
Automatic Synonym Discovery with Knowledge Bases

Meng Qu
University of Illinois
at Urbana-Champaign
mengqu2@illinois.edu

Xiang Ren
University of Illinois
at Urbana-Champaign
xren7@illinois.edu

Jiawei Han
University of Illinois
at Urbana-Champaign
hanj@illinois.edu

ABSTRACT

Recognizing entity synonyms from text has become a crucial task in
many entity-leveraging applications. However, discovering entity
synonyms from domain-specific text corpora (e.g., news articles,
scientific papers) is rather challenging. Current systems take an
entity name string as input to find out other names that are syn-
onymous, ignoring the fact that often times a name string can refer
to multiple entities (e.g., “apple” could refer to both Apple Inc and
the fruit apple). Moreover, most existing methods require training
data manually created by domain experts to construct supervised-
learning systems. In this paper, we study the problem of automatic
synonym discovery with knowledge bases, that is, identifying syn-
onyms for knowledge base entities in a given domain-specific corpus.
The manually-curated synonyms for each entity stored in a knowl-
edge base not only form a set of name strings to disambiguate the
meaning for each other, but also can serve as “distant” supervision
to help determine important features for the task. We propose a
novel framework, called DPE, to integrate two kinds of mutually-
complementing signals for synonym discovery, i.e., distributional
features based on corpus-level statistics and textual patterns based
on local contexts. In particular, DPE jointly optimizes the two kinds
of signals in conjunction with distant supervision, so that they can
mutually enhance each other in the training stage. At the inference
stage, both signals will be utilized to discover synonyms for the
given entities. Experimental results prove the effectiveness of the
proposed framework.

ACM Reference format:
MengQu, Xiang Ren, and Jiawei Han. 2017. Automatic Synonym Discovery
with Knowledge Bases. In Proceedings of KDD’17, August 13-17, 2017, Halifax,
NS, Canada, , 9 pages.
DOI: 10.1145/3097983.3098185

1 INTRODUCTION

People often have a variety of ways to refer to the same real-world
entity, forming different synonyms for the entity (e.g., entity United
States can be referred using “America” and “USA”). Automatic syn-
onym discovery is an important task in text analysis and under-
standing, as the extracted synonyms (i.e. the alternative ways to
refer to the same entity) can benefit many downstream applica-
tions [1, 32, 33, 37]. For example, by forcing synonyms of an entity
to be assigned in the same topic category, one can constrain the
topic modeling process and yield topic representations with higher
quality [33]. Another example is in document retrieval [26], where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 ACM. 978-1-4503-4887-4/17/08. . . $15.00
DOI: 10.1145/3097983.3098185

Text Corpus

Entities Knowledge Bases

Synonym Seeds

Figure 1: Distant supervision for synonym discovery. We
link entity mentions in text corpus to knowledge base enti-
ties, and collect training seeds from knowledge bases.

we can leverage entity synonyms to enhance the process of query
expansion, and thus improve the retrieval performances.

One straightforward approach for obtaining entity synonyms is
to leverage publicly available knowledge bases such as Freebase and
WordNet, in which popular synonyms for the entities are manually
curated by human crowds. However, the coverage of knowledge
bases can be rather limited, especially on some newly emerging
entities, as the manual curation process entails high costs and is
not scalable. For example, the entities in Freebase have only 1.1
synonyms on average. To increase the synonym coverage, we
expect to automatically extract more synonyms that are not in
knowledge bases frommassive, domain-specific text corpora. Many
approaches address this problem through supervised [19, 27, 29]
or weakly supervised learning [11, 20], which treat some manually
labeled synonyms as seeds to train a synonym classifier or detect
some local patterns for synonym discovery. Though quite effective
in practice, such approaches still rely on careful seed selections by
humans.

To retrieve training seeds automatically, recently there is a grow-
ing interest in the distant supervision strategy, which aims to auto-
matically collect training seeds from existing knowledge bases. The
typical workflow is: i) detect entity mentions from the given corpus,
ii) map the detected entity mentions to the entities in a given knowl-
edge base, iii) collect training seeds from the knowledge base. Such
techniques have been proved effective in a variety of applications,
such as relation extraction [10], entity typing [17] and emotion
classification [14]. Inspired by such strategy, a promising direction
for automatic synonym discovery could be collecting training seeds
(i.e., a set of synonymous strings) from knowledge bases.

Although distant supervision helps collect training seeds au-
tomatically, it also poses a challenge due to the string ambiguity
problem, that is, the same entity surface strings can be mapped
to different entities in knowledge bases. For example, consider
the string “Washington” in Figure 1. The “Washington” in the first
sentence represents a state of the United States; while in the second
sentence it refers to a person. As some strings like “Washington”

have ambiguous meanings, directly inferring synonyms for such
strings may lead to a set of synonyms for multiple entities. For
example, the synonyms of entityWashington returned by current
systemsmay contain both the state names and person names, which
is not desirable. To address the challenge, instead of using ambigu-
ous strings as queries, a better way is using some specific concepts
as queries to disambiguate, such as entities in knowledge bases.

This motivated us to define a new task: automatic synonym
discovery for entities with knowledge bases. Given a domain-specific
corpus, we aim to collect existing name strings of entities from
knowledge bases as seeds. For each query entity, the existing name
strings of that entity can disambiguate the meaning for each other,
and we will let them vote to decide whether a given candidate string
is a synonym of the query entity. Based on that, the key task for
this problem is to predict whether a pair of strings are synonymous
or not. For this task, the collected seeds can serve as supervision to
help determine the important features. However, as the synonym
seeds from knowledge bases are usually quite limited, how to use
them effectively becomes a major challenge. There are broadly
two kinds of efforts towards exploiting a limited number of seed
examples.

The distributional based approaches [9, 13, 19, 27, 29] consider
the corpus-level statistics, and they assume strings which often
appear in similar contexts are likely to be synonyms. For exam-
ple, the strings “USA” and “United States” are usually mentioned in
similar contexts, and they are the synonyms of the country USA.
Based on the assumption, the distributional based approaches usu-
ally represent strings with their distributional features, and treat
the synonym seeds as labels to train a classifier, which predicts
whether a given pair of strings are synonymous or not. Since
most synonymous strings will appear in similar contexts, such ap-
proaches usually have high recall. However, such strategy also
brings some noise, since some non-synonymous strings may also
share similar contexts, such as “USA” and “Canada”, which could
be labeled as synonyms incorrectly.

Alternatively, the pattern based approaches [5, 15, 20, 22] con-
sider the local contexts, and they infer the relation of two strings by
analyzing sentences mentioning both of them. For example, from
the sentence “The United States of America is commonly referred
to as America.”, we can infer that “United States of America” and
“America” have the synonym relation; while the sentence “The USA
is adjacent to Canada” may imply that “USA” and “Canada” are not
synonymous. To leverage this observation, the pattern based ap-
proaches will extract some textual patterns from sentences in which
two synonymous strings co-occur, and discover more synonyms
with the learned patterns. Different from the distributional based
approaches, the pattern based approaches can treat the patterns as
concrete evidences to support the discovered synonyms, which are
more convincing and interpretable. However, as many synonymous
strings will not be co-mentioned in any sentences, such approaches
usually suffer from low recall.

Ideally, we would wish to combine the merits of both approaches,
and in this paper we propose such a solution named DPE (distribu-
tional and pattern integrated embedding framework). Our frame-
work consists of a distributional module and a pattern module. The
distributional module predicts the synonym relation from the global
distributional features of strings; while in the pattern module, we
aim to discover synonyms from the local contexts. Both modules
are built on top of some string embeddings, which preserve the

Distributional Based Approaches

Pattern Based Approaches

Figure 2: Comparison of the distributional based and pat-
tern based approaches. To predict the relation of two tar-
get strings, the distributional based approaches will ana-
lyze their distributional features, while the pattern based
approaches will analyze the local patterns extracted from
sentences mentioning both of the target strings.

semantic meanings of strings. During training, both modules will
treat the embeddings as features for synonym prediction, and in
turn update the embeddings based on the supervision from syn-
onym seeds. The string embeddings are shared across the modules,
and therefore each module can leverage the knowledge discovered
by the other module to improve the learning process.

To discover missing synonyms for an entity, one may directly
rank all candidate strings with both modules. However, such strat-
egy can have high time costs, as the pattern module needs to extract
and analyze all sentences mentioning a pair of given strings when
predicting their relation. To speed up synonym discoveries, our
framework will first utilize the distributional module to rank all
candidate strings, and extract a set of top ranked candidates as
high-potential ones. After that, we will re-rank the high-potential
candidates with both modules, and treat the top ranked candidates
as the discovered synonyms.

The major contributions of the paper are summarized as follows:
• We propose to study the problem of automatic synonym discovery

with knowledge bases, i.e., aiming to discover missing synonyms
for entities by collecting training seeds from knowledge bases.

• We propose a novel approach DPE, which naturally integrates
the distributional based approaches and the pattern based ap-
proaches for synonym discovery.

• We conduct extensive experiments on the real world text corpora.
Experimental results prove the effectiveness of our proposed
approach over many competitive baseline approaches.

2 PROBLEM DEFINITION

In this section, we define several concepts and our problem:

Synonym. A synonym is a string (i.e., word or phrase) that means
exactly or nearly the same as another string in the same language [21].
Synonyms widely exist in human languages. For example, “Aspirin”
and “Acetylsalicylic Acid” refer to the same drug; “United States”
and “USA” represent the same country. All these pairs of strings
are synonymous.

Entity Synonym. For an entity, its synonym refers to strings
that can be used as alternative names to describe that entity. For
example, both the strings “USA” and “United States” serve as alter-
native names of the entity United States, and therefore they are the
synonyms of this entity.

Knowledge Base. A knowledge base consists of some manually
constructed facts about a set of entities. In this paper, we only focus

Seed Collection

Text Corpus

Knowledge Base

Synonym Seeds

String Embeddings Distributional
Score Function

Distributional Module

Pattern
Classifier

Pattern Module

Seeds

Seeds

Model Learning

Query Entity

High-Potential
Candidates

Discovered
Synonyms

Figure 3: Framework Overview.

on the existing entity synonyms provided by knowledge bases, and
we will collect those existing synonyms as training seeds to help
discover other missing synonyms.

Problem Definition. Given the above concepts, we formally de-
fine our problem as follows.

Definition 2.1. (Problem Definition) Given a knowledge base
K and a text corpus D, our problem aims to extract the missing
synonyms for the query entities.

3 FRAMEWORK

In this section, we introduce our approach DPE for entity synonym
discovery with knowledge bases. To infer the synonyms of a query
entity, we leverage its name strings collected from knowledge bases
to disambiguate the meaning for each other, and let them vote to
decide whether a given candidate string is a synonym of the query
entity. Therefore, the key task for this problem is to predict whether
a pair of strings are synonymous or not. For this task, the synonym
seeds collected from knowledge bases can serve as supervision to
guide the learning process. However, as the number of synonym
seeds is usually small, how to leverage them effectively is quite
challenging. Existing approaches either train a synonym classifier
with the distributional features, or learn some textual patterns for
synonym discovery, which cannot exploit the seeds sufficiently.

To address this challenge, our framework naturally integrates the
distributional based approaches and the pattern based approaches.
Specifically, our framework consists of a distributional module and
a pattern module. Given a pair of target strings, the distributional
module predicts the synonym relation from the global distributional
features of each string; while the pattern module considers the local
contexts mentioning both target strings. During training, both
modules will mutually enhance each other. At the inference stage,
we will leverage both modules to find high-quality synonyms for
the query entities.

Framework Overview. The overall framework of DPE (Figure 3)
is summarized below:
(1) Detect entity mentions in the given text corpus and link them

to entities in the given knowledge base. Collect synonym seeds
from knowledge bases as supervision.

(2) Jointly optimize the distributional and the pattern modules.
The distributional module predicts synonym relations with
the global distributional features, while the pattern module
considers the local contexts mentioning both target strings.

(3) Discover missing synonyms for the query entities with both
the distributional module and the pattern module.

3.1 Synonym Seed Collection

To automatically collect synonym seeds, our approach will first
detect entity mentions (strings that represent entities) in the given
text corpus and link them to entities in the given knowledge base.
After that, we will retrieve the existing synonyms in knowledge
bases as our training seeds. An illustrative example is presented in
Figure 1.

Specifically, we first apply existing named-entity recognition
(NER) tools [8]1 to detect entity mentions and phrases in the given
text corpus. Then some entity linking techniques such as the DBpe-
dia Spotlight [3]2 are applied, which will map the detected entity
mentions to the given knowledge base. During entity linking, some
mentions can be linked to incorrect entities, leading to false syn-
onym seeds. To remove such seeds, for each mention and its linked
entity, if the surface string of that mention is not in the existing
synonym list of that entity, we will remove the link between the
mention and the entity,

After entity mention detection and linking, the synonym seeds
will be collected from the linked corpus. Specifically, for each
entity, we collect all mentions linked to that entity, and treat all
corresponding surface strings as synonym seeds.

3.2 Methodology Overview

After extracting synonym seeds from knowledge bases, we formu-
late an optimization framework to jointly learn the distributional
module and the pattern module.

To preserve the semanticmeanings of different strings, our frame-
work introduces a low-dimensional vector (a.k.a. embedding) to
represent each entity surface string (i.e., strings that are linked
to entities in knowledge bases) and each unlinkable string (i.e.,
words and phrases that are not linked to any entities). For the
same strings that linked to different entities, as they have different
semantic meanings, we introduce different embeddings for them.
For example, the string “Washinton” can be linked to a state or a
person, and we use two embeddings to represent Washinton (state)
andWashinton (person) respectively.

The twomodules of our framework are built on top of these string
embeddings. Specifically, both modules treat the embeddings as
features for synonym prediction, and in turn update the embeddings
based on the supervision from the synonym seeds, which may bring
stronger predictive abilities to the learned embeddings. Meanwhile,
since the string embeddings are shared between the two modules,
each module is able to leverage the knowledge discovered by the
other module, so that the two modules can mutually enhance to
improve the learning process.

1 http://stanfordnlp.github.io/CoreNLP/
2 https://github.com/dbpedia-spotlight/dbpedia-spotlight

http://stanfordnlp.github.io/CoreNLP/
https://github.com/dbpedia-spotlight/dbpedia-spotlight

�e overall objective of our framework is summarized as follows:

O = OD +OP , (1)

where OD is the objective of the distributional module and OP is
the objective of the pa�ern module. Next, we introduce the details
of each module.

3.2.1 Distributional Module. �e distributional module of
our framework considers the global distributional features for syn-
onym discovery. �e module consists of an unsupervised part and
a supervised part. In the unsupervised part, a co-occurrence net-
work encoding the distributional information of strings will be
constructed, and we try to preserve the distributional information
into the string embeddings. Meanwhile in the supervised part, the
synonym seeds will be used to learn a distributional score function,
which takes string embeddings as features to predict whether two
strings are synonymous or not.
Unsupervised Part. In the unsupervised part, we �rst construct
a co-occurrence network between di�erent strings, which captures
their distributional information. Formally, all strings (i.e., entity
surface strings and other unlinkable strings) within a sliding win-
dow of a certain size w in the text corpus are considered to be
co-occurring with each other. �e weight for each pair of strings in
the co-occurrence network is de�ned as their co-occurrence count.

A�er network construction, we aim to preserve the encoded dis-
tributional information into the string embeddings, so that strings
with similar semantic meanings will have similar embeddings. To
preserve the distributional information, we observe that the co-
occurrence counts of strings are related to the following factors.

O���������� 3.1 (C������������ O����������). (1) If two
strings have similar semantic meanings, then they are more likely to
co-occur with each other. (2) If a string tends to appear in the context
of another one, then they tend to co-occur frequently.

�e above observation is quite intuitive. If two strings have simi-
lar semantic meanings, they are more likely to be mentioned in the
same topics, and therefore have a larger co-occurrence probability.
For example, the strings “data mining” and “text mining” are highly
correlated, while they have quite di�erent meanings from the word
“physics”, and we can observe that the co-occurrence chances be-
tween “data mining” and “text mining” are much larger than those
between “data mining” and “physics”. On the other hand, some
string pairs with very di�erent meanings may also have large co-
occurrence counts, when one tends to appear in the context of the
other one. For example, the word “capital” o�en appears in the
context of “USA”, even they have very di�erent meanings.

To exploit the above observation, for each string u, besides its
embedding vector xu , we also introduce a context vector cu , which
describes what kinds of strings are likely co-mentioned with u.
Given a pair of strings (u,�), we model the conditional probability
p (u |�) as follows:

p (u |�) = exp(xTu x� + xTu c�)
Z

, (2)

where Z is a normalization term. We see that if u and � have
similar embedding vectors, meaning they have similar semantic
meanings, the �rst part (xTu x�) of the equation will be large, leading
to a large conditional probability, which corresponds to the �rst
observation 3.1. On the other hand, if the embedding vector of u is
similar to the context vector of � , meaning u tends to appear in the

context of� , the second part (xTu c�) becomes large, which also leads
to a large conditional probability, and this process corresponds to
the second observation 3.1.

To preserve the distributional information of strings, we ex-
pect the estimated distribution p (·|�) to be close to the empirical
distribution p0(·|�) (i.e., p0(u |�) = wu,�/d� , wherewu,� is the co-
occurrence count between u and � , and d� is the degree of � in the
network) for each string � . �erefore, we minimize the KL distance
between p (·|�) and p0(·|�), which is equivalent to the following
objective [24]:

LC =
X

u,� 2V
wu,� logp (u |�), (3)

where V is the vocabulary of all strings.
Directly optimizing the above objective is computational expen-

sive since it involves traversing all strings in the vocabulary when
computing the conditional probability. �erefore, we leverage the
negative sampling techniques [9] to speed up the learning pro-
cess, which modify the conditional probability p (u |�) in Eqn. 3 as
follows:

log� (xTu x� +x
T
u c�)+

NX

n=1
Eun⇠Pne� (u)[1� log� (xTunx� +x

T
un c�)],

(4)
where� (x) = 1/(1+exp(�x)) is the sigmoid function. �e �rst term
tries to maximize the probabilities of some observed string pairs,
while the second term tries to minimize the probabilities of N noisy
pairs, and un is sampled from a noisy distribution Pne� (u) / d3/4u
and du is the degree of string u in the network.
Supervised Part. �e unsupervised part of the distributional mod-
ule can e�ectively preserve the distributional information of strings
into the learned string embeddings. In the supervised part, we will
utilize the collected synonym seeds to train a distributional score
function, which treats the string embeddings as features to predict
whether two strings have the synonym relation or not.

To measure how likely two strings are synonymous, we intro-
duce a score for each pair of strings. Inspired by the existing
study [36], we use the following bilinear function to de�ne the
score of a string pair (u,�):

ScoreD (u,�) = xuWDxT� , (5)

where xu is the embedding of string u,WD is a parameter matrix
for the score function. Due to the e�ciency issue, in this paper we
constrainWD as a diagonal matrix.

To learn the parameters WD in the score function, we expect
that the synonymous string pairs could have larger scores than
those randomly sampled pairs. �erefore we adopt the following
ranking based objective for learning:

LS =
X

(u,�)2Sseed

X

� 0 2V
min(1, ScoreD (u,�) � ScoreD (u,� 0)), (6)

where Sseed is the set of synonymous string pairs, � 0 is a string
randomly sampled from the string vocabulary. By maximizing the
above objective, the learned parameter matrixWD will be able to
distinguish those synonymous pairs from others. Meanwhile, we
will update the string embeddings to maximize the objective, which
will bring more predictive abilities to the learned embeddings.

Sentence Illinois , which is also called IL , is a state in the US .
Pattern (ENT NNP nsubj) (called VBN acl:relcl) (ENT NN xcomp)

Lexical Features Embedding[called]
Syntactic Features NNP VBN NNP (NNP,VBN) (VBN,NNP)

nsubj acl:relcl xcomp (nsubj,acl:relcl) (acl,xcomp)

Sentence Michigan , also known as MI , consists of two peninsulas .
Pattern (ENT NNP nsubj) (known VBN acl) (ENT NNP xcomp)

Lexical Features Embedding[known]
Syntactic Features NNP VBN NNP (NNP,VBN) (VBN,NNP)

nsubj acl xcomp (nsubj,acl) (acl,xcomp)

Figure 4: Examples of patterns and their features. For a pair
of target strings (red ones) in each sentence, we define the
pattern as the <token, POS tag, dependency label> triples
in the shortest dependency path. We collect both lexical fea-
tures and syntactic features for pattern classification.

3.2.2 Pattern Module. For a pair of target strings, the pattern
module of our framework predicts their relation from the sentences
mentioning both of them. We achieve this by extracting a pattern
from each of such sentences, and collecting some lexical features
and syntactic features to represent each pattern. Based on the
extracted features, a pattern classifier is trained to predict whether
a pattern expresses the synonym relation between the target strings.
Finally, we will integrate all prediction results from these patterns
to decide the relation of the target strings.

We first introduce the definition of the pattern used in our frame-
work. Following existing pattern based approaches [11, 35], given
two target strings in a sentence, we define the pattern as the se-
quence of <lexical string, part-of-speech tag, dependency label>
triples collected from the shortest dependency path connecting the
two strings. Two examples can be found in Figure 4.

For each pattern, we will extract some features and predict
whether this pattern expresses the synonym relation. We expect
that the extracted features could well capture the functional cor-
relations between patterns. In other words, patterns expressing
synonym relations should have similar features. For example, con-
sider the two sentences in Figure 4. The patterns in both sentences
express the synonym relation between the target strings (strings
with the red color), and therefore we anticipate that the two patterns
could have similar features.

Towards this goal, we extract both lexical and syntactic features
for each pattern. For the lexical features, we average all embeddings
of strings in a pattern as the features. As the string embeddings
can well preserve the semantic meanings of strings, such lexical
features can effectively capture the semantic correlations between
different patterns. Take the sentences in Figure 4 as an example.
Since the strings “called” and “known” usually appear in similar
contexts, they will have quite similar embeddings, and therefore the
two patterns will have similar lexical features, which is desirable.
For the syntactic features, we expect that they can capture the
syntactic structures of the patterns. Therefore for each pattern, we
treat all n-grams (1 ≤ n ≤ N) in the part-of-speech tag sequence
and the dependency label sequence as its syntactic features. Some
example are presented in Figure 4, where we set N as 2.

Based on the extracted features, a pattern classifierwill be trained,
which predicts whether a pattern expresses the synonym relation.
To collect positive examples for training, we extract patterns from
all sentences mentioning a pair of synonymous strings, and treat
these patterns as positive examples. For the negative examples, we

randomly sample some string pairs without the synonym relation,
and treat the corresponding patterns as negative ones. We select
the linear logistic classifier for classification. Given a pattern pat
and its feature vector fpat , we define the probability that pattern
pat expresses the synonym relation as follows:

P (ypat = 1|pat) = 1

1 + exp(−WP
T fpat)

, (7)

whereWP is the parameter vector of the classifier. We learnWP by
maximizing the log-likelihood objective function, which is defined
as below:

OP =
∑

pat ∈Spat
log P (ypat |pat), (8)

where Spat is the set of all training patterns, ypat is the label of pat-
tern pat . By maximizing the above objective, the learned classifier
can effectively predict whether a pattern expresses the synonym re-
lation or not. Meanwhile, we will also update the string embeddings
during training, and therefore the learned string embeddings will
have better predictive abilities for the synonym discovery problem.

After learning the pattern classifier, we can use it for synonym
prediction. Specifically, for a pair of target strings u and v , we
first collect all sentences mentioning both strings, and extract cor-
responding patterns from them, then we measure the possibility
that u and v are synonymous using the following score function
ScoreP (u,v):

ScoreP (u,v) =

∑
pat ∈Spat (u,v) P (ypat = 1|pat)

|Spat (u,v) | , (9)

where Spat (u,v) is the set of all corresponding patterns. Basically,
our approach will classify all corresponding patterns, and different
patterns will vote to decide whether u and v are synonymous.

4 MODEL LEARNING AND INFERENCE

In this section, we introduce our optimization algorithm and how
we discover missing synonyms for entities.

Optimization Algorithm. The overall objective function of our
framework consists of three parts. Two of them (LC and LS) are
from the distributional module and the other one (OP) is from the
pattern module. To optimize the objective, we adopt the edge sam-
pling strategy [24]. In each iteration, we alternatively sample a
training example from the three parts, and then update the corre-
sponding parameters. We summarize the optimization algorithm
in Algorithm 1

Synonym Inference. To infer the synonyms of a query entity,
our framework leverages both the distributional module and the
pattern module.

Formally, given a query entity e , suppose its name strings col-
lected from knowledge bases is Ssyn (e). Then for each candidate
string u, we measure the possibility that u is a synonym of e using
the following score function:

Score (e,u) =
∑

s ∈Ssyn (e)
{ScoreD (s,u) + λScoreP (s,u)}. (10)

ScoreD (Eqn. 5) and ScoreP (Eqn. 9) are used to measure how likely
two target strings are synonymous, which are learned from the
distributional module and the pattern module respectively. λ is a
parameter controlling the relative weights of the two parts. The
definition of the score function is quite intuitive. For each candidate
string, we will compare it with all existing name strings of the query

Algorithm 1 Optimization Algorithm of the DPE
Input: A co-occurrence network between strings Noccur , a set of

seed synonym pairs Sseed , a set of training pa�erns Spat .
Output: �e string embeddings x, parameters of the distributional

score function WD, parameters of the pa�ern classi�erWP.
1: while iter I do
2: � Optimize LC
3: Sample a string pair (u,�) from Noccur .
4: Randomly sample N negative string pairs {(u,�n)}Nn=1.
5: Update x, c w.r.t. LC .
6: � Optimize LS
7: Sample a string pair (u,�) from Sseed .
8: Randomly sample a negative string pair (u,�n)
9: Update x andWD w.r.t. LS .
10: � Optimize OP
11: Sample a pa�ern from Spat .
12: Update x andWP w.r.t. OP .
13: end while

entity, and these existing name strings will vote to decide whether
the candidate string is a synonym of the query entity.

However, the above method is not scalable. �e reason is that
the computational cost of the pa�ern score ScoreP is very high, as
we need to collect and analyze all the sentences mentioning both
the target strings. When the number of candidate strings is very
large, calculating the pa�ern scores for all candidate strings can be
very time-consuming. To solve the problem, as the distributional
score ScoreD between two target strings is easy to calculate, a more
e�cient solution could be �rst utilizing the distributional score
ScoreD to construct a set of high potential candidates, and then
using the integrated score Score to �nd the synonyms from those
high potential candidates.

�erefore, for each query entity e , we �rst rank each candidate
string according to their distributional scores ScoreD , and extract
the top ranked candidate strings as the high potential candidates.
A�er that, we re-rank the high potential candidates with the inte-
grated score Score , and treat the top ranked candidate strings as
the discovered synonym of entity e . With such two-step strategy,
we are able to discover synonyms both precisely and e�ciently.

5 EXPERIMENT
5.1 Experiment Setup

5.1.1 Datasets. �ree datasets are constructed in our experi-
ments. (1) Wiki + Freebase: We treat the �rst 100K articles in the
Wikipedia 3 dataset as the text data, and the Freebase 4 [4] as the
knowledge base. (2) PubMed + UMLS: We collect around 1.5M
paper abstracts from the PubMed dataset 5, and use the UMLS 6

dataset as our knowledge base. (3) NYT + Freebase: We randomly
sample 118664 documents from 2013 New York Times news articles,
and we select the Freebase as the knowledge base. For each dataset,
we adopt the Stanford CoreNLP package [8]7 to do tokenization,
part-of-speech tagging and dependency parsing. We �ltered out
strings that appear less than 10 times. �e window size is set as
3 h�ps://www.wikipedia.org/
4 h�ps://developers.google.com/freebase/
5 h�ps://www.ncbi.nlm.nih.gov/pubmed
6 h�ps://www.nlm.nih.gov/research/umls/
7 h�p://stanfordnlp.github.io/CoreNLP/

5 when constructing the co-occurrence network between strings.
�e statistics of the datasets are summarized in Table 1.

Table 1: Statistics of the Datasets.
Dataset Wiki PubMed NYT

#Documents 100,000 1,554,433 118,664
#Sentences 6,839,331 15,051,203 3,002,123

#Strings in Vocab 277,635 357,985 115,680
#Training Entities 4,047 9,298 1,219

#Test Entities (Warm) 256 250 79
#Test Entities (Cold) 175 150 72

5.1.2 PerformanceEvaluation. For each dataset, we randomly
sample some linked entities as the training entities, and all their
synonyms are used as seeds by the compared approaches. We also
randomly sample a few linked entities as test entities, which are
used for evaluation.

Two se�ings are considered in our experiments, i.e., the warm-
start se�ing and the cold-start se�ing. In the warm-start se�ing,
for each test entity, we assume that 50% of its synonyms are already
given, and we aim to use them to infer the rest 50%. In the cold-start
se�ing, we are only given the original name of each test entity, and
our goal is to infer all its synonyms in knowledge bases.

During evaluation, we treat all unlinkable strings (i.e., words or
phrases that are not linked to any entities in the knowledge base)
as the candidate strings. In both se�ings, we add the ground-truth
synonyms of each test entity into the set of candidate strings, and
we aim to rank the ground-truth synonyms at the top positions
among all candidate strings. For the evaluation metrics, we report
the Precision at Position K (P@K), Recall at Position K (R@K) and
F1 score at Position K (F1@K).

5.1.3 Compared algorithms. We select the following algo-
rithms to compare. (1) Patty [11]: a pa�ern based approach for
relation extraction, which can be applied to our problem by treating
the collected synonym seeds as training instances. (2) SVM [29]:
a distributional based approach, which uses the bag-of-words fea-
tures and learns an SVM classi�er for synonym discovery. (3)
word2vec [9]: a word embedding approach. We use the learned
string embedding as features and train a score function in Eqn. 5 for
synonym discovery. (4) GloVe [13]: another word embedding ap-
proach. Similar to word2vec, we use the learned string embedding
as features and train a score function for synonym discovery. (5)
PTE [23]: a text embedding approach, which is able to exploit both
the text data and the entity types provided in knowledge bases to
learn string embeddings. A�er embedding learning, we apply the
score function in Eqn. 5 for synonym discovery. (6) RKPM [27]:
a knowledge powered string embedding approach, which utilizes
both the raw text and the synonym seeds for synonym discovery.
(7) DPE: our proposed embedding framework, which integrates
both the distributional features and local pa�erns for synonym
discovery. (8) DPE-NoP: a variant of our framework, which only
deploys the distributional module (OD). (9) DPE-TwoStep: a vari-
ant of our framework, which �rst trains the distributional module
(OD) and then the pa�ern module (OP), without jointly optimizing
them.

5.1.4 Parameter Se�ings. For all embedding based approaches,
we set the embedding dimension as 100. For DPE and its variants,
we set the learning rate as 0.01 and the number of negative samples

https://www.wikipedia.org/
https://developers.google.com/freebase/
https://www.ncbi.nlm.nih.gov/pubmed
https://www.nlm.nih.gov/research/umls/
http://stanfordnlp.github.io/CoreNLP/

Table 2: �antitative results on the warm-start setting.

Algorithm Wiki + Freebase PubMed + UMLS NYT + Freebase
P@1 R@1 F1@1 P@5 R@5 F1@5 P@1 R@1 F1@1 P@5 R@5 F1@5 P@1 R@1 F1@1 P@5 R@5 F1@5

Pa�y 0.102 0.075 0.086 0.049 0.167 0.076 0.352 0.107 0.164 0.164 0.248 0.197 0.101 0.081 0.090 0.038 0.141 0.060
SVM 0.508 0.374 0.431 0.273 0.638 0.382 0.696 0.211 0.324 0.349 0.515 0.416 0.481 0.384 0.427 0.248 0.616 0.354

word2vec 0.387 0.284 0.328 0.247 0.621 0.353 0.784 0.238 0.365 0.464 0.659 0.545 0.367 0.293 0.326 0.216 0.596 0.317
GloVe 0.254 0.187 0.215 0.104 0.316 0.156 0.536 0.163 0.250 0.279 0.417 0.334 0.203 0.162 0.180 0.084 0.283 0.130
PTE 0.445 0.328 0.378 0.252 0.612 0.357 0.800 0.243 0.373 0.476 0.674 0.558 0.456 0.364 0.405 0.233 0.606 0.337
RKPM 0.500 0.368 0.424 0.302 0.681 0.418 0.804 0.244 0.374 0.480 0.677 0.562 0.506 0.404 0.449 0.302 0.707 0.423

DPE-NoP 0.641 0.471 0.543 0.414 0.790 0.543 0.816 0.247 0.379 0.532 0.735 0.617 0.532 0.424 0.472 0.305 0.687 0.422
DPE-TwoStep 0.684 0.503 0.580 0.417 0.782 0.544 0.836 0.254 0.390 0.538 0.744 0.624 0.557 0.444 0.494 0.344 0.768 0.475

DPE 0.727 0.534 0.616 0.465 0.816 0.592 0.872 0.265 0.406 0.549 0.755 0.636 0.570 0.455 0.506 0.366 0.788 0.500

Table 3: �antitative results on the cold-start setting.

Algorithm Wiki + Freebase PubMed + UMLS NYT + Freebase
P@1 R@1 F1@1 P@5 R@5 F1@5 P@1 R@1 F1@1 P@5 R@5 F1@5 P@1 R@1 F1@1 P@5 R@5 F1@5

Pa�y 0.131 0.056 0.078 0.065 0.136 0.088 0.413 0.064 0.111 0.191 0.148 0.167 0.125 0.054 0.075 0.062 0.132 0.084
SVM 0.371 0.158 0.222 0.150 0.311 0.202 0.707 0.110 0.193 0.381 0.297 0.334 0.347 0.150 0.209 0.165 0.347 0.224

word2vec 0.411 0.175 0.245 0.196 0.401 0.263 0.627 0.098 0.170 0.408 0.318 0.357 0.361 0.156 0.218 0.151 0.317 0.205
GloVe 0.251 0.107 0.150 0.105 0.221 0.142 0.480 0.075 0.130 0.264 0.206 0.231 0.181 0.078 0.109 0.084 0.180 0.115
PTE 0.474 0.202 0.283 0.227 0.457 0.303 0.647 0.101 0.175 0.389 0.303 0.341 0.403 0.174 0.243 0.166 0.347 0.225
RKPM 0.480 0.204 0.286 0.227 0.455 0.303 0.700 0.109 0.189 0.447 0.348 0.391 0.403 0.186 0.255 0.170 0.353 0.229

DPE-NoP 0.491 0.209 0.293 0.246 0.491 0.328 0.700 0.109 0.189 0.456 0.355 0.399 0.417 0.180 0.251 0.180 0.371 0.242
DPE-TwoStep 0.537 0.229 0.321 0.269 0.528 0.356 0.720 0.112 0.194 0.477 0.372 0.418 0.431 0.186 0.260 0.183 0.376 0.246

DPE 0.646 0.275 0.386 0.302 0.574 0.396 0.753 0.117 0.203 0.500 0.389 0.438 0.486 0.201 0.284 0.207 0.400 0.273

●

●
● ●

● ●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

@K

Pr
ec
is
io
n

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●
●

●
● ●

● ●

●

●

●

●

●
●

●
● ●

●
● ●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

Patty
SvmDiff
GloVe
word2vec
PTE
RKPM
DPE

(a) Precision (Warm Start)

●

●
●

● ●
● ●

●
● ●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

@K

Pr
ec
is
io
n

●

●

●

●

●
● ●

● ●
● ●

● ● ●
● ● ● ● ● ●

● ●

●

●

●
●

●
● ● ● ● ●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●
● ●

●
●

● ●
●

● ●
●

● ●

●

●

●

●

●

●

●
●

●
● ● ● ●

●
● ● ● ● ●

● ●

●

●

●

●

●
●

● ● ● ● ● ● ●
●

● ● ● ● ●
● ●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

Patty
SvmDiff
GloVe
word2vec
PTE
RKPM
DPE

(b) Recall (Warm Start)

●

●
●

●
●

● ●

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

@K

Pr
ec
is
io
n

●

●

●

●

●

●
●

● ●
● ●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

Patty
SvmDiff
GloVe
word2vec
PTE
RKPM
DPE

(c) Precision (Cold Start)

●

●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

@K

Pr
ec
is
io
n

●

●

●

●
●

●
● ●

● ● ●
● ● ●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ●

● ● ● ● ●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ● ●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ●

●
●

● ●

●

●

●

●

●
●

●
● ●

●
● ●

●
● ●

●

●

●

●

●

●

●

Patty
SvmDiff
GloVe
word2vec
PTE
RKPM
DPE

(d) Recall (Cold Start)

Figure 5: Precision and Recall at di�erent positions on the Wiki dataset.

N when optimizing the co-occurrence network LD is set as 5. When
collecting the syntactic features in the pa�ern module, we set the n-
gram length N as 3. �e parameter �, which controls the weights of
the two modules during synonym discovery, is set as 0.1 by default.
We set the number of iterations as 10 billions. During synonym
inference, we �rst adopt the distributional module to extract top
100 ranked strings as the high potential candidates, then we use
both modules to re-rank them. For word2vec, PTE, the number of
negative examples is also set as 5, and the initial learning rate is
set as 0.025, as suggested by [9, 23, 24]. �e number of iterations
is set as 20 for word2vec, and for PTE we sample 10 billion edges
to ensure convergence. For GloVe, we use the default parameter
se�ings as used in [13]. For RKPM, we set the learning rate as 0.01,
and the iteration is set as 10 billion to ensure convergence.

5.2 Experiments and Performance Study
1. Comparing DPE with other baseline approaches. Table 2,
Table 3 and Figure 5 present the results on the warm-start and
cold-start se�ings. In both se�ings, we see that the pa�ern based
approach Pa�y does not perform well, and our proposed approach
DPE signi�cantly outperforms Pa�y. �is is because most syn-
onymous strings will never co-appear in any sentences, leading to
the low recall of Pa�y. Also, many pa�erns discovered by Pa�y
are not so reliable, which may harm the precision of the discov-
ered synonyms. DPE addresses this problem by incorporating the

distributional information, which can e�ectively complement and
regulate the pa�ern information, leading to higher recall and preci-
sion.

ComparingDPEwith the distributional based approaches (word2vec,
GloVe, PTE, RKPM), DPE still signi�cantly outperforms them. �e
performance gainsmainly come from: (1) we exploit the co-occurrence
observation 3.1 during training, which enables us to be�er capture
the semantic meanings of di�erent strings; (2) we incorporate the
pa�ern information to improve the performances.

2. Comparing DPE with its variants. To be�er understand why
DPE achieves be�er results, we also compare DPE with several
variants. From Table 2 and Table 3, we see that in most cases,
the distributional module of our approach (DPE-NoP) can already
outperform the best baseline approach RKPM.�is is because we
utilize the co-occurrence observation 3.1 in our distributional mod-
ule, which helps us capture the semantic meanings of strings more
e�ectively. By separately training the pa�ern module a�er the dis-
tributional module, and using both modules for synonym discovery
(DPE-TwoStep), we see that the results are further improved, which
demonstrates that the two modules can indeed mutually comple-
ment each other for synonym discovery. If we jointly train both
modules (DPE), we obtain even be�er results, which shows that
our proposed joint optimization framework can bene�t the training
process and therefore helps achieve be�er results.

●

●

●
●

●

●

0.
45

0.
50

0.
55

0.
60

0.
65

Lambda

Pe
rfo
rm
an
ce

0 0.025 0.05 0.1 0.2 0.4

●

●

● ●

●

●

●

●

F1@1
F1@5

(a) Wiki (warm-start)

●

●

●

●
●

●

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

Lambda
Pe
rfo
rm
an
ce

0 0.025 0.05 0.1 0.2 0.4

●

●

●

●

●

●

●

●

F1@1
F1@5

(b) Wiki (cold-start)

Figure 6: Performancesw.r.t. �. A small � emphasizes the dis-
tributional module. A large � emphasizes the pattern mod-
ule. Either module cannot discover synonyms e�ectively.

●

● ● ●
● ● ●

0.2 0.4 0.6 0.8 1.0

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Percentage of Training Entities

F1
@

5

●

●

●

●
●

●
●

●

●

RKPM
DPE

(a) Percentage of Training Entities

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Entity Name Strings Used in Inference

F1
@

5

●

●

●

●

●

●
●

●

●

●

●

RKPM
DPE−NoP
DPE

(b) #Synonyms Used in Inference

Figure 7: Performance change ofDPE (a) under di�erent per-
centage of training entities; and (b) with respect to the num-
ber of entity name strings used in inference.

3. Performances w.r.t. the weights of the modules. During
synonym discovery, DPE will consider the scores from both the
distributional module and the pa�ern module, and the parameter
� controls the relative weight. Next, we study how DPE behaves
under di�erent �. �e results on the Wiki dataset are presented
in Figure 6. We see that when � is either small or large, the per-
formance is not so good. �is is because a small � will emphasize
only the distributional module, while a large � will assign too much
weight to the pa�ern module. �erefore, either the distributional
module or the pa�ernmodule cannot discover synonyms e�ectively,
and we must integrate them during synonym discovery.
4. Performancesw.r.t. the percentage of the training entities.
During training, DPE will use the synonyms of the training entities
as seeds to guide the training. To understand how the training
entities will a�ect the results, we report the performances of DPE
under di�erent percentages of training entities. Figure 7(a) presents
the results on the Wiki dataset under the warm-start se�ing. We
see that compared with RKPM, DPE needs fewer labeled data to
converge. �is is because the two modules in our framework can
mutually complement each other, and therefore reduce the demand
of the training entities.
5. Performances w.r.t. the number of entity name strings
used in inference. Our framework aims to discover synonyms
at the entity level. Speci�cally, for each query entity, we use its
existing name strings to disambiguate the meaning for each other,
and let them vote to discover the missing synonyms. In this section,
we study how the number of name strings in inference will a�ect
the results. We sample a number of test entities from the Wiki
dataset, and utilize 1⇠4 existing name strings of each entity to
do inference. Figure 7(b) presents the results. We see that DPE

consistently outperforms RKPM. Besides, DPE also outperforms its
variant DPE-NoP, especially when the number of name strings used
in inference is small. �e reason may be that the pa�ern module of
DPE can e�ectively complement the distributional module when
only few entity name strings are available during inference.

Table 4: Example outputs on the Wiki dataset. Strings with
red colors are the true synonyms.

Entity US dollar World War II
Method DPE-NoP DPE DPE-NoP DPE

Output

US Dollars U.S. dollar Second World War Second World War
U.S. dollars US dollars World War Two World War Two

Euros U.S. dollars World War One WW II
U.S. dollar U.S. $ WW I world war

RMB Euros world wars world wars

Table 5: Top ranked patterns expressing the synonym rela-
tion. Strings with red colors are the target strings.

Pattern Corresponding Sentence
(-,NN,nsubj) (-lrb-,JJ,amod) … Olympia (commonly known as

(known,VBN,acl) (-,NN,nmod) L’Olympia) is a music hall …

(-,NN,dobj) (-,NN,appos) … , many hippies used cannabis
(marijuana) , considering it …

(-,NNP,nsubj) (known,VBN,acl) … BSE , commonly known as ”
(-,NN,nmod) mad cow disease ” , is a …

5.3 Case Studies
1. Example output. Next, we present some example outputs of
DPE-NoP and DPE on the Wiki dataset. �e results are shown
in Figure 4. From the learned synonym list, we have �ltered out
all existing synonyms in knowledge bases, and the red strings are
the new synonyms discovered by our framework. We see that our
framework �nds many new synonyms which have not been in-
cluded in knowledge bases. Besides, by introducing the pa�ern
module, we see that some false synonyms (RMB and WW I) ob-
tained by DPE-NoP will be �ltered out by DPE, which demonstrates
that combing the distributional features and the local pa�erns can
indeed improve the performances.
2. Top ranked positive pa�erns. To exploit the local pa�erns in
our framework, our pa�ern module learns a pa�ern classi�er to
predict whether a pa�ern expresses the synonym relation between
the target strings. To test whether the learned classi�er can pre-
cisely discover some positive pa�erns for synonym discovery, we
show some top-ranked positive pa�erns learned by the classi�er
and also the corresponding sentences. Table 5 presents the results,
in which the red strings are the target strings. We see that all the
three pa�erns indeed express the synonym relations between the
target strings, which proves that our learned pa�ern classi�er can
e�ectively �nd some positive pa�erns and therefore bene�t the
synonym discovery.

6 RELATEDWORK
Synonym Discovery. Various approaches have been proposed to
discover synonyms from di�erent kinds of information. Most of
them exploit structured knowledge such as query logs [2, 16, 30]
for synonym discovery. Di�erent from them, we aim to discover
synonyms from raw text corpora, which is more challenging.

�ere are also some methods trying to discover string relations
(e.g., synonym relation, antonym relation, hypernym relation) from
raw texts, including some distributional based approaches and pat-
tern based approaches. Both approaches can be applied to our
se�ing. Given some training seeds, the distributional based ap-
proaches [6, 12, 19, 25, 25, 27, 29] discover synonyms by repre-
senting strings with their distributional features, and learning a
classi�er to predict the relation between strings. Di�erent from
them, the pa�ern based approaches [5, 11, 15, 20, 22, 35] consider
the sentences mentioning a pair of synonymous strings, and learn
some textual pa�erns from these sentences, which are further used
to discover more synonyms. Our proposed approach naturally inte-
grates the two types of approaches, which enjoys both merits of
them.
Text Embedding. Our work is also related to text embedding
techniques, which learn low-dimensional vector representations
for strings from raw texts. �e learned embedding capture some se-
mantic correlations between strings, which can be used as features
for synonym extraction. Most text embedding approaches [9, 13, 24]
only exploit the text data, which cannot exploit information from
knowledge bases to guide the embedding learning. �ere are also
some studies trying to incorporate knowledge bases to improve the
embedding learning. [18, 23] exploit entity types to enhance the
learned embedding and [7, 28, 31, 34] exploit existing relation facts
in knowledge bases as constraints to improve the performances.

Compared with these methods, our embedding approach can
be�er preserve the semantic correlations of strings with the the co-
occurrence observation 3.1. Besides, both the distributional module
and the pa�ern module of our approach will provide supervision
for embedding learning, which brings stronger predictive abilities
to the learned embeddings under the synonym discovery problem.

7 CONCLUSIONS
In this paper, we studied the problem of automatic synonym discov-
ery with knowledge bases, aiming to discover missing synonyms for
entities in knowledge bases. We proposed a framework called the
DPE, which naturally integrates the distributional based approaches
and the pa�ern based approaches. We did extensive experiments
on three real-world datasets. Experimental results proved the e�ec-
tiveness of our proposed framework.

ACKNOWLEDGMENTS
Research was sponsored in part by the U.S. Army Research Lab. un-
der Cooperative Agreement No. W911NF-09-2-0053 (NSCTA), Na-
tional Science Foundation IIS-1320617 and IIS 16-18481, and grant
1U54GM114838 awarded by NIGMS through funds provided by the
trans-NIHBigData to Knowledge (BD2K) initiative (www.bd2k.nih.gov).
�e views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the
o�cial policies of the U.S. Army Research Laboratory or the U.S.
Government. �e U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

REFERENCES
[1] R. Angheluta, R. De Busser, and M.-F. Moens. �e use of topic segmentation for

automatic summarization. In ACL Workshop on Automatic Summarization 2002.
[2] S. Chaudhuri, V. Ganti, and D. Xin. Exploiting web search to generate synonyms

for entities. InWWW 2009.

[3] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes. Improving e�ciency and
accuracy in multilingual entity extraction. In Proceedings of the 9th International
Conference on Semantic Systems (I-Semantics), 2013.

[4] Google. Freebase data dumps. h�ps://developers.google.com/freebase/data.
[5] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In

Proceedings of the 14th conference on Computational linguistics-Volume 2, pages
539–545. Association for Computational Linguistics, 1992.

[6] D. Lin, S. Zhao, L. Qin, and M. Zhou. Identifying synonyms among distribution-
ally similar words. In IJCAI 2003.

[7] Q. Liu, H. Jiang, S. Wei, Z.-H. Ling, and Y. Hu. Learning semantic word embed-
dings based on ordinal knowledge constraints. In ACL-IJCNLP 2015.

[8] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. McClosky.
�e Stanford CoreNLP natural language processing toolkit. In Association for
Computational Linguistics (ACL) System Demonstrations, 2014.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In NIPS 2013.

[10] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation
extraction without labeled data. In ACL 2009.

[11] N. Nakashole, G. Weikum, and F. Suchanek. Pa�y: a taxonomy of relational
pa�erns with semantic types. In EMNLP 2012.

[12] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and V. Vyas. Web-scale
distributional similarity and entity set expansion. In EMNLP 2009.

[13] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In EMNLP 2014.

[14] M. Purver and S. Ba�ersby. Experimenting with distant supervision for emotion
classi�cation. In Proceedings of the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages 482–491. Association for
Computational Linguistics, 2012.

[15] L. Qian, G. Zhou, F. Kong, and Q. Zhu. Semi-supervised learning for semantic
relation classi�cation using strati�ed sampling strategy. In EMNLP 2009.

[16] X. Ren and T. Cheng. Synonym discovery for structured entities on heteroge-
neous graphs. InWWW 2015.

[17] X. Ren, A. El-Kishky, C. Wang, F. Tao, C. R. Voss, and J. Han. Clustype: E�ective
entity recognition and typing by relation phrase-based clustering. In KDD 2015.

[18] X. Ren, W. He, M. �, C. R. Voss, H. Ji, and J. Han. Label noise reduction in
entity typing by heterogeneous partial-label embedding. In KDD 2016.

[19] S. Roller, K. Erk, and G. Boleda. Inclusive yet selective: Supervised distributional
hypernymy detection. In COLING 2014.

[20] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactic pa�erns for automatic
hypernym discovery. NIPS 2004.

[21] M. Stanojević et al. Cognitive synonymy: A general overview. FACTA
UNIVERSITATIS-Linguistics and Literature, 7(2):193–200, 2009.

[22] A. Sun and R. Grishman. Semi-supervised semantic pa�ern discovery with
guidance from unsupervised pa�ern clusters. In ACL 2010.

[23] J. Tang, M.�, and Q. Mei. Pte: Predictive text embedding through large-scale
heterogeneous text networks. In KDD 2015.

[24] J. Tang, M. �, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale
information network embedding. In WWW 2015.

[25] P. Turney. Mining the web for synonyms: Pmi-ir versus lsa on toe�. 2001.
[26] E. M. Voorhees. �ery expansion using lexical-semantic relations. In Proceedings

of the 17th annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 61–69. Springer-Verlag New York, Inc.,
1994.

[27] H. Wang, F. Tian, B. Gao, J. Bian, and T.-Y. Liu. Solving verbal comprehension
questions in iq test by knowledge-powered word embedding. arXiv preprint
arXiv:1505.07909, 2015.

[28] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph and text jointly
embedding. In EMNLP 2014.

[29] J. Weeds, D. Clarke, J. Re�n, D. J. Weir, and B. Keller. Learning to distinguish
hypernyms and co-hyponyms. In COLING 2014.

[30] X. Wei, F. Peng, H. Tseng, Y. Lu, and B. Dumoulin. Context sensitive synonym
discovery for web search queries. In CIKM 2009.

[31] J. Weston, A. Bordes, O. Yakhnenko, and N. Usunier. Connecting language and
knowledge bases with embedding models for relation extraction. arXiv preprint
arXiv:1307.7973, 2013.

[32] F. Wu and D. S. Weld. Open information extraction using wikipedia. In ACL
2010.

[33] P. Xie, D. Yang, and E. P. Xing. Incorporating word correlation knowledge into
topic modeling. In HLT-NAACL 2015.

[34] C. Xu, Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu, and T.-Y. Liu. Rc-net: A general
framework for incorporating knowledge into word representations. In CIKM
2014.

[35] M. Yahya, S. Whang, R. Gupta, and A. Y. Halevy. Renoun: Fact extraction for
nominal a�ributes. In EMNLP 2014.

[36] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng. Embedding entities and relations
for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575,
2014.

[37] Q. T. Zeng, D. Redd, T. C. Rind�esch, and J. R. Nebeker. Synonym, topic model
and predicate-based query expansion for retrieving clinical documents. In AMIA
2012.

https://developers.google.com/freebase/data

	Abstract
	1 Introduction
	2 Problem Definition
	3 Framework
	3.1 Synonym Seed Collection
	3.2 Methodology Overview

	4 Model Learning and Inference
	5 Experiment
	5.1 Experiment Setup
	5.2 Experiments and Performance Study
	5.3 Case Studies

	6 Related Work
	7 Conclusions
	References

