorithm are that it is more resistant to forgeries for people who sign 

2people commented that they needed to sign a few time to get accustomed to the pad 
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consistently, the algorithm is independent of the general direction of signing and is 
insensitive to changes in size and slope. 

As a result of this project, a demonstration system incorporating the neural network 
signature verification algorithm was developed. It has been used in demonstrations 
at Bell Laboratories where it worked equally well for American, European and 
Chinese signatures. This has been shown to commercial customers. We hope that 
a field trial can be run in order to test this technology in the real world. 
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