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ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS 

BY HERBERT A. SIMONt 

Carnegie Institute of Technology 

I. INTRODUCTION 

It is the purpose of this paper to analyse a class of distribution functions that appears in 
a wide range of empirical data-particularly data describing sociological, biological and 
economic phenomena. Its appearance is so frequent, and the phenomena in which it appears 
so diverse, that one is led to the conjecture that if these phenomena have any property in 
common it can only be a similarity in the structure of the underlying probability mechanisms. 
The empirical distributions to which we shall refer specifically are: (A) distributions of 
words in prose samples by their frequency of occurrence, (B) distributions of scientists by 
number of papers published, (C) distributions of cities by population, (D) distributions of 
incomes by size, and (E) distributions of biological genera by number of species. 

No one supposes that there is any connexion between horse-kicks suffered by soldiers 
in the German army and blood cells on a microscope slide other than that the same urn 
scheme provides a satisfactory abstract model of both phenomena. It is in the same direc- 
tion that we shall look for an explanation of the observed close similarities among the five 
classes of distributions listed above. 

The observed distributions have the following characteristics in common: 
(a) They are J-shaped, or at least highly skewed, with very long upper tails. The tails 

can generally be approximated closely by a function of the form 

f(i) = (a/ik) bi, (11) 
where a, b, and k are constants; and where b is so close to unity that in first approximation 
the final factor has a significant effect onf(i) only for very large values of i. Thus, for example, 
the number of words that occur exactly i times in James Joyce's Ulysses is about a/ik; the 
number of authors who published exactly i papers in Econometrica over a twenty-year 
period is approximately a/ik; and so on. 

(b) The exponent, k, is greater than 1, and in the cases of word frequencies, publication, 
and urban populations is very close to 2.1 

(c) In the cases of word frequencies, publications and biological genera, the function (1 1) 
describes the distribution not merely in the tail but also for small values of i. In these cases 
the ratio f(2)/f(l) is generally in the neighbourhood of one-third, and almost never reaches 

one-half; while f(l)/n, where n = Ef(i), is generally in the neighbourhood of one-half. 
1 

Property (a) is characteristic of the 'contagious' distributions-for example, the negative 
binomial as it approaches its limiting form, Fisher's logarithmic series distribution. How- 
ever, in the case of the negative binomial, k cannot exceed unity (and equals unity only in 

t I have had the benefit of helpful comments from Messrs Benoit Mandelbrot, Robert Solow and 
C. B. Winsten. I am grateful to the Ford Foundation for a grant-in-aid that made the completion of 
this work possible. 

t See Zipf (1949) for numerous examples of distributions with this property. 
28-2 
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the limiting case of the log series); and if the distribution has a long tail, so that the con- 
vergence factor, b, is close to unity,f(2)/f( 1) cannot be less than one-half. Hence the negative 
binomial and Fisher's log series distributions do not provide a satisfactory fit for data 
possessing property (a) together with either (b) or (c).t 

It is well known that the negative binomial and the log series distributions can be obtained 
as the stationary solutions of certain stochastic processes. For example, J. H. Darwin 
(1953) derives these from birth and death processes, with appropriate assumptions as to 
the birth- and death-rates and the initial conditions. In this paper we shall show that 
stochastic processes closely similar to those yielding the negative binomial or log series 
distributions lead to a class of functions having the three properties enumerated above. 
This class of functions is given by 

f(i) = AB(i, p + 1), (1.2) 
where A and p are constants, and B(i, p + 1) is the Beta function of i, p + 1: 

B(~~l~~CAi1(lA~pdA PF(i) P(p + 1)(13 B(i,p + )= A" (I - A)P dA --(i+p+1) (O<i; O<p<oo). (1.3) 

Now it is a well-known property of the Gamma function (Titchmarsh, 1939, p. 58) that 
as i-*oo, and for any constant, k, F(i) (1.4) 

Hence, from (1.3), we have, as ioo: 

f(i) rI(P + 1) i-P+1). (1-5) 

Therefore, the distribution (1-2) approximates the distribution (1 1) in the tail (more 
precisely, through the range in which the convergence factor of the latter is close to one). 
Further, if p is positive, k will be greater than 1, as required by (b); and if p is equal to 1, 
k will be equal to 2. It is easy to see that in the latter case we will have 

I 00 

f(i)=i(i+1)) Ef(i)=1, (1.6) 

so thatf(2)/f(1) - andf(l)/n=, as required by (c). 
In the remainder of this paper I propose: (a) to describe a stochastic process that leads 

to the stationary distribution (1.2); (b) to discuss some generalizations of this process; 
and (c) to construct hypotheses as to why the empirical phenomena mentioned above can 
be represented, approximately, by processes of this general kind. Before proceeding, I 
should like to mention two earlier derivations, one of (1.2), the other of (1 1), that I have been 
able to discover in the literature. 

Some thirty years ago, G. Udny Yule (1924) constructed a probability model, with (1.2) 
as its limiting distribution, to explain the distribution of biological genera by numbers of 
species. He also derived a modified form of (1-2), replacing the complete Beta-function of 
(1.3) by the incomplete Beta-function with upper limit of integration c< 1. (This modi- 
fication has the same effect as the introduction of the convergence factor, bi, in (11)-it 
causes a more rapid decrease inf(i) for very large values of i; cf. also Darwin (1953, p. 378).) 
It seems highly appropriate to call the distribution (1.2) the Yule distribution. 

t The contrasting characteristics of distributions for which the log series provides a satisfactory 
fit and those, under consideration here, for which it does not are illustrated by examples (i) and (ii), 
respectively, in Good (1953). 
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Because Yule's paper predated the modern theory of stochastic processes, his derivation 
was necessarily more involved than the one we shall employ here. Moreover, while the 
assumptions he required are plausible for the particular biological problem he treated, the 
corresponding assumptions applied to the four other phenomena we have mentioned appear 
much less plausible. Our derivation requires substantially weaker assumptions than Yule's 
about the underlying probability mechanism. 

More recently D. G. Champernowne (1953) has contructed a stochastic model of income 
distribution that leads to ( 1 1) and to generalizations of that function. Since the points of 
similarity between his model and the one under discussion here are not entirely obvious at 
a first examination, I shall consider their relation in a later section of this paper. 

II. THE STOCHASTIC MODEL 

For ease of exposition, the model will be described in terms of word frequencies. In a later 
section, alternative interpretations will be provided. Our present interest is in the kind of 
stochastic process that would lead to (1.2). 

Consider a book that is being written, and that has reached a length of k words. We 
designate by f(i, k) the number of different words that have occurred exactly i times in the 
first k words. That is, if there are 407 different words that have occurred exactly once each, 
then f(l, k) = 407. 

Assumption 1. The probability that the (k + 1)-st word is a word that has already appeared 
exactly i times is proportional to if(i, k)-that is, to the total number of occurrences of all 
the words that have appeared exactly i times. 

Note that this assumption is much weaker than the assumption (I'): that the probability 
a particular word occur next be proportional to the number of its previous occurrences. 
Assumption (I') implies (I), but the converse is not true. Hence we leave open the possi- 
bility that, among all words that have appeared i times the probability of recurrence of 
some may be much higher than of others. 

Assumption II. There is a constant probability, ac, that the (k + 1)-st word be a new word- 
a word that has not occurred in the first k words. 

Assumptions (I) and (II) describe a stochastic process, in which the probability that a 
particular word wiRl be the next one written depends on what words have been written 
previously. If this process correctly describes the selection of words, then the words in a 
book cannot be regarded as a random sample drawn from a population with a prior dis- 
tribution. The reasonableness of the former, as compared with the latter type of explanation 
of the observed distributions, will be discussed in ? IV. 

From (I), it follows that 

e{f(i,k+ 1)}-f(i,k) = K(k){(i-1)f(i-1,k)-if(i,k)} (i = 2, ...,k+ 1), (2.1) 
for if the (k + 1)st word is one that has previously occurred (i - 1) times, f(i, k + 1) will be 
increased over f(i, k), and the probability of this, by assumption (I), is proportional to 
(i - 1)f(i - 1, k); if the (k + 1)st word is one that previously occurred i times, f(i, k + 1) will 
be decreased, and the probability of this, by assumption (I), is proportional to if(i, ic); 
while in all other cases, f(i, k + 1) = f(i, k). 

From (I) and (II) we obtain similarly 

e{f(1,k+ 1)}-f(1,k) =ca-K(k)f(l, k) (O<a< 1). (2.2) 
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Since we will be concerned throughout with 'steady-state' distributions (as defined by 
equation (2.8) below), we replace the expected values in (2.1) and (2.2) by the actual fre- 
quencies. (Alternatively, we might replace frequencies on the right-hand side of the 
equation by probabilities.) That is, we write, instead of (2.1) and (2.2), 

f(i, k + 1)-f(i, k) = K(k) {(i-1)f(i-1, k)-if(i, k)} (i = 2, .. ., k + 1), (2.3) 

f(1, k + 1)-f(1, k) = cc-K(k)f(1, k), (2.4) 

where the f's now represent expected values. 
Now, we wish to evaluate the factor of proportionality K(k). Since K(k) if(i, k) is the 

probability that the (k +1 )st word is one that previously occurred i times, we must have 

k k 

* K(k) if(i, k) = K(k) z if(i, k) = l-c. (2.5) 
i=l i=l 

k 
But z if(i, k) is the total number of words up to the kth, hence 

i=l 
k 
, if(i, k) = k, (2.6) 

i=l1 

and K(k)= . (2.7) 

Substituting (2.7) in (2.3) and (2.4), we could solve these differential equations explicitly. 
We can avail ourselves, however, of a simpler-though non-rigorous-method for dis- 
covering the solutions, and can then test their correctness by substitution in the original 
equations. Consider the 'steady-state' distribution in the following sense. We assume 

f(i,kl) k k for all i and k; (2.8) 

so that all the frequencies grow proportionately with k, and hence maintain the same 
relative size. (Since we must have f(i, k) = 0 for i > k, equation (2.8) cannot hold exactly 
for all i and k. But as explained above, we are concerned at the moment with heuristic 
rather than proof.) 

From (2.8) it follows that 
f(li,k) f (i,k+1) /(i), (2.9) 

f(i-l,kc) f(i-l,klc+) 

where ,8(i) does not involve k. Hence, the relative frequencies, which we will designate by 
f*(i), are independent of k. Substituting (2.7), (2.8) and (2.9) in (2.3), we get 

( k+1 l)f(i1k) = 
(1 

() {(i 1))-i}f(i,Ik). (2.10) 

Cancelling the common factor, and solving /3 for (i), we obtain 

1+(l-a)(i-1) f*(i1) (i = 2, ... ,k). (2.11) 

For convenience, we introduce 

(l<p<c ). (2.12) 
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Sincef*(i) = /J(i)f*(i- 1) = fl(i). fl(i- 1) ... fl(2)f*(1), we obtain from (2.11) and (2-12) 

f *(j) = (i-1)(i-2)... 2.1 f I(i)IP(P+1)f*(1) = B(i,p+1)f*(1) (i = 
(i +p)(i +p -1). (+p) P(i +p +1) 

(2.13) 
The second relation follows from the fact that 

r(i+p+1) = (i+p)r(i+p) = (i+p)(i+p-i)...(i+p)r(p?+). (2-14) 

But (2 13) is identical with (1.2) if we take A =f*(1). 
That (2-13) is in fact a solution of (2.3) can be verified by direct substitution. Moreover, 

it is in the following sense a stable solution. Suppose that (2.11) is not satisfied. Whatever 
be the values of the f(i, k) for a given k, we may write without loss of generality 

f(i,k) _ (1-2)1(i-)5) 
f(i-l,k) (1-a)i+1+e(i,k)' 

where e(i, k) is some function of i and k. If we now divide both sides of (2.3) by f(i, k) and 
substitute (2.15) in the right-hand side of the resulting equation, we obtain after simpli- 
fication 

f(i, k+ 1) = k+ 1 +e(i, k) (2.16) 
f(i,1k) kc(*6 

Hence the ratio off(i, k + 1) to f (i, k) will be greater than (k + 1)/ik if e(i, k) is positive, and 
less than (k + 1)/Ik if e(i, k) is negative. Since new words are introduced at a constant rate, 
k 

Zf(i, k) must be proportional to k; therefore, by (2-16), we will have 
1 

k+1 k+ I k+1 I k 

E f(i, +1)- k k) e(i,, k)fik) = ? (2.17) 
i=1 k= 

We may interpret the three equations, (2.15)-(2-17), as follows. In an average sense, the 
frequencies will grow proportionately with k. If a particular frequency is 'too large' 
compared with the next lower frequency (e(i, k) negative in (2.15)), it will grow at a rate 
slower than the average; if it is 'too small' (e(i, k) positive), it will grow more rapidly than 
the average. 

It remains to be shown that f*(i) = B(i,p + 1)f*(1) is a proper distribution function. 
k 

In particular, we require that E iB(i, p + 1) converge as k -? oo. Now, it is well known that 
co i=1 

E i-a converges for every a > 1. But by (1.4), 
i=l 

co 

,iB(i, p + 1) .i. iOP+') = i-P. (2.18) 
*=1 

Hence, by the usual ratio comparison test, E iB(i, p + 1) converges for p > 1, as required. 
*= 1 

From the definition of ax the total number, nk, of different words will be ock; while the total 
number of word occurrences is k. That is 

k k 
nk= f(i, k) = ack = a E if(i,I k). (2.19) 

i=l i=1 
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Retuming to (2.4), and using (2.8), we get 

(kc -1l)f*(l)=f = zi f*(l), (2*20) 

whence f*(l) = 2-a - (2.21) 

From (2.12) and (2.21), and by successive application of (2.11), we can compute the 
values of p, f*(l)Ink,f *(2)/nk, f *(3)Ink, etc., for given values of a (Table 1). 

Table 1 

a f p f *(l)/nk f*(2)/nt f *(3)/nt. 

0.0 1 0.500 0-167 0-083 
0.1 1.11 0.527 0.169 0-082 
0.2 1.25 0.556 0-171 0-080 
0.3 1-43 0*588 0*171 0-07 
0.5 2.00 0.667 0.167 0.067 
0-7 3.33 0769 0144 0-046 
0.9 10.00 0.909 0076 0-012 

Thus far we have considered the case where c, the rate at which new words are intro- 
duced, is independent of k. We can easily generalize to the case where a is a function of k 
by making the appropriate substitution in (2.4). The equations can then be solved directly, 
but the method employed to obtain a ' steady-state' distribution is not applicable, since it is 
not easy to define what is meant by the steady state in this more general case. We will 
content ourselves with some approximate results for two special cases. These special cases 
will give us insight as to how a distribution function may arise which, for small values of i, 
can be approximated by (1.2), with 0 < p < 1. 

Case I. Suppose the system to be in the steady state described by (2.13) with k = ko, 
and that the flow of new words suddenly ceases, so that oc(k) = 0 for k > ko. We will now have 
K(k) = lik for k > ko, and (2.4) becomes 

f(l,k+)1=(l-1kf(lk'-)= k -f(lk) (2.22) 

We define y(i) f(i,kc+1) (i=2,...,ic+l). (2.23) f (i,ic) 
Since no new words are being introduced, we must have 

k k 
nk = k(,)+ E f(i, k) =f(l k + l) + ,f(i, k+l1) 

i=2 i=2 

- 

f(l IC)+ I y(i)f(i, k), (2-24) 
k 

_____i__-_l___i__k 1 f(l,ic) whence i2 )_ (2.25) 
E f(i, k) E f(i, k) 
i=2 i=2 
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Let us define next = f(i, k) (i +P) (2 26) 
f(i -1,lk) (I (+ pi) (6 

(where we suppose that pi changes only slowly with k). Instead of (2.3), we have 

Substituting (2.23) and (2 26) in this, we get 

7(i)-1 I k [i, +pi) - f, (2 28) 

whence Pi = k(y(i)- 1), (2.29) 
k 

and p= =2 k f(l, k) k) .(230) 

y f(i, k) Ef(i, k) -n-(,)(.0 i=2 i=2 

Define pi = f(l, k)/nk. (2.31) 

Then p and 0<p-<x. (2.32) 

1Pi 
Proceeding heuristically, we can see that after X becomes zero,f( 1, k) will begin to decrease 

with k, and the value of pi will be larger the larger is i. For small values of i, we will have 
p(i) <jp, and for large values, p(i) > p-. However, the tail of the distribution will be affected 
only slowly by the change in oc. Hence, we may suppose that limp(i) = p0, where po is p((ko). 

vi-ko 
On the other hand, since the weighted average in (2.29) is heavily influenced by the large 
frequencies for small values of i, pi will be only slightly less than p. Hence we may expect 
the distribution to take the form of a slightly curved line on a double-log scale, with a slope 
of - (p + 1) at the lower end, and a slope of - (po + 1) at the upper end. If p0 > 2, then 
Zif(i, k) wil converge. An example of such a distribution will be given in ? IV. 

Case II. A second approximate solution can be obtained if we assume that oc decreases 
with k, but very slowly. By definition, we have oc = dnkldk = n'. The condition for a steady 
state (all frequencies increasing proportionately) is now 

f(i, kl+ 1) = [1 + (nt'nk)]f(i, k). (2.33) 

Substituting as before, (2.7) and (2.33) in (2.3), we again obtain (2.13), where p is now 
given by n'k_ 1 

P = - ~~~~~~~~~~(2.34) 
nk (ln')' 

The slope obtained in the derivation for constant a has now been multiplied by the factor 
(n'k)/nk, which for monotonically decreasing ax is less than one. Hence, the effect of a 
decrease in the rate of introduction of new words is to lengthen the tail of the distribution, 
as was also true in case I. If the new value of p is less than one, we do not have a proper 
distribution function (see equation (2-18)), hence the equation can hold only for small and 
moderate values of i, and there must be a curve (on a logarithmic scale) in the tail of the 
distribution. 
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III. AN ALTERNATIVE FORMULATION OF THE PROCESS 

There are some alternative ways for deriving the relation (2-13). One of these will be useful 
to us when we come, in the next section, to a more specific discussion of word frequencies 
and frequencies of publications. Moreover, this derivation avoids the difficulties we have 
encountered in the definition of 'steady state'. 

Equation (2-10) may be written 

0 = (1-a)[(i- l)f*(i- 1)-if*(i)]-f*(i) (i = 2, ...,k), (3.1) 

where we have again written f *(i) for f(i, k). 
Similarly, from (2.4), we obtain 

0 = I-(I-x)f*(L)-f*(L). (3.2) 

These two equations may be interpreted as follows. We consider a sequence of k words. 
We add words to the sequence in accordance with assumptions (I) and (II) of ? II, but we 
drop words from the sequence at the same average rate, so that the length of the sequence 
remains k. The method according to which we drop words is the following: 

Assumption III. If one representative of a particular word is dropped, then all repre- 
sentatives of that word are dropped, and the probability that the next word dropped be 
one with exactly i representatives is f*(i). 

This assumption would be approximately satisfied, for example, if the representatives 
of each word, instead of being distributed randomly through the sequence, were closely 
'bunched'. This possibility is consistent with assumption (I). 

Equation (3.1), in our new interpretation, may be regarded as the steady-state equi- 
librium of the stochastic process defined by 

f(i, m + 1)-f(i, m) = ( 1-a) [(i-1 )f(i-1, m)-if(i, m)]-f(i, m), (3.3) 
where m is now not the total number of words (which remains a constant, k), but the number 
of additions to (and withdrawals from) an initial arbitrary sequence of k words. Since the 
k of this process, unlike that of ? II, remains constant, the ordinary proofs of the existence 
of a unique steady-state solution will apply (see Feller, 1950, p. 373), and we avoid the 
troublesome questions of rigour that confronted us in ? II. 

The solutiorn of (3.1) and (3 2) is, of course, again given by 
f *(j) _ (1-x) (i -1) (-1 

f*(i- 1) 1+(L-ac)i (2.11) 

If we were to replace the last terms of (3 1) and of (3.2), respectively, by terms corre- 
sponding to the usual form of the death process, we would have (cf. Darwin, 1953, p. 375; 
and Kendall, 1948) 

0 = (1-a) [(i-l)f*(i-1)-if*(i)]-[if*(i)-(i + 1)f*(i + 1)] (i = 2. ...,k-1), (3.4) 

0 = l - (1 - ac)f*(1) - U*(1) - 2f*(2)]. (3.5) 

The solution of this system of equations is 

f *(i) _ ( 1-a) (i-1) (3 6) 
f*(i- 1) i 

which is Fisher's logarithmic series distribution. 
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Since the log series distribution is a limiting case of the negative binomial, we may ask 

whether there is a distribution that stands in the same relation to the latter as (2 11) stands 
in relation to (3 6). We can obtain such a distribution by a modification of the birth process 
in (3.1). We assume now that the birth-rate is the sum of two components-one propor- 
tional to if(i), the other proportional to f(i). In place of (3@ 1) we have 

? = (1k+)k [(i-1+c)f*(i-1)-(i+c)f*(i)]-f*(i) (c a constant), (3.7) 
is f() A(-+)c i1c 

the solution of whichis f*( 1)= A(i+ )+ )1 - (i++ 1/A) (3.8) 

where A = k( 1-a)/(k + c). 

A rather remarkable property of (3 8) is that in the tail it still has the limiting form (1 1) 
with b = 1. Hence for a and c small, this generalized Yule distribution will still possess the 
three properties listed in the introduction. The fact that a reasonably wide range of variation 
in the assumptions underlying the stochastic model does not alter greatly the form of the 
distribution adds plausibility to the use of such stochastic processes to explain the observed 
distributions. Our next task is to consider these explanations in more detail. 

IV. THE EMPIRICAL DISTRIBUTIONS 

In this section I shall try to give theoretical justifications for the observed fit of the Yule 
distribution to a number of different sets of empirical data. 

A. Word frequencies 
A substantial number of word counts have been made, in English and in other languages 

(see Hanley, 1937; Thorndike, 1937; Yule, 1944; Zipf, 1949; and Good, 1953). Equation 
(1-6) provides a good fit to almost all of them. When the more general function, (1.2), is 
used, the estimated value of p is always close to 1. When a convergence factor, bi, is intro- 
duced to account for the deficiency in frequencies for very large values of i, the estimated 
value of b is also very close to 1. Good (1953), for instance, applies (1-6) multiplied by a 
convergence factor to the Eldridge count, and obtains b = 0999667. 

These regularities are the more surprising in that the various counts refer to a quite 
heterogeneous set of objects. In the Yule and Thorndike counts, inflected forms are 
counted with the root word; in most of the other counts each form is regarded as a distinct 
word. The Yule counts include only nouns; the others, all parts of speech. The Dewey, 
Eldridge and Thorndike counts are composite-compiled from a large number of separate 
writings; most of the others are based on a single piece of continuous prose. I would regard 
this heterogeneity as further evidence that the explanation is to be sought in a probability 
mechanism, rather than in more specific properties of language; but at the same time, the 
heterogeneity complicates the task of specifying the probability mechanism in detail. 
I shall avoid questions of 'fine structure '-which would require an expertness in linguistics 
that I do not possess-and confine myself to three broad problems: (1) the distribution of 
word frequencies in the whole historical sequence of words that constitutes a language; 
(2) the distribution of word frequencies in a continuous piece of prose; (3) the distribution 
of word frequencies in a sample of prose assembled from composite sources. 
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(1) For obvious reasons, we do not have any empirical data on the cumulated word 
frequencies for a whole language. On a priori grounds, it does not appear unreasonable to 
postulate that these frequencies are determined by a process like that described in ? II. The 
parameter a is then the rate at which neologisms appear in the language as a fraction of all 
word occurrences-and hence ac can be assumed to be very close to zero. 

(2) The process of ? II might also describe the growth of a continuous piece of prose 
for example, Joyce's Ulysses. But there are some serious objections to this hypothesis. An 
author writes not only by processes of association-i.e. sampling earlier segments of the 
word sequence-but also by processes of imitation-i.e. sampling segments of word sequences 
from other works he has written, from works of other authors, and, of course, from sequences 
he has heard. The model of ?11 apparently allows only for association, and excludes imitation. 

The word frequencies in Ulysses provide obvious evidence of the importance of both 
processes. The fact that the proper noun 'Bloom' occurs 926 times and ranks 30th in 
frequency must be attributed to association. If Joyce had named his hero 'Smith', that 
noun, instead of 'Bloom', would have ranked 30th. On the other hand, 'they', which 
occurs 1010 times in Ulysses and ranks 27th, has very nearly the same rank-the 28th- 
in the Dewey count. In fact, of the 100 most frequent words in Ulysses, 78 are among the 
top 100 in the Dewey count. This similarity in ranking of 'common' words argues for 
imitation rather than association. Even for the common words, however, the variations 
in frequency from one count to another are far too great to be explained as fluctuations 
resulting from random sampling from a common population of words. The imitative process 
must involve stratified sampling, and imitation must be compounded with association. 

It is worth emphasizing again at this point that assumption (I) does not require that the 
choice of the next word from among those previously written be completely random. Suppose, 
for example, that a writer were to assign to each page he has already written a number, 
pj, 2pj = (1-oc), the size of pj varying with the 'affinity' of the subject discussed on the 
jth page to the subject next to- be discussed. If his next word were selected by a stratified 
sampling of the previous pages, with probability pj for each page, then equation (2.1) 
would generally be satisfied. For although individual words would be distributed unevenly 
through the preceding pages, the totality of words having a given frequency, i, in all the 
previous pages taken together would be distributed almost evenly through these pages. 
Hence, the various frequency strata would have proportionate probabilities of being 
sampled, for most choices of the pj. This is all that is required for equation (2. 1). This same 
comment applies to the assumption we shall subsequently make regarding imitative 
sampling from other works. 

Let us now reconsider the problem of a piece of continuous prose. Since both the processes 
of association and imitation are involved, the sequence that is counted is to be regarded as 
a ' slice', of length k, of the entire sequence of words in the language, or of the entire sequence 
written by the author. Hence the word count is better described by the stochastic process 
of ? III than by the process of ? II. 

In determining the probability that a word selected in such a sequence be one that has 
occurred exactly i times, we must consider separately the process of imitation and associa- 
tion. Assume that, on the average, a fraction, ,f, of the words added is selected by imitation, 
and the remaining fraction, (1 -,/), by association. Since no new words can be introduced 
by association, the joint probability that the next word will be selected by association and 
will be a word that has already occurred i times is (1 -,8) if(i, k)/k. 
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The words selected by imitation present a more difficult problem, and we shall have to 

content ourselves with a reasonable assumption that has no rigorous justification. On the 
average, a word that has occurred i times wil have a chance less than ilk of being the next 
one chosen by imitation, because in the sequence that is being sampled there are words 
that have not yet been chosen at all, and because with progressive change of subject, dif- 
ferent strata of the language will be sampled. Since words with large i will generally be 
'common' words, fairly uniformly distributed through all strata of the language, the 
deficiency may be expected to be proportionately greater for small i than for large i. As 
a rough, but reasonable, approximation let us assume that: the joint probability that the 
next word will be selected by imitation and will be a word that has already occurred i times 
is /3(i - c)f(i, k)/lk, -where 0 < c < 1. (Our result would not be essentially altered if we wrote 
c(i) instead of c, provided only that c(i) does not vary a great deal.) 

Adding the two joint probabilities-for association and imitation, respectively-we 
find that the total probability that the next word be one that has occurred i times is 
(i-/8c)f(i, k)/lk. By summing this probability over i and subtracting from 1, we find that 
the probability that the next word be a new word is /lc(nk/k). 

If the method of dropping words from the sequence satisfies assumption (III) of ? III, 
we set the difference between the birth-rate and the death-rate equal to zero, and obtain 
the steady-state equation 

0 = (i-cfl- 1)f*(i - 1) - (i -jc)f*(j).-.f*(i), (4.1) 

which has as its solution f *j) = (i - cf - 1) (42) f *(j...1) (i - cf1) (4.2 

Again, we obtain a distribution with the required properties. 
(3) The distribution of word frequencies in a sample of prose assembled from composite 

sources can be explained along the same general lines. Again, we may regard the sample as 
a ' slice' from a longer sequence, but we might expect the parameters c and , to be somewhat 
larger than in a comparable piece of continuous prose. The qualification 'comparable' is 
important, for c may be expected to be smaller for homogeneous prose using a limited 
vocabulary of common words than for prose with a large vocabulary and treating of a 
variety of subjects. Hence c might well be larger for the continuous Ulysses count than for 
the Eldridge count, which is drawn from newspaper sources. Indeed, the empirical evidence 
suggests that this is the case. 

There is no point in elaborating the explanation further. What has been shown is that the 
observed frequencies can be fitted by distributions derived from probability assumptions 
that are not without plausibility. 

A very different and very ingenious explanation of the observed word-frequency data has 
been advanced recently by Dr Benoit Mandelbrot (1953). His derivation rests on the 
assumption that the frequencies are determined so as to maximize the number of bits of 
information, in the sense of Shannon, transmitted per symbol. There are several reasons 
why I prefer an explanation that employs averaging rather than maximizing assumptions. 
First, an assumption that word usage satisfies some criterion of efficiency appears to be 
much stronger than the probability assumptions required here. Secondly, numerous 
doubts, which I share, have been expressed as to the relevance of Shannon's information 
measure.for the measurement of semantic information. 
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Before leaving the subject of word frequencies, it may be of interest to look at some of 

the empirical data. Good (1953, pp. 257-60), has obtained good fits to the Eldridge count 
and to one of Yule's counts by the use of equation (1.6). Table 2, summarizes a few of the 
data on two word counts, and compares the actual frequencies, f(l), f(2) and f(3) with the 
frequencies estimated from equation (1.3). The actual values of k and nk are used to estimate 
a = nk/k, and (2.11) and (2.21) to obtain the expected frequencies. In both cases the ob- 
served value of nk/k leads to an estimate of p in the neighbourhood of 1 1 to 1P2. An empirical 
fit to the whole distribution of a function of the form f(i) = Ka-(P+1) gives an estimated 
value of p, in both cases, of about one-in reasonable agreement with the first estimate. 
A good fit to both the Ulysses and the Eldridge counts can also be obtained from (4.2), 
with c equal to about 0-2 in the former case, and close to zero in the latter. 

In the case of Thorndike's count of 41 million words in children's books (Thorndike, 1937), 
we may assume that the supply of new words was virtually exhausted before the end of the 
count. In his countf(1) is substantially below 0 5nk (about 0 34nk), as we would expect under 
these circumstances (see case I of ? II). Thorndike estimated the empirical value of our p at 
045, which is entirely consistent with the observed value of 0 34nk forf(l). For, by (2.32), 
P=i/(i+l) = 031. 

Table 2 

4 f(1) T f(2) f(3) 
Word count a= nkk 

Actual Estimate Actual Estimate Actual Estimate 

Ulysses (Hanley, 1937) 0-115 16,432 15,850 4,776 4,870 2,194 2,220 
Eldridge (Good, 1953) 0-136 2,976 3,220 1,079 977 516 400 

B. Scientifc publications 
At least four sets of data are available on the number, f(i), of authors contributing a 

given number, i, of papers each to a journal or journals (Davis, 1941; Leavens, 1953). 
These are counts of (a) papers written by members of the Chicago Section of the American 
Mathematical Society over a 25-year period; (b) papers listed in Chemical Abstracts (under 
A and B) over 10 years; (c) papers referred to in a history of physics; and (d) papers and 
abstracts in Econometrica over a 20-year period. 

We may postulate a mechanism like that of ? III, equation (3.1). The authorship of the 
next paper to appear is 'selected' by stratified sampling from the strata of authors who have 
previously published 1, 2, ..., papers, the probability for each stratum being proportional 
to if(i). Again, the probabilities for individual authors need not be proportional to i, but 
only the probabilities for the aggregates of authors with the same i. For example (as in the 
case of words), the probability for a particular author may be higher if he has published 
recently than if he has not. The gradual retirement of authors corresponds to assump- 
tion (III). 

A comparison of the actual frequencies, for i from 1 to 10, with the estimated frequencies, 
derived from (2.11) and (2.21), is shown in Table 3. The fit is reasonably good, when it is 
remembered that only one parameter is available for adjustment. However, it should be 
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noted that the estimated frequencies tend to be too high for i = 1, 2 and too low for i = 3, .... 
10. In three of the four cases, they are again too high for the tails of the distributions. 
A further refinement of the model is apparently needed to remove these discrepancies. 

Table 3. Number of persons contributing 

Chicago Math. Soc. Chem. Abstracto Physicists Econometrica 
N o. of __ _ _ _ __ _ _ _ _ _ _ 

contributions 
Actualt Estimate Actualt Estimate Actualt Estimate Actual4 Estimate 

1 133 3,991 4,050 784 824 436 453 
2 43 46 1,059 1,160 204 217 107 119 
3 24 23 493 522 127 94 61 51 
4 12 14 287 288 50 50 40 27 
5 11 10 184 179 33 30 14 16 
6 14 7 131 120 28 20 23 11 
7 5 5 113 86 19 14 6 7 
8 3 4 85 64 19 10 11 5 
9 13 10 64 49 6 32 8 24 1 12 4 12 

10 1J 3 65 38 73 6 2 J 3 
11 or more 23 30 419 335 48 52 22 25 

Estimated a 0? 0 30 0 39 0 41 
Estimated p 0.916? 1 43 1 64 1 69 

k 1,124 22,939 3,396 1,759 
nk 278 6,891 1,325 721 
P' 107 

t Davis (1941). 
$ Leavens (1953). 
? P=P estimated in this case from (2.31) to (2.32). 

C. City sizes 
It has been observed, for every U.S. Census since the early nineteenth century, and for 

most other Western countries as well, that if F(i) is the number of cities of population 
greater than i, then F(i) Ai-p, (4.3) 

where p is close to 1 (see Zipf, 1949, chs. 9, 10). 
Again, we would expect such a distribution if the underlying mechanism were one 

describable by equations like (2.3) and (2.4). Such a mechanism is not hard to conceive. 
First, equation (2.3) would hold if the growth of population were due solely to the net 
excess of births over deaths, and if this net growth were proportional to present population. 
This assumption is certainly satisfied at least roughly. Moreover, it need not hold for each 
city, but only for the aggregate of cities in each population band. Finally, the equation 
would still be satisfied if there were net migration to or from cities of particular regions, 
provided the net addition or loss of population of individual cities within any region was 
proportional to city size. That is, even if all California cities were growing, and all New 
England cities declining, the equation would hold provided the percentage growth or 
decline in each area were uncorrelated with city size. 
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In the case of cities, equation (4 3) could only be expected to hold down to some minimum 
city size-say, 5000 or 10,000. The constant x would then be interpreted as the fraction of 
the total population growth in cities above the minimum size that is accounted for by the 
new cities that reach that size. 

D. Income distribution 
Vilfredo Pareto is generally credited with the discovery that if personal incomes are 

ranked by size, the number of persons, F(i), whose incomes exceed i can be approximated 
closely, for the upper ranges of income, by equation (4 3) withp usually in the neighbourhood 
of 1-5 (Davis, 1941; Champernowne, 1953). Hence, the income distributions bear a family 
resemblance in their upper ranges to those we have already considered, although the 
parameter, p, is substantially larger than 1-its characteristic value in the case of word 
frequencies and city size distributions. 

A stochastic mechanism similar to those described in ? III would again produce steady- 
state distributions closely resembling the observed ones. We picture the stream of income 
as a sequence of dollars allocated probabilistically to the recipients. If the total annual 
income of all persons above some specified minimum income is k dollars, the segment of 
this sequence running from the mth to the (m + k)th dollar is the income for the year begin- 
ning at time m. We assume that the probability that the next dollar will be allotted to some 
person with an annual income of i dollars is proportional to (i + c)f(i), with c positive but 
small. This represents a modification of assumption (I) that decreases the proportion of the 
total stream going to persons of high income relative to the proportion going to persons with 
incomes close to the minimum. We assume that a fraction of the dollars is assigned to new 
persons-i.e. persons reaching the minimum income to which the assumptions apply 
(assumption (II)). We assume that there is considerable variance among persons within 
each income class in the probability of receiving additional income, so that the rate at which 
dollars are dropped from any income class as m increases satisfies assumption (III). Then 
we obtain again equation (3.8), which now holds for i greater than the minimum income. 
For large i, this distribution has the required properties with 1/A = p. 

The same result has been reached by D. G. Champernowne (1953), following a somewhat 
different route. He divides income recipients at time t1 into classes of equal proportionate 
width. That is, if im is the minimum income considered, then the first class contains persons 
with incomes between im and rim, the second class, persons with incomes between rim and 
r2im, and so on. Next he introduces transition probabilities Pgh, that a person who is in class 
g at time t1 will be in class h at time t2. He assumes that Pgh is a function only of (g - h). 
Now, by his definition of the income classes, the average income of persons in class g will 
be about r(9-h) times the average income of persons in class h. Hence, the expected income 
at t2 of a person who was in class g at t1 will be 

EPahth = EP(Agh)r(9-h)ig = aig (x a constant), (4.4) 
h h 

where ig is the average income in class g. Prof. Champernowne assumes explicitly that ac < 1. 
From this it is clear that his model satisfies our assumptions (I) (in its original form) and (II). 
Further, since he assumes a substantial variance in income expectations among persons in 
a given class, our assumption (III) is also approximately satisfied. Hence, in spite of the 
surface differences between his model and those developed here, the underlying structure 
is the same. 
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E. Biological species 
We conclude this very incomplete list of phenomena exhibiting the Yule distribution by 

mentioning the example originally analysed by Yule himself (1924). It was discovered by 
Willis that the number,f(i), of genera of plants having i species each was distributed approxi- 
mately according to (4.3), with p < I. Yule explained these data by a probability model in 
which the probability, s, of a specific mutation occurring in a particular genus during a 
short time interval was proportional to the number of species in the genus; while the 
probability, r, of a generic mutation during the same interval was proportional to the 
number of genera. Starting at to with a single genus of one species, he computed the dis- 
tribution f(i, t) for tl, t2, ..., and found the limit as t -* oo. This limiting distribution corre- 
sponds to (2.13) with p = r/s. Yule observed that for r < s (as required to fit the empirical 
data), this was not a proper distribution function, and obtained the approximate dis- 
tribution for t = T. His procedure was equivalent to replacing the complete Beta function 
in (2.13) by the incomplete Beta function, taking as the upper limit of integration an 
appropriate function of T. 

If, in the process of ? II, we define k as the total number of different species and f(i, k) as 
the number of genera with exactly i species, we see that our k is a monotonic increasing 
function of Yule's t (specifically, k = est). Making the appropriate transformation of vari- 
ables, we find that Yule's assumption with respect to the rate of specific mutation corre- 
sponds to our assumption (I') (and hence is considerably stronger than the assumption we 
employed in ? II). Making the same transformation of variables with respect to his assump- 
tion of a constant rate of generic mutation, we find that nk = e'rt. We can then compute 
ax(k) (which will now vary with k) by taking the derivative of nk with respect to k. We obtain 

ac(k) = r e(r-s)t/s. (405) 

If we substitute these values in equation (2.34) of case II, where we assumed slowly 
changing oc, we find in the limit, as t -- oo, p = rls, as required. Hence, we see that the 
process of ? II is essentially the same as the one treated by Yule. 

It is interesting and a little surprising that when Yule, some twenty years after this dis- 
covery, examined the statistics of vocabulary, he did not employ this model to account for 
the observed distributions of word frequencies. Indeed, in his fascinating book on The 
Statistical Study of Literary Vocabulary (1944) he nowhere refers to his earlier paper on 
biological distributions. 

V. CONCLUSION 

This paper discusses a number of related stochastic processes that lead to a class of highly 
skewed distributions (the Yule distribution) possessing characteristic properties that 
distinguish them from such well-known functions as the negative binomial and Fisher's 
logarithmic series. In ? I, the distinctive properties of the Yule distribution were described. 
In ?? II and III several stochastic processes were examined from which this distribution can 
be derived. In ? IV, a number of empirical distributions that can be approximated closely 
by the Yule distribution were discussed, and mechanisms postulated to explain why they 
are determined by this particular kind of stochastic process. In the same section, the 
derivations of ?? II and III were compared with models previously proposed by Yule (1924) 
and Champernowne (1953) to account for the data oIn biological species and on incomes, 
respectively. 

29 Biom. 42 
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The probability assumptions we need for the derivations are relatively weak, and of the 

same order of generality as those commonly employed in deriving other distribution 
functions-the normal, Poisson, geometric and negative binomial. Hence, the frequency 
with which the Yule distribution occurs in nature-particularly in social phenomena- 
should occasion no great surprise. This does not imply that all occurrences of this empirical 
distribution are to be explained by the process discussed here. To the extent that other 
mechanisms can be shown also to lead to the same distribution, its common occurrence is 
the less surprising. Conversely, the mere fact that particular data conform to the Yule 
distribution anid can be given a plausible interpretation in terms of the stochastic model 
proposed here tells little about the underlying phenomena beyond what is contained in 
assumptions (I) through (III). 
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