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ABSTRACT
Supervisor: Professor Donald D. Munro |

Effective sampling methods’fof succéssive forest inventories include
versions of multistage sampling. Multistage sampling, or subsampling,
is cost-effective in broad forest areas, and it is one technique that lends
itself advantageously to the use ofimuitilevel data. Imprerd efficiency
of sampling designs for successive inventories is usually achieved through
partial replacement of sampling units at the successive occasions. How-
ever, the theory on multistage sampling on successive occasions with partial
replacement of units has some limitations. All of the theory invokés the
distinctive assumptions of equal sample size or equal variance on successive
occasions. These éséumptioné aré not usually met in forestry.

The objective of this study was to provide some general theory for
"successive forest inventories using multistage sampling with partial
replacement of units. As is the case with multistage designs, the tech-
riique of partial replacement gives rise to a number of alternatives. For
practical purposes, only the case in which partial replacemen; occurs at
the primary stage of the multistage design was considered. In addition,
consideration was restricted to inventories on two successive occasions
only, without the restrictive assumptions of equal sample size or equal var-

iance at the two occasions.
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Minimum-variance (best) linear and unbiased estimators (BLUE) of

the current population mean p, and of the change in the mean between two

Y
successive occasions A, together with ;heir respective_vafiances are

derived for two-stage, three-stage, and h-stage (h >.1) designs. Biased
estima;ors of the ratio form (RE) of By and of A are also derivea_togéther
wighﬂﬁﬁeifwreépectiVe variances and biases, fo;>é ﬁwo-stage-design.

The biases of REs are negligible for large sample sizes. A numerical
comparison of the efficiency of BLUE and RE for estimating ui indicated

that the BLUE had a slight edge over the RE; however, for estimating_A,

the RE was very inefficient.

An alternative solution approach is proposed for the problem of
determining the optimum replacement policy, that is, the number of primary
units to remeasure and new ones to take at the current occasion. The
sequential nature of successive inventories is exploited to 6;§t the prob-
lem as a multistage process that can be optimized through dynamic program-
-hing. Solution procedures are given for determining the optimum replace-
ment policy for a two-stage design with the objective of minimizing the
‘cost of the inventory and subject to the side conditions that thé specified
variance levels of By and A are met.

The derived theory was illustrated, for a two-stage design, by working

through a sample forest inventory problém.
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From a p;actical point.of view, extension.éf the theory of sampling
with partial replacement from one-stage to multistége désigns is bene-
ficial, particulariy for the inventory of large forest areas. It'Qould
be useful to extend the theory further to use variable prébabilities.of

selection at the various stages of the multistage design; and to examine

the cases in which partial replacement occurs at other than the primary

stage.
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CHAPTER 1
INTRODUCTION

In recent years demands have been increasing for reliable and
timely forest resource statistics obtained with a minimum of expenditure.
"These statistics, such as timber volume per unit area and growth over
time, usually form a basis for rational utilization of forest resources.
Inventory sampling is frequently employed to érovide the data on which
resource statistics are derived. Several sampling techniques have
been proposed in forest inventory designs for both single-occasion and
successive (occasions) inventories.

Single-occasion or ”oﬁe—shot” inventories provide inﬁprmation
on the state of the resource at a given point in time. Only current
values are obtained. Sampling designs, such as simple random, strati-
fied random, etc., documented in most sampie survey texts, are used
in single-occasion inventory problems. Successive inventories provide
information on the state of the resource at various points in time.
Current values and changes or average of values of the resource over
time are obtained. The basic sampling designs as used in 'one-shot'
inventories together with methods of linking the designs over time are
used in successive iﬁventory problems.

Successive inventories may be regarded as multiphase sampling in
which the current phase sample consists of units observed at the current

occasion, and is a subsample of earlier phase(s) sample(s) selected



on earlier occasion(s). Successive inventories may be conducted using
(1) a new sample on each occasion, (2) a fixed sample on all occasions,
or (3) a partial replacement of sample units from occasion to occasion.
A series of independent samples is simply repeated inventories, each
made without reference to the others. - (This method, for example, uses
temporary marked plots.) A fixed sample is a set of permanent sample
units that a%e observed on successive occasions, traditionally called
continuous forest inventory (CFI). In sampling with partial replacement
of units (SPR), the total sample in the current occasion consists of
samplé:;ﬁits already observed in earlier occasions plus new sample units
takéﬁ?i#dependently at the current occasion. Method 1 is statistically
ineffiéient since it does not exploit the inherent correlation existing
betWeen-pastand current observations. Methodﬂ? is more efficient
particularly for estimating differences in value of the resource between
occasions, but is more expensive than method 1. SPR (method 3) combines
the lower cost of independent inventories (for obtaining current values)
with the high efficiency of fixed samples in estimating changes. In
fact, as we shall see later, methods 1 and 2 can be regarded as special
cases of SPR: when the proportion of units ffom previous occasions that
is remeasured in current occasions equals 0 we have method 1, and when
this proportion equals 1, we have method 2.

SPR has been accepted as a valid forest inventory technique for
estimating forest resource current_values and changes in these values
over time. Several articles have been published on the general statis-
tical theory of SPR and, specifically, on its use in the estimation of
forest area, current timber volume, area change, and timber growth.

Large-scale applications of the technique have been reported mostly in
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the United States and Canada. However, the design of successive inven-
tories with partial replacement of units is complex. As mentioned
earlier, we require not only the basic sampling designs at given points
in time but also the procedure for combining the successive observations.
Much of the theory on SPR available in the forestry field has been
derived assuming simple random sampling (SRS) as the basic design on the
successive occasions. We know that SRS is cost-effective in relatively
small forest areas, and that the technique is very rarely used in forest
inventories. In national and other large forest inventories covering
broad forest areas, SRS (one-stage) SPR becomes expensive (for a given
level of precision) and highly difficult to apply. Furthermore, straight-
forward SRS does not take advantage of combining remotely-sensed data,
such as satellite and photo-imagery, and ground data. Multistage
sampling is cost-effective in broad forest areas, and it is one technique
that lends itself advantageously in the use of multilevel data. This
seems to suggest that multistage sampling schemes would be the more
appropriate basic designs for the successive inventory of largé forest
areas using SPR. (Other designs such as multiphase and stratified random
_ sampling could also be used. However, there is some theory already in
other fields on multiphase SPR, and stfatified SPR is infeasible in
sampling forest populations because forest strata generally change with
time.) There is, however, no general theory of SPR on a multistage
framework for sampling forest populations. The theory aQailable so far
all invokes the distinctive assumptions of equal sample size or eéual
variances on successive occasions. These assumptions are not usually
met in forestry. There are no guidelines for the optimal allocation

and replacement of sampling units at the various stages of multistage SPR



designs. Furthermore, multistage SPR has so far not been applied to
large-scale forest inventories.

The objective of this studx is to extend the theory and principles
of one-stage SPR to a multistage dimension for the purpose of estimating
forest resource current values and changes in values over time. The
fesource values could be timber volume, number of stems per ha, etc. As
in the case of a multistage design, the technique of partial replacement
of sample units gives rise to a number of alternatives. For example, in
a two-stage sampling design, partial replacement of units can be done in
the following ways: (1) retain all primary sampling units (psu's) but from
each psu take a fresh sample of secondary sampling units (ssu's) within
them, on the second occasion, (2) retain only a fraction of psu's together
with their samples of ssu's and select a fresh fraction of psu's, (3) re-
tain all the psu's from the preceding occasion but from each psu retain
only a fraction of the ssu's within them and select a fraééion of ssu's
afresh, and (4) retain a fraction of the psu's and from each such psu re-
tain only a fraction of the ssu's and select a fraction of the ssu's afresh.
In three-stage SPR there are about twelve alternatives. As the number of
stages and occasions increases, the number of possible alternatives
increases too. For practical reasons we shall restrict ourselves to
situations in which partial feplacement occurs only at the primary stage
of the multistage design. In addition, we shall restrict ourselves to
multistage SPR on two occasions only, assuming varying sample sizés and
unequal variances at the two occasions.

Although some techniques of optimization have been suggested for
use in one-stage SPR, in this thesis we shall exploit the sequential
nature of SPR on successive occasions to obtain optimum sample distri-

bution over time by dynamic programming, a mathematical programming



technique.

Specifically, we shall (1) describe the sampling rule for SPR
in a multistage framework, (2) determine suitable (best linear unbiased)
estimators of the mean current value, and the changes in the values,
together with their vafiances, (3) establish guidelines for an optimal
replacement policy for the psu'g, and (4) give an example of the appli-
cation of the derived multistage SPR theory to a specific forest inven-
tory problem.

First, we give as a background, the previous work done in SPR,
including multistage SPR (chapter 2). Next, we present the derivation
of the theory of multistage SPR (chapter 3) and the optimal replacement
policy construction (chapter 4), together with an application of the derived
theory to a forest inventory problem (chapter 5). Finally, we discuss
the problems of the multistage SPR theory and specifically, its applica-

-

tion to forest inventory problems in general (chapter 6).



CHAPTER 2

LITERATURE REVIEW

As a method for studying time-dependent populations, sampling on
successive occasions has been studied extensively. In the literature,
sampling on successive occasions is also sometimes called "rotation
sampling," "sampling for time series,” or "repeated sampling." In any
case, the method involves successive sampling of the same population with
replacement (partial or complete) of the sample from occasion to»occasion.
We shall review the theoretical development of sampling on successive
occasions with partial replacement (SPR) in general and the specific
development of theory and application of SPR to sampling forest popula-
tions. First, the general statistical theory development:/

Jessen (1942) was perhaps the first to realize the advantage of
partial replacement of the sample to estimate the current population mean
in sampling on successive occasions. Jessen was considefing the problem
of sampling on two successive occasions in agricultural populations. He
obtained two estimates: one was the sample mean based on new sample
units only, and the other was a regression.estimate based on the sample
units observed on both occasions and an overall sample mean obtained on
the first occasion. He then obtained a linear unbiased estimate of the
population mean on the second occasion by taking the weighted average of

the two estimates. (The two estimates were weighted inversely by their

variances.) Jessen also considered the optimum replacement fraction
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under the assumption that the initial sample size was specified and that
the total sample size remained constant over time. He used simple random
sampling as the basic design.

Yates (1949) extended Jessen's result for the study of a population
on two occasions to more than two occasions under the resfrictive condi-
tions of the same sample size and a fixed replacement fraction on each
sucéessive occasion. In addition, Yates assumed the correlation between
thé same sampling units on two different occasions as decreasing in geo-
metric progression as the time interval between the occasions increased.
Tha;?iséithe corrélation between observations one occasion apart as p,
tworéééésions apart as pz, three occasions apart as p3, etc. Yates
furthéréassumed that the population variance did not change with time and
that p.was known. He also considered some aspects of the problem of
estimating change from matched observations combined with new independent
observations.

Patterson (1950), while restricting himself to best linear unbiased
estimators, removed all the restrictive assumptions of Yates, except for
the correlation pattern and constant population variancg over time.
Working independently of Patterson, Tikkiwal (1951) also removed the
restrictive assumptions of Yates, but he adopted a slightly different
correlation pattern froﬁ that of Patterson. He allowed the correlation
between the same sampling units on successive occasions to vary; the
correlation between the same sampling units more than two occasions apart
was taken to be the product of the correlations between all possible
pairs of consecutive occasions oécurfing in between (and including) the
two occasions in ﬁuestion.

Tikkiwal (1953), using calculus techniques, worked out the optimum
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proportion of new and old sample units to take for estimating the pbpula—
tion mean én a recent occasion, given the aésuﬁptions of Yates (1949)
"and Patterson (1950). - Tikkiwal also gave formulae for the optimum allo-
cation of units among strata, when stratified,random sampling was used

on successive occasions. \

Narain (1953), taking into account the variability of the regression
coefficient computed from samples, derived the basic recurrenceifofmula
in sampling on successive occasions. The variability of the.regression
coefficient had been ignored by Yates (1949) and Patterson (1950).. Narain
(1954) further extended the_results of Yates (1949) and Pattersén (1950)
to that of estimating current values of é populatién sampled two or more
occasions apart, assuming partial correlations were non-zero for occasions
more than two apart.

Kulldorff (1963) discussed the problem of optimum allocation
of the sample for SPR on two successive occasions, when thefz‘was one
variable of interest at a time. Using an analytic approach, Kulldorff
provided solutions to the problems of obtaining fhesample size on occa-
sions one and two when interest lay in estimating either the current mean,
the improved mean on occasion one, or the linear combination of the two
means under each of the restrictions of minimum cost for fixed variance
or minimum variance for fixed cost.

Eckler (1955) simplified Patterson's (1950) approach and developed
the method of rotation sampling to obtain a minimum variance linear un-
biased estimate of the population mean or total by suitably constructing
a linear function of sample values at different occasions.

Tikkiwal (1955, 1956a, 1956b, 1967) extended the theory of SPR to

the study of several characters on each of several occasions under a
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specified correlated pattern, using multiphase sampling on the occasions.
He applied the derived theory to the survey of livestock marketing.
Tikkiwal (1958a) found that partial replacement of units improved the
efficiency of various estimators of time-dependent populations characters
with increasing number of occasions reaching a limiting value. In this
study he assumed that the variance and replacement fractions were the
same on each occasion. He also extended SPR to a two-stage design (Tikki-
wal, 1958b), assuming a specific correlation pattern at both stages and
equal-size primary units.

Woodruff (1959) discussed the advantages of rotation, and presented
composite estimation procedures with rotating panels, in the retail trade
survey of the United States. He gave composite estimators, of the ratio
form, of current population values under the assumptions that occasion

to occasion correlations were the same and that variances were equal on

-

P
each occasion.

Onate (1960) worked with a fixed pattern of partial replacement
of the ultimate subsample units in a multistage design. He studied the
total composite estimator using data obtained on previous occasions to
make various estimators at any current occasion. He also developed a
finite population theory for the composite estimator for his rotation
pattern under certain restrictions.

Rao and Graham (1964) developed a unified approach to the problem of
sampling on successive occasions employing a fixed rotation design in a
finite population. They considered a survey design which, first, numbered
the population units at random and, second, specified in advance which of
them would be in the sample on each of the occasions (the rotation plan).
Estimators of current values and changes in these values were developed

under the assumption that exponential and arithmetic correlation patterns
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held over time for the characteristic of interest. Later, Graham (1973)
generalised this work taking into account that it was not necessarily true
that the correlation between Xa,k and xa',k would monotonically decrease as

fa - a'l incréased. (xa,k is the observation on the kth population unit.in
the oth occasion.) He instead considered thevfollowing model of correla-
tion (with specific reference to current population survey of the.U.S.
Bureau of the Census)

ola, o + 125 + i) = poyp7, (i =1,2,...,115 3 = 1,2,3,...)
for the correlation between observations in the same unit separated by
(12j + i) months. (The index i is for months and j for years.)

Singh and Singh (1965) considered a sampling procedure involving re-
peated application of double sampling fér stratification on several succes-
sive occasions. They gave estimators of the current population mean and its
variance under the assumptions that no units shifted from stratum to stratum
on any occasion, and that adaition of any further units to or subtraction
from the population did not take place throughout the course of sampling.
The derived theory was applied to the survey of coconut production in the
state of Assam (India).

Raj (1965) outlined the theory of successive sampling when sampling
units were clusters selected with probability ppoportional to size and
the sampling confined ﬁo two occasions for estimating current values.

The application of the theory to double sampling was also considered.

Pathak and Rao (1967) provided estimators of the population total in
sampling over two occasions when simplé random sampling without replacement
was used on both occasions and when probability proportional to size selec-

tion was used on both occasions. The estimator suggested here was more

efficient than that of ' Cochran (1977). However, Ghangurde and Rao (1969)
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showed that, for sampling over two occasions from a finite population, under
simple random sampling without replacement, Kﬁlldorff's (1963) estimator of
the population total on the current occasion had a émaller minimum variance
than that of Pathak and Rao (1967), for the same expected cost. The esti-
mator suggested by Singh (1972) was also}superior to that of Pathak and Rao
(1967) but not as good as Kulldorff's (1963) estimator.

Singh (1968) presented a theory for successive sampling procedures
‘using a two-stage sampling scheme for two and three occasions. He derived
estimators of current population values and linear combinations of values
over several occasions when partial replacement occurred only ét the psu's
and assuming that the number of sampling units taken on each occasion were
equal and that the units were of equal size. This work was later extended
by Singh and Kathuria (1969) to the case where partial replacement occurred
at the secondary sample unit. level, under similar assumptions.

Avadhani and Sukhatme (1970) proposed the use of thefﬁao, Hartley,
and Cochran (1962) (RHC) sampling procedure and the ratio method in
sampling on successive occasions. The RHC sampling scheme modified for
two occasions gave an estimator which was more efficient than thét of the
. ratio method using simple random sampling.

Sen (1971b) developed the theory of successive sampling (two
occasions) to provide a combined estimate based on a multivariate double
sampling ratio estimate from the matched portion of the sample based on
two auxiliary variables with unknown population means, and a mean per
unit estimate from the unmatched portion. He showed that when the
auxiliary variables have the same coefficient of variation, when the
correlations between the dependent and independent are equal, and when

the auxiliary variables are either uncorrelated or are moderately
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correlated with the dependent variable, considerable gain in efficiency
was achieved over using a single auxiliary variable. He assumed that
- sample sizes were equal, and population variances were the same, on both
occasions. The efficiency of the multivariate ratio estimate was com-
pared to that of the multivariate double sampling regression estimate:
the latter was more efficient in general. Sen generalised this theory
from two to several auxiliary variables using (1) the double sampling
multivariate ratio estimate (Sen, 1972), and (2) the double sampling
regression estimate (Sen, 1973b), under similar assumptions. Later,
however, the assumption of equal sample size on both occasions was
removed by Sen (1973a); and that of equal variance on both occasions
was also removed by Sen et al. (1975), but they considered the case of
the ratio estimator with only a single auxiliary variable. Sén et al.
(1975) further extended the theory to use stratified random sampling.

Sen (1971a) successfully applied the theory of SPR in"a mail
survey of water fowl hunters in Canada. He observed that the SPR
estimate of éurrent values was one-third more efficient than the estimate
obtained on the basis of current observations only, when the correlation
. between successive observations was high and positive.

Avadhani and Sukhatme (1972) suggested the use of controlled simple
random sampling with a ratio estimator for estimating the population mean
in sampling on successive occasions. They also extended their earlier
work (Avadhani and Sukhatme, 1970) from two to more than two occasions.

Blight and Scott (1973) extended Patterson's (1950) results to
situations in which the population mean of a time-dependent population
followed a linear Markov process. They assumed a simple first-order

autoregressive model.
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Scott and Smith (1974) applied standard time series methods to the
analysis of repeated surveys under the assumption that the population para-
meters at each time period followed a stochastic model. Their derivation
used the theory of signal extraction in the presence of stationary noise.
Both independent amd complete remeasurement surveys were coﬁsidered in gen-
eral terms with specific results obtained for the time series model assumed
in the work of Patterson (1950). The results were later extended and
applied to surveys of more complex design, Scott et al. (1977).

Chakrabarty and Rana (1974) developed the theory of sampling on two
successive occasions in a two-stage design, under the assumptions of equal
_variances and equal sample sizes on both occasions. They examined situa-
tions in which partial replacement occurred of the psu's only, of the ssu's
only, and of both psu's and ssu's. Empirical results showed thét partial
replacement of both psu's and ssu's was more efficient, in mosﬁ cases, for
estimating the current mean. The theory for a three—stagé”design, under
similar assumptions, was derived by Rana and Chakrabarty (1976). Contin-
uing the study using a three-stage design, Rana (1978) considered the use of
double sampling ratio estimator for both stratified and simple random sampl-
. ing. He made a numerical comparison, similar to that of Sen et al. (1975)
for a simple random sampling scheme, of the earlier estimator (Chakrabarty
& Rana, 1974) and the one using a ratio estimator: the former had a slight
edge over the latter. As also, noted by Sen et al. (1975), the estimator
using the ratio estimate was slightly biased, but '"for most practical
purposes both estimates seem to be equally desirable."

Jones (1979) compared the efficiencies of the approaches of Patterson
(1950), Blight and Scott (1973), and of Scott and Smith (1974) to analysis
of data from repeated surveys by computing the mean square errors of the

estimators of the current mean and of the change in means on the last two
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occasions. He indicated that there were considerable gains in effici-~
ency to be made by using thé assumed time series :elationship between:
the population means, as assumed by Blight and Scott (1973) and Scott
and Smith (1974). | | |
| Manoussakis (1977) introduced a new rotation samplihg model for
estimating the mean oé a time-dependent population. Without considering
cost, the variance of the derived estimator was less than that'pf Pagter4
son's (1950) but greater than that of Eckler (1955).

Good summaries'of some of the results cited above can be obt&ined
in sampling texts such as Cochran (1977), Sukhatme and Sukhatme (1970),
Murthy (1967), and Kish (1965).

Most of the literature reviewed so far has dealt primarily with
theoretical aspects of SPR. Few. authors of these have reported applica-
tion of the derived theory to actual surveys. The most notable are Sen
(1971a) who applied SPR in the survey of the waterfowl hunters in Canada,
and Tikkiwal (1956b) who used SPR in the survey of livestock markgting in
the United States. However, several authors have reported some modifica—
tions to, and application of the theory of SPR for sampling forest popula-
tioms. Now we shall reyiew the contributions to the theory of SPR and its
applications in the forestry field.

-‘The cogceptiof SPR was introduced into forest inventory by Bickford
(1956, 1959, 1963). However, Ware and Cunia (1962) provided a more com-—
plete discussion of the principle and advantages of SPR in CFI. They
treated the statistical aspects of the use of remeasured permanent plots
and partial replacement of the initial sample for forest inventory. They
gave the theory of SPR fof estimating current timber volume and periodic

growth when sampling on two successive occasions, given unequal sample
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sizes and unequal variances on the two occasions. Ware and Cunia (1962)
used a graphical technique to determine the optimal replacement policy.
This work was a result of the independent work of Ware (1960) and that
of T. Cunia..

Building on the work of Ware and Cunia (1962), Cunia (1965) extended
the theory of SPR to use multiple regreséidn methods for linking successive
occasions; Cunia and Chevrou (1969) extended the theory of sampling on

_two occasions to sampling on three or more occasions; and Newtoh et al.
(1974) considered the multivariate case.

Bickford et al. (1963) described a two-occasion sampling design
developed for a forest survey of the Northwest (United States) as a strati-

- field double sampling at the first occasion followed by SPR at the second
occasion.

Cunia (1964) gave a brief historical development of the theory and
application of SPR to forestry. SPR was defined and the ﬁ;y it works
explained from an intuitive point of view. |

Frayer (1966) undertook a rigorous analysis of empirical data to
test the validity of updating timber volume by the method of Ware (1960).
The analysis indicatea that the homogeneity of variance assumption of
the model was not met. He suggested the use of weighted regression in
updating timber volumes.

Frayer and Furnival (1967) presented a method of calculating changes
in area attributes on remeasured forest élots. Methods were also shown

whereby the estimates of change could be applied to results of a previous
inventory and combined with the results of a current inventory to form
final estimates of current values. Along the same lines, Hazard {1977)

presented estimators of the proportion of area and change in proportion
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of area contained in a class.

Frayer et al. (1971) reported results of the first attempt to apply
SPR to timber inventories, in two working circles of Colorado (United
States). It was found that SPR required about half the number of sample
plots to obtain the same sampling error as obtained with conventional
CFI, in estimating current values. 'Empirical studies elsewhere (Loetsch
& Haller, 1964; See, 1974; Barnard, 1974) also indicated that there
was increased efficiency in using SPR as compared to conventional inventory
methods.

Hazard and Prommitz (1974) proposed the use of convex mathematical
programming as a tool for optimally allocating resources for successive
forest inventories. Most of this work was derived from Hazard (1969).

Dixon and Howitt (1979) introduced the Kalman estimator as an alter-
native to the model developed by Ware and Cunia (1962), for estimating
the current value§ of a time-dependent population. The Kéiman estimator
takes into account the relationship between successi?e values of the popu-
lation mean (assumed to be uncorrelated by Ware and Cunia [1962]). The
Kalman estimator was found to be more precise than the Ware and Cunia
(1962) estimator. However, it seems the authors were not aware of some
work done in this direction by Blight and Scott (1973) and by Scott and
Smith (1974). |

From the literature cited above it is observed that»(l) theoretical
developments in multistage SPR have been restricted to situations in which
the sample size and/or variance are constant over time, and (2) no applica-
tion of multistage SPR has been reported in forestry. In the next chapter
the theory of multistage SPR is derived without the restrictive assumptions

of constant sample size or variance on the successive occasions. This



essentially involves extending the work of Ware and Cunia (1962) from

the one-stage SPR to a multistage dimension.

17



CHAPTER 3

THEORY OF MULTISTAGE SAMPLING ON SUCCESSIVE OCCASIONS WITH
PARTIAL REPLACEMENT OF UNITS

For simplicity §f presentation, we shall first discuss the extension
of one;gtage SPR to two-stage SPR, and to three-stage SPR. Then, next,
we shall generalize the extension to h-stage SPR (h > 1). Minimuh—Variance
(best) linear unbiased estimators (BLUE) of the current mean aﬁd the change
in the means from occasion to occasion will be derived together with.their
variances. Other possible estimators, ratio estimators (RE), will also
be derived together with ﬁheir properties (biases‘and variances). The effic-
iencies of RE relative Lo BLUElin estimating the current mean and the change
in mean will be investigated. " In all the derivations we_sha}} restrict
ourselves to sampling on two successive occasions with partial replacement
of only the primary sample units. We shall consider the cases whére the
.sampling units at each stage are of equal size and unequal sizé in deriving
the BLUE. |

In general, when sampling large forest areas, the population of sample
units at each stage of the multistage design is large enough to be consid-
ered infinite. All the derivations that follow will, therefore assume
infinite population models which, in this case, providé very close approxi-
mations to the exact results which would have been obtained if the deriva-
tions were done with finite population modeis. Further, the assumption
of infinite population models greatly simplifies the algebra involved in
the, derivations.

18
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Two-stage SPR

Consider a population consistiﬁg of N primary sample units (psu's)
and each psu consisting of M secondary sample units (ssu's). Fufther,
suppose that the sample units (psu's or ssu's) are of equal size. In
particular, suppose n péu's are selectéd by simple random sampling without
replacement (srswor) on the first occasion and m ssu's are selected by
srswor from each sample psu. A random sample (selected by srswor).of
size np (0 < p < 1) of the n psu's is retained for the second occasion
togethe; with its respective ssu's drawn from the first occasion. In
addiﬁ?éﬁ, a random sample of size ns (s > 0) of the N-n other psu's is
seleqféd by srswor for inclusion in the sample on the second occasion.
Agaih,A$vssu's are selected by srswor from each of the ns psu's. As
indicated earlier, it will be assumed that N and M are infinitely large.

Observations are taken in each of'the nm ssu's on the first occasion
and nm (p + s) ssu's on the second occasion. Denoting ﬁhe variable of
interest on the first occasion as X and the same variable of interest

on the second occasion as Y, we designate the various observations as

follows:
Occasion
1 2
No. of unmatched psu's nq ns
No. of matched psu's np . np
No. of unmatched ssu's nmq g nms
No. of matched ssu's nmp nmp
Unmatched observations x',.,i=1,2,...,nq y',.,i=1,2,...,ns
ij’], ij’],
j=1,2,40.,m j=1,2,40.,m
Matched observations x”ij,i=1,2,...,np y”ij,i=1,2,...,np
j=1,2,...,m j=l,2,...,m
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where
FQ=(1—P)-
We are iﬁterested in estimating the current pépulation mean uf‘and

the change in means A =

My By of the variable of interest. It will be

assumed that on the first occasion, the observations (matched or unmatched)

are described by the linear nested model

X = he + L.+ e, {i-= 1,2,...,N
ij X 1i 1(i)j J=1,2,...,M
where
xij = observation on the jth ssu Qithin the 'ith psu
My = overall mean of the observations
ey = effect of the ith psu
El(i)j = effect of the jth ssu within the ith psu

and all the sl(i)j's'are independent random variables each with expected

value = 0 and variance = o2 , and all the a,,'s are indepencent random

€, 1i

variables, independent of {El(i)j}’ each with expected value = 0 and

variance = © .
. Gl
' — 2 2
Then cov(xij,xi,j,) = nii,(o o t njj,q El)
where here, and in what follows,
) _ {0 if uf v
Tov = "l ifu=v
Note, in particular, that
_ _ 2 . P
cov(xi‘,xij,) = cov(ali,ali) =0 o, for j # 3j
—_ —_— 3 I ]
Cov(xij’xi‘j) = cov(ali,ali,) =0 for i # 1

In other words, observations on different ssu's within the same psu are
correlated, and observations on the ssu's within the different psu's are

uncorrelated. Note in particular that if i = i' and j = j', then
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— — 2
cov(xij,xij) = Var(xij) = 0 o, + 0 e,

Similarly on the second occasion, the observations (matched or un-

matched) are described by the linear nested model.

i=1,2,...,N
Yig TRyt %21 T f2(4)j j=1,2,...,M
where
yij = observation on the jth ssu within the ith péu
Hy = overall mean of the observations
&Zi = effect of the ith psu
EZ(i)j = effect of the jth ssu within the ith psu
and all the 82(i)j's are independent random variables each with expected
value = 0 and variance = ¢%?_ , and all the a,.'s are independent random

€, 2i
variables, independent of {62(i)j}’ each with expected value = 0 and

2

variance = 0 .
a2
— : 2 2
Then cov(yij,yi,j,) = nii,(o o, + an'c e, ) B
Note, in particular, that,
— — 2 5 2
cov(yij,yi:,) = cov(uZi,GZi) =0 o, for j # j

) = cov(a,, Yy =0 for i # i'.

cov(y, 5% 2i°%2i"

ij '3

In other words, observations on different ssu's within the same psu are
correlated, and observations on the ssu's within the different psu's are

uncorrelated. Note in particular that if i = i' and j = j', then

_ — 2
cov(yij,yij,) = Var(yij) =0 o, + 0 c,”

In order to impose a correlation structure between occasions 1 and

2, it will be further assumed that
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cov(x, . c s =n,, o O +n,.,0 ©
( 1J’y1'J') nll'(pl a, &, ji' ey €, )
where
o, = the correlation between the effects due to the psu's, and
p, = the correlation between the effects due to the ssu's within the

psu's.
Note, in particular, that

) =,

corr(a,..,a,.
11’ 721

corr(el(i)j,ez(i,)j') = nii'njj’pz

corr(al ) =0 and

i°%2(1) 3
corr(aZi,el(i)j) = 0.

Furthermore, if i = 1i' and j = j' then

) = p,0_ O + P00,

cov(x Y. .
j’7ij @, 0, £, €,

ij’yi'j') = cov(xi
" The correlation structure assumed implies that

(a) observations on-the ssu's. within the different psu's at the two occa-
sions are uncorrelated, o

(b) observations on the ssu's within the same psu at the two occasions are
correlated,

(c) observations on the different ésu's within the same psu's at the two
occasions are correlated, and

(d) observations on the same ssu's within the same psu's at the two occa-

sions are correlated.
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Now, from the sample observations, we obtain simple averages or

preliminary estimators as follows:

and

where

0f course

-values of

E(i'..j

E(x"..)

E(y'..)

and

_ , nqg m

x'.. = (151 jil x ij)/nmq

_ np m

x'".. = (iil jil x ij)/nmp

_ ns m :

1 —_ 1

s E i
np m

ye. = (2 z y"..)/nmp
i=1 j=1 3

is the meén of obser&ations unmatched on occasion 1

is the mean of observations matched on occasion 1 and 2

is the mean of observations ummatched on occasion 2

is the mean of observations matched on occasion 2 and 1.

there are other possible preliminary estimators. The expected

the above estimators are as follows:

UL SRS S R P
nmq o1 =1 ij nmq g j=1 X 1i 1(i)j X
1 ;P ? E(x",.) = 1 ;p ? E(u, + o + € ) = ¢
nmp . 4 j=1 ij nmp . _; j=1 X 1i 1(i)j X
L ;S 2 E(y'..,) = — 25 ? ECu, + 0,. + €4,.7.) = K
nms L7y ij nms 41 je1 Y 2i 2(i)j Y



np m

E(y"..)

z

R

since a,., a,., €
1i° 72i* T1(

The variances

24
np m
z z
i=1 j=1

J.)

+ €

Ry 24

=1

p—s E(UY + a ) = Hys

2(i)j
)5 and €2(i)j all have expectation equal to zero.

of these preliminary estimators are as follows:

_ ng m
Var{x'..) = Var(— I o ox'..)
i=1 j=1 *J
1 nq m
= 3 z Var(—- z X'.-)
(nq) ic1 ij
1 m
= 7 Var( £ x'..)
(nq) j=1 ij
1 m m m
= r V v, I I ', ',
COE [j=1 ar(x i ) o+ e cov(x s 13')]
- = [(m(6? + 02 ) + m(m - 1)o? ]
(ngq)m 1 € 1
- L (o2 . (o2 /m)]
nq 1 €, -
and similarly,
- 1
" e 2 2
Var(x"..) = - [o a, * (o €1/m)]
\4 —l'. - — 2 2
ar(y'..) = = [o ., (o €2/m)]
. - 1 :
Var(y"..) = — [o2 2 .
and ar(y ) - (o a, + (o sz/m)]
Further, '
1 np m np m
cov(X'". ., y"..) = cov( Z I x",, R M AL |
Y (nmp) * 121 j=1 1J’i,=1j.=1 iy
1 np np m m
= ——— I z b T cov(x", ., ¥y".,.,)
(nmp)® 41 a1 j=1 jrel )
1 np np m m
= ——— I £ I ¢ mnm,.,(po 0o  +m.. .0 o
(nmp)2 1=1 i'=]. J=1 j|=1 ii! ! Q, Q2 JJ‘ 2 €, €2)
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1 np np . m m
z z

- <nmp)2 i=1 i'=1 %) a2z

1 np np (m
= ———— I b .., (m o a +mop,0 O )
(nmp)? icl i'el Mige £1% %, 2Te, €,

1 .
= )T (nmp) [mploa,0a2+ p,0 o ]

1
—— (mp,0 0 + p,0_0O_ )
nmp Ya, o, Ve, €,

and it can easily be seen from the correlation structure assumed that

cov(x'.u,x"..) = 0

cov(X'ee,y'ea) =0
and cov(y'es,y"..) = 0.
| Eétimator of the current mean. In all the derivations it will be
assumeé that ¢ , % , 02 , ¢* , p,, and p, are known.
o, 0, €, €, =

The current mean Hy on the second occasion is estimated by a linear

estimator of the form

§21 =a, X'.. +b, X"e. + c, y'.o + d, V'
where a,, b,, ¢,, and d, are constants.  We require that this estimator
be unbiased, that is,
E(YZR') = UY'
Since
o _ _l; -
E(x'..) = E(x"..) = Hy
and E(y'..) = E(y"..) = My

then to be unbiased we require that

1

0

a, + b,

and c, + d, 1.
Consequently, we obtain that

37-22, = az(;('.. - )_("..) + C, ;’”.. + (l - C2)§‘-' (1)
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The variance of this estimator is
Vaf(?zz) = a§tVar(§”..) + Var(§‘..§] + c2 Vaf(?”..)

+ (1 = ¢,)? Var(y'..) = 2a,c,cov(X"..,y"..) ' -_(2)
since all other cévariances are zero (given the correlation structure
assumed).

Then by substitution
Var(§22) = ag{[(czal/np) + (azel/nmp)] + [(ézal/nq) + (ozel/hmq)]}

+ ci[(ozaz/np) + (ozsz/nmp)] + (1 - ¢c,)? {(c?  /[ns) +.(0262/nm$)}

2

- 2a,c,{mp,0 ¢ + g O nmp.
, 2C, (mp, a,%, [ e, 62)/ p

Letting
8,, = (6?2 /n) + (0% /nm)
. Oy €,
0,, = (62 /n) + (c?_ /nm)
oy €2
g, = (mplc;ml.cel2 + pzcsloaz)/nm

and w; = B,/(/6,,08,,)

we obtain that

Var(§2%) = a2[(08,,/p) + (8,,/q)]) + c2(8,,/p) + (1 = ¢c,)2% (8,,/s)

- 2a,c,B,/p
1 1 z 1 - 2
= a3+ Doy, + (S BBl - 2asctul (3)

We now choose those values of the constants a, and ¢, in (3) such
that the variance of §22 is minimized. We do this by differentiéting
equation (3) with respect to (w.r.t.) each of a, and c,, setting the
results equal to zero, and then simultaneously solving for a, and c,.
We obtain, after simplification, that

{(p/[s(1 = qu) + pl)B,q}/6,, = c*,8,q/8,,

¥
ar,

c*, = p/[s(1 = qv2) + p]



where a¥*, and c¥, are the 'optimal' values of a, and c,, respec;ively,
tﬁat minimize Var(§22), and V%, =.822/(921922)-A
Substituting these 'optimal' valués into equation (1) yields
Fo, = (€%1820/0,,)(R'ee = Rel) + e (1 - c*?)§‘.f
= c*?{§”.. + (B,q/8,,)(X"e. — 2”;.)} + (1 = c*,)y'..

But

»
i

= gx'.. + (1 - g)x".. = the grand mean on occasion 1
or Reo — X0 = q(X'ee = X".0)

and 8,/68,, = cov(X"..,y"..)/Var(x"..) = x* @ regression coefficient.

Boy
Then

Yz, = cFo{y".. + BZYX(X'° - x".)r + (1 = c*)y'..

: el 7] et _own - 3 :
Let the quantity {y".. + BZYX(x.. x"..)1 Y2 ,» @ regression estimator.

Then
§£2 = c*2(§2re) + (1 - c*2?§'.. (&)

or, substituting the value of c* into equation (&),

I

§¢2 {(ezz/s)(§2re) + [(8,,(1=V%,))/p + ¥%,8,,]y'..}/

{(ezé/s) + [922(1 - sz)/p + szezzj}

[0 Fape + 51 - a¥? 5"+ 1/lp + (1~ vt )] 5)
We notice that the current mean estimator is a weighted average of two
uncorrelate@ estimates §re and y'.., and is unbiased.

The variance of this estimator, which is the minimum possible for
such linear estimators, stated in equation (2) can be otherwise simply
obtained as follows. We can write that, using equation (4)

Var(§zm) = ¢*%?, Var(§2re) + (1 = ¢c*,)?% Var(y'..)
since §2ré and y'.. are uncorrelated of each other (from the correlation

structure assumed). After substitution and further simplification we get
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Var(y,,) = 05, 4[1 - @il/[p + s(1 - q¥2) ]} (&)

it

8,,{(1 - c*,)/s}.
We shall now examine some special cases.

l. If q=35s, i.e., equal sample size on both oécasions, then

oy = (P Yo+ all - qvd)y'..1/ [1 - (qV,)?)
and

Var(y,,) = 16,,(1 - qv)}/ [1 - (qv,)?]
2.. 1f, in addition to (l), 6,, = 6,, = 6,, i.e., the variances witﬁin
the stages are the same on both occasions, then

Yo, = {p 2, + (1 = ab)y' .3/ 1 - (q¥,)?]
and

Var(y, ) = {0,(1 - qv2)}/ [1 - (q¥)? 1.
It can be seen thét for q = 0 or q = 1, in this special case 2,
Var(?zz) = 0,. This indicates that whether the sample is cohpletely
retained or completely replaced by a new sample, the variance of the esti-
mator is the same. For all values of 0 < q < 1, Var(§2£) < 8,, which
indicates that a replacement policy will improve the estimate of burrent
mean if ¢, # 0 (i.e., p, # O and p, # 0).

Estimator of the change. The change in means between the two occa-

sions of sampling, A& = Hy = Hyo will be estimated by B2y which is of
a.linear form

B2 = é,y".. + £,X"0. + h,y'.. + t,X' e
We require that this estimator be unbiased, that is,

= A,

E(gy,) = uy = My

Since

E(x"..) = E(x'..) = Hy
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EGe) = E(5'a) = uy
then to bg unbiased we require that

e, + h, =1

and f, + t, = -1.
Consequently we obtain that
g2y = e, ¥'"ee + (1 = )y + £,x".0 = (1 + £,)x".. - (7)

The variance of this estimator is
Yar(gZQ) = e2 Var(y"..) + (1 - e,)? Var(y'..) «+ f2 Var(§”3.)

+ (1 + £,)2 Var(x'..) + 2 e,f, cov(x"..,y"..) (8)
given the correlation structure assumed earlier in the derivation of the
current mean estimator.

By substituting in the variances and covariances, we obtain.that
Var(g,,) = ef(8,,/p) + (1 - e;)*(8,,/s) + £7(0,,/p)
+ (1 + £,)2(8,,/q) + 2 e,£,8,/p (9
where 6,,, 8,,, B, are as defined earlier.
We now choose those values of the constants e, and f, in (9) such
ithat the variancé of B2 is minimised. We do this by differentiating
equation (9) w.r.t. each of e, and f,, setting the results equal to zero,
‘;nd then simultaneously solving for e, and f,. We obtain that
f*, = L— quZYX/K2] - Lp(s + p)/K,]

e*, = [p/K,] + [ps/K,]8

2XY

.

where e*, and f*, are the 'optimal' values of e, and f,, respectively,
that minimise the Var(gzn)
B,/6,, = cov(i”..,§”..)/Var(§”..).= BZXY’ a regression coefficient
K, = p + s(l - qu})

and the other symbols are as defined previously.
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Substituting in the values of e¥, and f*, into equation (8) gives
(after multiplying out)

g2, = (P/KDY"ew + [(psBo ) /K: 17" e + [(s(1=qu))/K,T5" ..

2XY
= [(psByy ) /KDy e e = [(paByy ) /K Ix"e s = [(p(s + p)) /K, Jx".
+ [(paB,, I /K Ix" .. - [als + p - s¥3)/K,Ix' ..
After further simplification, we obtéin tﬁat‘
g2 = {(P/K)Y, , + [s(1 - qu)/K,]y" .0
- Ups + /K Jx,  + [a(p + s(1 - ¥3))/K, ]x'..}  (10)
where v |
X, = X".. + BZXY[S/(S + )y .. = y..]
This estimate of change is seen to be a linear combination of the unbiased
current and previous mean estimators §ZL and EZE’ respectively. kNote
that the second principal piece in equation (10) is §2£, the BLUE of the
population mean on 6ccasion 1, given the observations on occasion 2.)
The variance of B2 which is the minimum poésible foquuch linear
estimators, is easily derived by considering equation (8).
Var(gzl) = 0,,[le*2/p + (1L - e¥*,)%/s] + 08,,[1 + (f*, + p)?/pq]
+ 2 e*, f¥,0,/6,,0,,/pP-
Substituting in the values of e*, and f*, and after some lengthy algebraic
manipulation, we obtain that
Var(gzl) = {[p + s(1 - v2)]o,, + (1 - qv2)e,, - ZpWZ/E:TEZZ}/
[p + s(1 - qui)]. (10.1)
We shall now examine some special cases.
1. 1f q = s,
8z, = [p((l - a®DIG, - izre) + [q(1 = qu2)/(1 - @) ](¥y'.. - X'.4)

and Var(gzz) = [(1 - qu3)(6,, + 8,,) - 2pw2/921922]/(1 - q®v3).



2. 1f, in addition to (1), 6,, = 8,, = 8,, then Boxy = BZYX and
82i = [P/(l - qwz)](?”-- - i”--) + [q(l - ¢z)/(1 ‘.qwz)](§j'- - X'!f)
and Var(gzl) = 20,(1 - qv3 - pv,)/[1 - (qu,)?] (11)

It can be seen in equation (l1) that for

-q = 0, Var(gzZ) = 208,(1 - ;) (= fixed sampling variance of,chahgé)
= 1, Var(gzg) = 26, (= independent sampling variance of
‘ change)

So that forvalﬁes of 0 < q <1, the variance of the growth estimator will
vary between 26(l - ¢,) and 2e. This indicates that traditionaliCFI or
fixed sampling gives improved estimates of growth over partial replacement
as long as wz.# 0.

The efficiency of the change estimator 82 depends on ¥, and q:

it increases with increases in ¥, and q, that is, Py (i = 1,2) must be
high and o, s 9, (ﬁ = 1,2) be as low as possible since
t t -
= g !/6 <] .
W, [mploalcaz + DZUEx Ezj/[ 21 22(1'”“):|

Three-stage SPR

Consider a population consisting of N psu's, eaéh psu consisting
of M ssu's, and each ssu containing T tertiary sample units (tsu's).
‘Further, suppose that the sample units (psu's, ssu's, or tsu's) are of
equal size.\ In particular, suppose n psu's are selected by srswor on
the first occasion, m ssu's are selected by srswor from each sample psu,
and r tsu's are selected by srswor from each of the sample ssu's. A
random sample (selected by srswor) of size np (0 < p < 1) of the n péu's
is retained for the second occasion together with its respective ssu's

and tsu's drawn from the first occasion. In addition, a random sample

of size ns (s > 0) of the N-n other psu's is selected by srswor for
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inclusion in the sample on the second occasion. Again, m ssu's are
selected by srswor from each of the ns psu's aﬁd r tsu's are selected
.by srswor from each of the nm ssu'§. The numbers‘N, M, and T will again
be assumed to be infinitely large.

;Observations are taken in each of the nmr tsu's. on the first occasion
and nmr (p + s) tsu's on the second occasion. We designate the various

observations as follows:

Occasion
1 2
No. of unmatched psu's nq ns
No. of matched psu's np np
No. of unmatched ssu's nmq nms
No. of matched ssu's nmp nmp
No. of unmatched tsu's nmrq nmrs
No. of matched tsu's nmrp nmrp .
Matched observations x"ijk i=1,2,...,0p y”ijk i=1,2,...,np
j=1,2,...,m j=1,2,...,m
k=1,2,...,r k=1,2,...r
Unmatched observations x'ijk i=1,2,...,nq y'ijk i=1,2,...,ns8
j=l,2,...,m j=1,2,.4.,m
k=1,2,...,r k=1,2,...,1
where
q=1-p

Recall that X and Y do not refer to different variables of interest:
they refer to the same variable of interest, called X on occasion 1 and
Y on occasion 2.

We are interested in estimating the current population mean Hy and

the change in means A = u, - of the variable of interest. It will

y ~ Hx

be assumed that on the first occasion the observations (matched or
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unmatched) are described by the linear nested model

i=1,2,...,N
Xik = My * @0 El(i)j'+'Y1(ij)k iz}:é:::::?
whefg
xijk = observation on the ktﬁ tsu within the jth ssﬁ within the
ith psu

By = overall mean of the observations

@y, = effect of the ith psu

él(i)j = effect of the jth ssu within the ith psu

Yl(ij)k = effectvdf the kth tsu within the jth ssu within the ith psu and

all the Yl(ij 's are independent random variables each with expected value

Yk

= 0 and variance = o®_ , all the El(i)j|5 are independent random variables,

1

independent of {Yl(i , each with expected value = 0 and variance =

k!
2

SR and all the ali's are independent random variables, independent of
1

. . _ . a2
{El(i)J} and {Yl(ij)k}’ each with expected value = O and variance = 0 o,

Then

N 2 2 2
cov(xy qeaXy iy’ = My (00, MO Ny Mg © )

where

0 if uév
Tov “ 1 ifu=v

Note, in particular, that

— — 2 2 $ '
Cov(xijk’xijk') = cov(ali,a1i|) + COV(El(i)j’el(i)j) =0 o, + 0 . if k £ k

_ _ 2 : : (] t
Cov(xijk’xij'k') = cov(ali,ali) =0 o, if j # j' and k # k

_ _ 2 . . 1
Cov(xijk’xij'k) = cov(ali,ali) =0 o, if § #]

cov(x,

_ e . . .
1jk’xi'j'k) =0 if i £ i' and j £ ]

cov(xi Yy =0 if i £ 1i'.

jkP i ik
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In other words, observations on different tsu's within the same ssu's are
correlated; observations on tsu's within different ssu's on the same psu

are correlated; and observations on the tsu's within different psu's are

J

uncorrelated. Note in particular that if i = i', j = j', and k = k', then

) = Var(xi, ) = o2 + o2 + g2

cov(x, .
( jk @, . €1 Y1

S
ijk’Tijk v
Similarly, on the second occasion, the observations (matched or unmatched)

are described by the linear nested model

i=1,2,...,N

Yige TRt % T facy T Y2tk TRy

where.
yijk = observation on the kth tsu within the jth ssu within the ith_
psu
by = overa}l mean of the observations
ey, = effect of the ith psu
EZ(i)j = effect of the jth ssu within the ith psu ’
Y2(ij)k = effect of.the kth tsu within the\jth ssu within the ith psu

"and all the Y2(ij)k's are independent random variables each with expected

value = 0 and variance = ozY , all the 62(i)j's are independent random

2

variables, independent of {Y2(i }, each with expected value = O and

ik
variance = 02€ , and all the a2i‘s are independent random variables,
2

independent of {YZ(ij)k} and {ez(i)j}’ each with expécted value = 0 and
variance = © .
G2

A similar correlation structure will be assumed for the observations

on the second occasion as that on the first occasion.
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In order to impose a correlation structure between occasions 1 and
2, it will be further assumed that
VO oY grao) T N[0y 0 # Ny (ao O sty 0y )]
where |
p; = the corfelation between the effects due to tﬁe tsu's within the
;su's within the psu's.v

Note, in particular, that

¢orr(ali,a2i,) =mn,.,P

Corr(el(i)j’€2(i')j') = nii‘njj'pz

Corr(Yl(ij)ksz(iljv)kv) = niiIHjjank'ps

corr(ali,sz(i)j) f 0
corr(aZi,el(iji) =0
Corr(ali’Yé(ij)k) =0
Corr(GZi"Yl(ij)k) =0 :

corr(e ) =0

2(1)3°7 (ik
aﬁd : Corr(el(i)j"YZ(ij)k) =0
Furthermore, if i = i' and j = j' then

) = p,0_ o0 + p0 O + P g .

COV(X.jk’y!'jvk|)=COV(X. k’yijk a, a, €, €, O'Yx Y2

i ij



(a)’

(b)

(c)

(d)
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The assumed correlation structure implies that
observations on the tsu's within the different psu's at the two occa-

sions are uncorrelated,

.observations on the tsu's within the same psu's ‘at the two occasions

are correlated,
observations on the tsu's within different ssu's within the same psu

at the two occasions are correlated, 'and

observations on the tsu's within the same ssu within the same psu at

the two occasions are correlated.

Using the sample data, we obtain preliminary estimators as follows

(there are other possible preliminary estimators);

ng m r

X'eou = (iil jil kil x'ijk)/nmrq

_ np m r

s (iil jil kil *"3 i) /omeP
3 _ ns m

y'eo. = (I z z y'ijk)/nmrs

i=1 j=1 k=1
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_ np m T ,
y'lee. = (iil jil kil y”ijk)/nmrp
where
X' is the mean of unmatched observations on occasion 1
y'... is the meaﬁ of unmatched observations on occasion 2
X"... is the mean of matched observations on occasion 1
y"... is the mean of matched observations on occasion 2.
The expected values of the above preliminary estimators are as
follows:
By e —1 3% p Ex,.) = L s % Eu +a
7 7 nmrq =1 j=1 k=l ijk NI o) o1 kel X 1i
eyt T M
Similarly,
E(x"...) = By
and  E(¥'...) = E(¥"...) = g, "
since Ayis Ggis el(i)j’ eZ(ij)j’ Yl(ij)k’ and Y2(ij)k each have expecta-.

tion equal to zero.

The variances of these preliminary estimators are as follows:

#3" kk!

nq m r
. Var(x'...) = Var(nmr I b x‘i.k)
9 i=1l j=1 k:l J
nq m r
=7 1)2 py Var(l; I b xi.k)
R R | j=1 k=1 *J
m r
1 1
=GO Var(—; z Xi.k)
d j=1 k=1 I
D . T oz v (%)) D> (x, o)
= ) Y S ar(x; ) + r 2 cov (g% sy
1 1 L] 1
+ I 1 cov(xijk,xij,kw)-+m Iz cov(xijk’xijk')}

k#k'
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__ 1 2 2 2 2
= nq(mr)? {mr(o o + 0 €1 + 0 x) + mr(m - 1)o o,
- — 2 _ 2 2
+ mr(r 1)(m 1)o o, + mr{r o o, + 0 51]}
- n—lq“’za, s (a2, /m) ¢ (0 )}

and similarly,

Var(x"...) = - [czOl + (oze./m) + (02Y /mr) ]
1 1 1
- 1
VvV LR - — 2 2 2
ar(y ) = — (o o, * (o ez/m) + (o Y2/mr)]
— 1
d LL - = 2 2 2
an Var(y ) oD [o o, * (o €2/m) + (o Y2/mr)]
Further,
- 1 np m r np m - r &
cov(x"...,¥y"ees) = 77— cov( = L o ox".,., , L z r
(nmrp) i=1 j=1 k=1 3% oy goy k=1 Yigke?
L np np m m r r
= ——— I I I . I I ocov(x", . ,y". ..,
(nmrp)? 4 i1 j=1.j'=1 k=1"k'=1 = LIk i)
1 np np m m r r
= —— DI oz LR
(nmrp)® 521 5021 §o1 ool kel ko1 AL
(ploalcaz ¥ njj,020€10€2 * njj'nkk'psonoYz)
1 np np m m
= ———— 3 I z 2 n,.,(r?p,0 o + r%n,.,p,0 o
(nmrp)* i=1 i'=1 j=1 j'=1 '* BETRLS 33 e
r r _
+ 0z L n, P30 0_)
k=l k'=1 KK TiY
1 np np (e m m
= 5——— I I n,,,(m*r¥p,0 o +1r? I %
(nmrp) ic] j1ep i a, o, j=1 j'=1
m m r r
N..,P,0 O + I z z Z n..,.n ps0. O
33°0%% e T I D) T e 2%, %)
1 np np . 22 .
= (amrp)? iil i§=1 nii'(m t p,oaloaz Tomr pzceloez

+ mrpachoYz)
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= ————-— (nmrp)[mre,o o + rp,0 O + PO ©
(nmrp)? ( p)l Wa, Ta, 2%, €, Ty, Y2]

[mrp,0 o+ rp,0 o + pyo_ o ]
nmrp (_!1 Q, €, €, Y, Yo

and it can easiiy be seen that
cov(X'.uy X)) = 0

cov(X'eeu,¥'eus) = 0O

and  cov(y'...,y"...) = O.

Estimator of the current mean. Again, in all the derivations it
will be assumed that o? g? o2 g? o? o? and
01’ az, El’ 82’ Yx’ Yz, P1y P2,
py are known.
The current mean u, on the second occasion is estimated by a linear
Y y
estimator of the form
§3£ = 84X"eee + DyX"eun + Co¥"eu. + dpy'e.n
where a;, by, c3, and d; are constants.

We require that this estimator be unbiased, that is, 7

E(Ysp) = n-
Since
E(X'...) = E(X"...) = My
and E(y'...) = E(y"...) = My

then to be unbiased we require that

a; + by 0

and ¢, + d, 1.

Consequently we obtain that
§31 = a3(X'vee = X"uue) + C3yY"ees + (1L - cy)y'enn
The variance of this estimator 1is
Var(§32) = a?[Var(x'...) + Var(x"...)] + c§Var(§”...) + (1 = cy)?Var(y'...)

- 2a;c,c0v(X"vea, Y eus)
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since all other covariances are zero (given the correlation structure
assumed).

Then by substitution
Var(?al) = a?,{[(c? /np) + (0?_ /nmp) + (¢? /amrp)] + [(¢®  /nq)
@y ' € Y1 a,
+ (62 /nmq) + (02 /nmrq) ]} + c?4[(c? /np) + (6% /nmp)
&y Y1 Qs €2

+ (62 /nmrp)] + (1 = ¢3)2[(o* /ns) + (o®  /nms) + (g2  /nmrs)]
Y2 o) €2 Y2
- Za:,,ca(mrp,omlcvm2 +‘rpzc€lo62 + p30YloYz)/nmrp.

Letting

8,, = (62 /n) + (6% /om) + (0?_ /nmr
. o/ _ /am) &+ (of /nmr)

05, = (62 /n) + (o? /om) + (o?_ /nmr)

A, €2 0 Y2

] = {mrp,0 o + rp,0 O + p30 © /nmr

3 [ < o, o, P2 €, €2 3 Y, Yz]
and Uy, =B3/(V8g,0832)

we obtain that
Var(§32) = a?,[(85,/q) +(85,/p)] +c?5(8,,/p) + (1 - c3)%(0;,/5)

- 2a;c4B,/p. (13)
We now choose those values of a, and c; such that the variance of §3z

is minimized. We obtain that

a* {(P/[S(l - qb?y) + P])Bsq}/eal = C*3B3q/931

w
1l

0
w
It

*, = p/ls(l - qu?;) + p]
where a*, and c¥*, are the 'optimal' values of a, and cg,, respectively that
minimize Var(§32). Substituting in the values of a*; and c¢*; into equa-

tion (12) and modifying 'as shown in the two-stage SPR, we obtain that

yal

c*3(§3re) + (1 - ¥ ))y'... (14)

[py, =+ s(1 = qu2,.)y'...1/[p + s(1 = qv?;)]
re .
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where

Yope = Y'eer B3YX(X - x'"...)

and B;/6,, = cov(§ﬁ..,§“..)/Var(§”..) = a regression coefficient.

Paxy?
Using equation (1l4) we determine that (given the correlation structure
assumed)

Var(§3z) = c*ﬁVar(§3re)»+ (1 - c*;)%Var(y'...)

8,,(1 - qwg)/[? + s(l - q¢§)] = 0,,{(1 - c*,)/s}.

Again, we can obtain some special cases.

1. Ifq:S ~

Vs, = [pYs o *a(l = q¥D)y' ... 1/[1 - (qv;)?]
and Var(§32) = 04,(1 - qv?)/[1 - (q¥;)2].
2. If, in addition to (l), 6,, = 8,, = 6,, then
Var(3,,) = 0,(1 - qu)/[1 - (qvy)?].
Similgr conclusions can be dfawn about Var(§3l) in this case as in the

two-stage SPR. -
/

Estimator of change. The change in means between the two occasions

of sampling, A By = Hyo will be estimated, as before, by

835, e3§”.ﬂ. + £4x"eee + hy¥'eee + £,X'eus

We require that this estimator be unbiased, that is,
Since E(x"...) = E(Xx'...) =
and E(y"...) = E(¥y'...) =
then to be unbiased we require that

1

e, + h,

¢ and fs + £ty = -1,
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Consequently, we obtain that
Bag= €7 eee + (1= e)F'ee w ER . = (14 £)% ... O (15)
Thevvariance of this estimator is
Var(g, ) = e§Vaf(§U...) + (1 - e352Var(§'...) ; f2var(x'...)
+ (1 + £.)%ar(x'...) + 2e,f,cov(X"eea,y"es) (16)
given the correlétion structure assumed earlier.
By substituting in the variances and the covariances, we get,
Var(g,,) = ef(85,/p) + (1 - e3)?(8s2/s) + £3(031/p)
+ (1 + £,)2(8,,/q) + 2e,f,8B,/p | (17
where 6,,, 6,,, and B, are as defined earlier.

We choose the values of e, and £, in (17) such that the variance of 83

is minimised. We obtain that

£y = [- paByyy /Ky] = [p(s + p)/K,)

er, [P/K3] + [pS/KsjB

3XYy

where
Ky = p + s(1 - qv?)
e*; and f*; are the 'optimal' values of e, and f,, respectively,
that minimize Var(gsl) »
By/05, = cov(i"-;§§"f-)/vaf(§”'-) = SBXY’Ha régression coefficient and
other symbols are as previously defined.
Sﬁbstituting in the values of e*, and f*, into equation (15) and after
a lengthy simplificatioﬁ, we obtain that
83, = {(p/K3)§3re + [s(1 = qu2)/K,1y'...} - {[p(s + p)/K3]§3re
+ [alp + s(1 = ¥D))/K,]x"... (18)
where

Xy = X"eew + Booo[s/(s + pP)Iy'ee. = y".ul]

re 3XY

i

XMoo o+ B3XY[y"’ -y
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Then

RO

Var(gag) = {[P + s(l - ‘l’g)']eax + (1 - qV3)8,, — 2p¥;v6,,05,} /Ky,
The special cases obtained in two-stage SPR and the conclusions made
therein can similarly be obtained here too.

Multistage SPR

Following from the derivation of the two- and thrée—stage SPR, we
shall now generalize the derivation tb h-stage (h > 1) SPR. 'Considef
a population consisting of N psu's, each psu.containing M ssu's, each
ssu containing T tsu's, and so on, and each penultimate unit consisting
of W ultimate sample units (at the hth stage). Further suppose that
the sample Qnits at each stage of the multistage design are of equal size.
In particular, suppose n psu's are selected by srswor on the first occasion,
m ssu's are selected by srswor.from each of the sample psu‘s; r tsu's
are selected by srswor from each of the sample ssu's, and so on until
a random sample u of the ultimate units is obtained by srswor from each
of the nmr ... penultimate units. . A random sample (selected by srswor)
of size np (0 < p < 1) of the n psu's is retained for the second occasion
together with its respective sub-units drawn from the first occasion.
In addition, a random sample of size ns (s > 0) of the N-n other psu's
is selected by srswor for inclﬁéion in the sample.on the second occasion.
Sub-units are selected from each of the ns psu's by srswor as on the first
occasion, It will be assumed that N, M, T, ..., W are infinitely large
numbers. Observations are made in each of the mnr ... u ultimate units
on occasion 1 and in mar ... u{p + s) ultimate units on occasion 2.

The observations will be designated as follows:
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Occasion
1 2

No. unmatched psu's nq ns
No. matched psu's np np
No. unmatched ssu's nmq nms
No. matched ssu's nmp nmp
No. unmatched

ultimate units nm ... uq nm ... Uus
No. matched

ultimate units nm ... Up nm ... up
Unmatched

. ' . , .

observations X ijk.“w(l_l,Z,...,nq) y ijk...w(l'l’z"°"ns)

Matched observations x' (i=1,2,...,np) y" (i=1,2,...,np)

L}
ijk...w ijkeo.w
where, for matched or unmatched observations,
j=12,.0.,m
k=1,2,.00,r

w=1,2,...,u
and q =1 - p.

Assuming a linear h-fold nested model for the observations ;t each
occasion (matched or unmatched), and given similar assumptions at each
stage of the h-stage design and across the two occasions, as was done
in the two- and three-stage designs, we can define the means of the obser-

vations as

nqg m r u
X'veeeoss = (L Z I ... I x',, )Y/nmr ... uq
i=l j:l k:l w:l 1Jk-"w
np m T u
2! _ "
X" veeeees = (I b I ... I x ijk...w)/nmr ees Up

‘i=1 j:l k=l w=1
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_ ns m Tr u
Y'ieeows o= (0 o .. I y'i'k w)/nmr eee US
i=l j=1 k=1 w=1 JKees
np m r - u
and Y'eeeesee = (L L L ... Doyt Y/nmr ... up
4ol §=1 kel wel ijkesow

The variances of the above means are as follows:

Var(X'eeeeses) = {QzOLI + (Ozel/m) + <02Y1/mr) +oeee + (Ole/mr...u)}/nq

Var(X'"ieeeeas) = {02 + (62 /m) + (&2 /omr) + «ov + (62 /mr...u)l/np
a, €, - Y T,

Var(y'.veveo.) = {02 + (62 /m) + (62 /mr) + ... + (0? /mr...u)}/ns
02 €2 Y2 T2

and

Var(y"..eeees) = {g?2 + (62 /m) + (62 /mr) + ... + (0% /mr...u)}/np
Qo €, Yz T2

Further,

COV(X" e ineree s Y M eennnes) = Bh/p = {(mr...uplcaloaz) + (r...upzo€1o€2)

Foeee (phoTicTz)}/(nmr...up).

COVI(X'evneeeesX evnneea) =0
COV (X" evnrenasY ' veneaas) = 0,
and  cov(¥'eieerees Y erenaes) = O.
Estimator of the current mean. Using similar assumptions given

in the two- and three-stage designs, the BLUE of the current mean Hy for

the h-stage design is given by

— v _ 2y9t _ 2
V, = [p v, ot s(1 qwh)y ceneeas]/lp + s(1 qwh)]
. % re ' .
where
6. = (62 /n) + (62 /om) + ee. + [0? /(nmr...u)]
hl a, €, : Ty
0., = (62 /n) + (62 /om) + .v. + [6? /(nmr...u)]
h2 G, €y T2
. —
vh = Bn/Veh1%h
4 = YV e iees. BhYX (X veennas m XMt neen )
re

/6

and B yy = Bp/6p-
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The variance of this estimator, which is the minimum possible for such -
linear estimators, is given as
7 v - _ 2 _ 2
\ar(yhz) = ehz{l _ qwh}/[p + s(1 q¢h)].
If q = s, then

v, =1ipy, +all- Qi)Y' eeeee /P - (Q¢h)2]

L re
- . _ ) _ )
and Var(yhz) = eh2<l qwh)/[l (qwh) 1.
In addition, 1if ehl = th = eh, then

Var(§h ) =6, (1 - qw;)/[l - (qwh)zj.
2

Estimator of the change. The BLUE of the change in means on the

two occasions is given by

g, = {(p/Kh)§h'r

+ [s(1 - qw;)/Kh]§'.......} - {[p(s + p)/Kh]§h v
% r

e e

« Talp + s =21/ T o innend

where
X o = XKlecaeeae # BhXY[y....... Y M eeeeas]
Buxy = Bn/®h2
- _ 2
and K =p+ s(1 qwh).

The variance of this estimator, which is the minimum possible for

such linear estimators, is given by

Var(gh ) = {[p + s(1 - w;)]ehl + (1 - qw;)ehz
'

- 2p¥y Y8y 8) 1K
If ¢ = s, then
g, = {p/[1 - (qvh)z]}(§h - %, )+ a1 - Qv )P IHE e = X )
[} re re '
and

e

Var(g), ) = (01 - qu ] (e + 8,0 = 209,78, 18,3 /[1 - (qv)®].
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In addition, if 6., = 6, . = 8 then

hi h2 h’

Bryx = Bhxy

and Var(gh ) = 28h(1 - qwﬁ - p$h)/[l - (qwh)zj.
2

Unequal Size Sampling Units

In the previous sections, it was assumed that the sampling units
at each stage were of. equal physical size. However, in sampling extensive
populations, such as forests, sampling units that vary in size are frequently
encounteréd. If the sizes do not vary greatly, one method of analysis
would be ta stratify the units by size, say, so that the units within a
stratum become equal in size, or nearly so. In ﬁhis case, the formulae
already developed could be used within each stratum. Often, however,
there exist.substantiél differences in size between the sampling units
at each stage. Separate estimators must be developed to handle the case
in which the units vary in size. Estimators of the current mean and the
change are now derived for sampling units that vary in size in two-stage
SPR on two occasions. (The cases for three-stage énd multistage designs
will not be considered here.)

Consider a population consisting of N psu's and the ith psu consisting
of Mi ssu's. Suppose ﬁ psu's are selected by srswor on the firgt occasion
and m, ssu's are selected by srswor from the ith sample psu. _ A random
sample (selected by srswor) of size np (0 < p < 1) of the n psu's is retained
for the second occasion together with its respective ssu's drawn from the
first occasion. ~ In addition, a random sample of size ns (s > 0) of the
N-n other psu's is selected by srswor for inclusion in the sample on the
second occasion. Again, m; ssu's are selected by srswor from the ith psu of

the ns psu's. It will be assumed that N and Mi i=1,2,...,N are infinitely



48

large. Let

m' ;o= the number of unmatched ssu's on the ith psu on the tth
occasion (t = 1,2),
and m' L= the number of matched ssu's on the ith psu on the tth occasion
(¢ =1,2).
(Note that m T by matchlng.l
Observations are taken on the I m, . ssu's on the first occasion
' i=1
n(p+s)
and on the z m, . ssu's on the second occasion. The observations
‘ i=1
wilifﬁéfdesignated as follows:
Occasion
1 2
Unmatched observations x', {%=1,2,...,n? y' {%=1,2,...,n?
: ij j=1,2,...,m'_, ij j=1,2,44e,m
11 21
Matched observations xi (=2, » 7P y'". {¥=1’2"' ’nR
ij j=1,2,...,m 1i ij j=1,2,...,m 24

It will be assumed that on the first occasion, the observations (matched

or unmatched) are described by the linear nested model

X,. = Uy, + O, ., + €.,... i=1,2,...,N
i X 1i 1(i .77’ i N
] (1)] 21,2, 000 M,
where
Hys @140 and el(i)j are as defined earlier.

The same correlation structure assumed in the equal size case of the two-

stage SPR will be assumed here, for thé observations on occasion 1.
Similarly, the observations on the second occasion will be described

by a linear nested model and the same correlation structure assumed in

the equal size case of the two-stage SPR will also be assumed here, for

the observations on occasion 2.
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Furthermore, the same correlation structure, as that for the equal
size case, will be aséﬁmed for thg observations on the first and second
occasions.,
Frpm the sample observations we obtain unweighted preliminary esti-

mators as follows:

_ nq m', .. ﬁq
x'.. = (2 b x'i,)/ L m‘l.
i=1 =1 3 *
1"
np m 1i np
. = (3 Iox" )/ E
i=1  j=1 -
1
ns m 21 ns
yte. = (2 T oy'..)/ % m'.,
1o j=1 4o 2
) nP m'', . | np
yn.. - ( T b yu..)/ ) m' ..
i-1 j=1 0 M 2

The expected values of the above estimators are as foliows:

ng m', . nq
E(x'..) = E{( z ',/ om' L)
is1 ge1 Mg 1
nq m'li nq
= E{[ £ I (u,+a, +€,,,.0}]/ 2 m. .}
i=1  j=1 RN (D377 1
nq nq nq m', . nq
=E{p, + (2 m..a.)/ 2 m, . + (L : e, )/ m. .}
X icl 1i71 i1 1i izl =1 (i)j i1 11
nq nq ng m'y . nq
=pu, + E[CZ m..,0.)/ 2 m, + (L T e, )/ m..]
X o1 MR R Ny g (DI 1
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Similarly, it can be shown that

2 _
E(x .f) = Hy |
-t
E(y ..) = Hy
and E(y"..) = My
We can define the variances of the preliminary estimators as follows:
' 4
ng ngq m'li
I m..a z €
- 1i74 1 (i)j
Var(x'..) = Var i=1 s 1=l 3=l
nq nqg
1 t
L Eomiy ’
i=1 i=1 J
nq ng nq m'li ng
=g (I m, . 2)/(z m_ )%+ (z I o2 )/(z m,,)?
gy ML M i=1  j=1 ST
nq nq nq ng
=02 (I m 2/ 2 m' )%+ of > m' )/ m', )2
%1 4-1 i=1 €141 i=1
nq “n ng
=02 (Z m..2)/(: m.,.)2 4+ 02 /% m.,. -
PR 11 io1 li €15 1i
= o2 (nqm'%)/(nqm})? +0? /ngm',
o, €,
4
1 " ! 2 ]' 2
= 5o U ot t— o . }
q (m;)g' 1 m} 1
= ;L {mr} 0% + L g }
q a, m €
where
: nq
m', = (.Z m'li )/nq
i=1
_ ng
2 o 2
m'] = ('Z m'li)/nq
i=1
- ng - ngq
and 7! =m'2/(m\)?= nq( -2 m'zli)/( b m'li)2




Similarly,

where

"
LIRS

(Note

Further,

cov(X"ee, ")

cov(x'..
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= - _L 1 2 _L 2
Var(x"..) = - {ny o o, + = o 51}
Sl
- 1 1
7 1 - —— ' 2 —_ 2
Var(y'..) = s {r}, o o, + = o €2}
m,
e L, 1,
and Var(y'..) = == {1y ¢ + — 0 }
np Q, En €2
]
np np
- " 2 " 2
np('Z m' /g m )
i=1 i=1
ns ns
_ 1 2‘ ] 2
= ns(.z m' . )/('Z m 21) and
1:]" lzl
n np
- 1 2 ' 2
np( Z m', . )/('Z m'2i)
i=1 i=1
that m' = 7} = 7" say, and m' = m) = m" say.)

it can be

i

Y,

,X"e) =

cov(X'ee,¥'ea) =

and cov(y'..,y"..)

]

Estimator of

the current mean.

easily shown that in this case of unequal size units

1
+— p,0_o_ ]
put? €1 €, -

1 .
— [#'"p,02 o?
np ay Oy

0
c

0.

The current mean p, on the second

occasion is estimated by a linear combination of the preliminary estimators

as before [see equation (1)].

Then

§2£ = a,{x' - X'") + coy" + (1 - c2)y'

The unbiasedness requirement leads to

(18.1)

Var(§22) = a2[var(x"..) + Var(x'..)] + civar(y"..) + (1 - cz)ZVar(§;..)

- 2a,c,cov(X"..,y"..).
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If we let
- 1,1 1 1
" - == " 2 - 2 I (1]
Var(x"..) = p[n(ﬂ, o o, +—5 O 51)] =7 8",
my
Var(x'..) = l[l(n' o2 +‘l% o2 )] = 1 8',
e q
1
— 1.1, . 1 1
Vv "o = == " 2 ——— 2 - = 1"
ar(y ) p[n(nz o a, + — o €2)] 5 o',
mY :
- 1-1 1
] _ o= ] 2 — 2 - = '
Var(y'..) = S[n(n2 ofy, T 52)] =< 0,
- m)
- - 1-1, 1 1
" (1] — = 1 —_— - = '
and cov(x"..,y"..) = p[n(n ploa!oaz + = pzosloez)] =5 8

Then
PN 1 1 1 1
Var(yét) = aﬁ[ge”, + a@'l] + C%(E 8",) + (1 - Cz)z(; 0',)

BI
- 2azc2:; .

We now choose the values of a, and ¢, that minimize Var(?zm) as before.

We obtain that

o
~
|

- C*qu'/(pe'l+ qe”l)

8',p(pe',+ qé",)

and sz =
(po',+ s6)(pd',+ qu) - pgsB'?

These values of a*, and c*, can then be substituted into equation (18.1)
go give the BLUE of the current mean for the case of unequal size sampling
units, The variance of the estimator so obtained, which is the minimum
possible for such linear estimators is given as

o3[ 6%(p6) + q8Y) - qpB'2](po; + qoY)

Var(?zl) =
s[pe! + qoy][(pey + seoy)(pe) + qoY) - pqsB'?]

e',p(pd] + qo'")
(ei/s) {1 - : }
s[(pe} + s6y)(p6] + qo}) - pgsB'?]

The special case in which the sampling units within stages are of

equal size, considered in the earlier section, can be obtained from this
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general result by substituting the following equivalent forms:

6'2 = e22
8", = 65,
'y, = 0,,
8'"y, = 6,,

and g'? = g2,

Estimator of the change. Similarly, to estimate change in this

case of unequal size sampling units, we combine the preliminary estimators
as before [equation (7)]. In this case, however, the values of e, and

f, that minimize the Var(gzm), e*, and f*,, respectively, are

ex, '"i?'{:[[e'z(qe"l + p8',)[(s0", + p8';)(ge", + p8',) - pgsB'?]/
s%piq(qem, + p6' )T - [(8'6",(p6'y + 58",) — qB'%6',)/piqs]}/
{[]:(pe'1 +q0",)(p8', + s0",)[(se", + p8';)(qe", + p8',) - pqsB'*]I]/
s?p®q(qe", + p6',)}

- [e'x(Pe'z + s8'",) + qB'e}](qe”x + po'y )/

N
H

QE(Seuz + Pe‘z)(qeux + po', - qSPB'Z)]-
These values can then be substituted into equation (7) to obtain the BLUE
of change for the unequal size sampling units case. The variance of the
estimator so obtained, the minimum possible for such linear estimators,
is similarly obtained by substituting e*, and f*, into equation (9).

Other Estimators

The discussion so far has been confined to best, linear and unbiased
estimators. These were obtained by cbmbining a regression estiﬁate from
the matched portion of the sample with a mean per unit estimate based on
‘the current sample. We shall now derive the theory of two-stage SPR
(equal-sized sampling units at each stage) using another estimator, the

ratio estimator (RE). Assume that sampling is done as was done earlier
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for the two-stage equal-sized sampling units case.

Current mean. Using a double sampling ratio estimate, we can obtain

an improved estimator §”r of Hy an follows:

U= (R DR = R X..

Xeo = p X"eu + q X'.. = overall sample mean on the first occasion.

We can rewrite §”r as follows:

on _ §”" =
=2 [H, + X.. =~ M
x",.

We notice that the piece

(y'o.o/x"..) My

is the usual ratio estimator of UY’ and that the quantity

(;”- -‘/2”--)(;.. - UX)

is expected to be very small (negligible).
Then we can write

Fr_= G R DR 5 (5 /R)

Consequently, using the reasoning of Cochran (1977:343) we obtain that
o varGr) = e qlzre/ETE - R DD
where

R = uY/uX (estimated by R = YL /x")

An estimator §2r of the population mean p, on the second occasion

Y

is given by taking a weighted average of §”r and y'.. as follows:

Yo, = W y'Lo+ (1 - wy'.. (19)

where

w and (1 - w) are weights.
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The minimum-variance estimator of My is obtained by having that value

of w which minimizes the Var(§2r). Since §”r is statistically unccrrelated
with y'.. (given the assumed correlation structure), then
Var(§2r) = w2Var(§”r) + (1 - w)?Var(y'..) (20)

Differentiating (20) w.r.t. w, setting the results equal to zero, and solv-
ing for w gives

w¥ =>Var(§‘..)/[Var(§”r) + Var(y'..)] ‘ (21)
where

w* is the value of w which minimizes Var(§2r).

vBy substituting in the variances into equation (21) we obtain that

£
1l

= (0,2/9)/[[{(82, — ql2RV:VB;18,; - R20,,1)/pY+ (6,/8)])

p/{p + s[1 - q(2¢,a - 2%)]}

il

where

A =R 2.1
4622

the ratio of the population coefficient of variation of the aver-

ages over the ssu's on occasion 1 to the coefficient of variation
of the averages over the ssu's on occasion 2.

We then obtain that

Vo = {p §"r + s[1 = q(2¥,8 - %))y .}/ {p + s[1 - q(2v,A - a%)1r

and that

e22[1 - q<2¢2A-'A2)]/{p + S[l - q(2¢,4 ~ Az)]}

1]

Var(yzr)

622{(1 - W*)/S}-

We can obtain some special cases as follows:
1. If q = s

Yoo = {p ¥+ qll = q(20,8 = %) ]y' . }/[1 - q*(2¥,8 - 4%)]

and
Var(§2r) = 0,,[1 - q(2¥,8 - A%)]/{1 - q?(2y,8 - A2)}.



56
2. If q = s and 6,, = 65, = 8,
Yoo = tp ¥, + all - qR(2b, - R]y'..3/[1 - q"R(2¥; - R) ]
and Var(§2r) = 8,1 - qR(2¥, - R)J/{1 - q?R(2¢¥, - R)}

Again, here too, if ¢ = 0 or q = 1, Var(§2r) = 8, and for all other values

of g, 0 < q <1, Var(§2r) <8, if ¥v,, R > 0. This also indicates that

a replacement policy will improve the estimate of Hys if v, # 0.
As was pointed out earlier, §2r is biased. Now we shall determine
the amount of this bias. We can rewrite ;zr in (19) as

§2r =wip y".. + q(¥". /X" )X =¥+ ¥y
Taking the expected value of this quantity
E(§2r) =w E[p ¥ + q(¥y". /X" DX . = ¥ .] + E(y'LL)
- - on ' _
= wlp My + Q E(y"../x 7')“X pY] * My
but, according to Murphy (1967:304)
E(7".. /%) = (uy/u)(1 + (ezf/puzx) - (V278,,022)/ uyny Pl
to terms of order 1l/n. This means that
E(§zr) = w q[R8,,/p My — RY*/8,,6,,/ Hy pl + Hye
Then bias of §2r will be given by

B(§2r) =>E(§2r - UY)

{Wq[Rezx/UX) - RW2/6162/HY]/p + UY} - pY

wq R(8,, /1y = $2/821822/0)/p
or éubstituting w* for w
B(Y,) = a[R €,y — $2/8,0,]/1(s + p - qs[2¥,8 - 2% Duyl.
We can see that for large n, the bias becomes negligible and, in prac-
tice, the bias is insignificant even for moderate samples. ( For example,
if A=1, q=0.7, s = 0.4, R=1.1, ¥, = .9, 8,, = 6,, = 1, n = 30,

W = 530 m®/ha, and y'.. = 550 m®/ha, B(y,_ ) = 0.00277 for y,_ = 552.50302.)
X r r
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Comparison of the current mean estimators.. It would be useful to

compare the relative efficiencies of the BLUE and the RE in estimating
the current mean on the second occasion in a two-stage design.

The gain in precision (efficiency).df§zz over §zr is given by

Q = [Var(;zr) - Var(§22)]/var(§22).
- {[P + s(1 - qw%)]}{l = (q/ezz)[Zsz/ezlezz = Rzezl]} 1
{U:P + 5[1 - (q/ezz)(Zsz/ezxezz - Rzezn)]IJ(l - q¢§)
= [T1a - qsvi)[1 - q(2¥,8 - 82)]3/1[2 - qs(2¥,8 - A*)](1 - q¥3)1]]-1
where

}Q_; s + p = ratio of sample size on occasion 2 to that on occasion 1.
We cahjfurther rewrite Q as follows:
Q= D:{EQ - gs(py0, + p20,)2][1 - q(28(p, 0, + Pr0,) - A%)1}/

{[@ - qs(28(p,¢, + P20,) = AP)J(L - q(p 0;.+ Pad )] - 1

where
o, = Ualoaz/(n/ezxezz)
and 0, =0 o0 [(nm/6,,6,,)
€, €,

We can now then tabulate the values of Q for each value of &, A,
Pis Pas Oy and.¢2. This has been done for some selected values of &,
A, Py, P2y, ¢,, and ¢2,‘and are given in Table I. Note that in Table I,
¢, = ¢, = 0.5,

From Table I we can make the following observations:
1. for fixed 2, the efficiency gain increases as 4 increases,
2. for fixed A; the efficiency gain dééreases as @ increases,
3. as A tends to p,, efficiency declines,
4, efficiency increases as p, increaées,

5. for values -of p, less than 0.9, efficiency is highest for p = .4 or
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.5, but for p, = .9; there is a steady decline in efficiency,
6. at @ =1, and A > 0.5, efficiency decreases with.increase in 02,

but for A = 0.5, efficiency increases with increase in ;.
From this limited numerical study, it is notéd fhat §22 has a slight edge
over §2r' For mb;t»practical purposes and especially Qhen P, and p; are
high and @ = A = 1, both estimates seem to be equally desirable. This
numerical study was done on the assumption that both estimators were équally
»expensive to compute.

-Estimator of the change. A ratio estimator of the change in means

between two successive occasions is obtained as a weighted average of the

means on occasions 1 and 2, estimated by the ratio method. Thus
g, = {ay" + (1 -a)y'..} - {bXx" + (1-b)x'..} (22)
where
A A AN
Yee = ?E%;T Y. o+ (sip) y'.. = overall sample mean on occasion 2

a,b are weights
and other symbols are as defined earlier.
The variance of g2, is given.by
‘ Var(gzr) = aZVar(§"r) + (1 - a)?var(y'..) + bZVar(§”r)
+ (1 - b)?Var(§‘..) - 2 ab cov(§”r,§”r)
+ 2a(l - b)cov(§”r,§‘..) - 2b(1 - a)cov(§”r,§'..) (22.1)
since §”r is uncorrelated with y'.. and ;”r is uncorrelated with X'.. .
Now, using the reasoning of Cochran (1977:343) (and as indicated

in the estimation of the current mean in this section)



cov(§”r,§”r) = covi{[y".. + R(X.. = x"..)],[%X".. + (l/R)(§.. - y"..) 11}

cov(F", X)) + cov[Fe., (1/R)F.. ] + cov[§"e., (~1/R)}"]

+ cov(R§.f,§”..) + cov[Ri..,(i/R)?..]b+ cov[Ri..;(—l/R)§ﬁ..]
+ CoV(-RR"..,X"..) + cov[=RR"..,(1/R)y..]

+ cov[-Rx"..,{(=1/R)y"..]

B 9;2

" R(s+p)p
cov{[x".. + (L/R)(Yy.. = y"..)], y'..}

{(s + p)[-p¥,8 - qa?] - s}

[}

Y !
cov(x Y o e)

(1/R)cov(y.e.,y'..)

8,,/R(s + p)

H

cov{[y".. + R(x.. - x"..)], x'..}

ot 2! »
cov(y BPEL ee)

Reov(Xes,X'es)

= R6,,

and
N

Var(x"..) + (1/R)*Var(y.. = y"..) + (2/R)cov[x"..,(¥.. = ¥"..)]

1]

Var(x" )
r

8,,0s(l = a2) + p(1 - a)]/a2%p(s + p).
Then, by substituting in the variaﬁces and covariances above into equation
(22.1), we obtain that
Var(gzr) = a?{8,,[1 - q(2¥,8 - 82)]/p} + (1 - a)?(0,,/s) + b2{6,,[s(l - A?)
+ p(l = a)]/8%p(s + p)} + (1 - b)2(e,,/q)
- 2ab{[6,,/R(s + p)p]ﬂks + p)l-pv,6 - qa?] - s]}
+ 2a(l - bYR6,, - 2b(1 - a) [8,,/R(s + p)] (22.2)
Differentiating equation‘(22.2) w.r.t. a and b, setting the results equal
to zero and then simultaneously sqlving for a and b gives

ar

I

(AT - Z¢)/(AT - ¢2)

b¥*

(AZ - ¢A)/ (AT - ¢2)
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where
A= (8;,/s8) - ROy,
T = [6,,/8%pq(s + p)]{gls(1l = 8%) + p(1 - A)] + Azp(s.+ p)}
Z = (85,/q) + [8,2/R(s + p)] | |
A= (8,,/sp){p + s[1 = q(2v,8 - 8%)]}
® = 8,,/Rp[pYoA - qb* + 1] - R8,,
“and a* and b* are the ‘optimal' values of a and b, respectively, that

minimize Var(gzr).

The minimum-variance estimator of 2. is obtained by substituting a¥

and b* into equation (22), and the variance of the estimator so obtained

is given by substituting a¥ and b* into equation (22.1).
‘Like §2r’ it is expected that 82, is biased. The amount of this

bias will now be determined as follows.~
B(g.) = Elgz, - (uy - M) ]

= E(§zr) - E(§2r) - Hy toHy

X, is the second principal piece in equation (22).

Now, using the arguments given in Murphy (1967:364)

E(izr) = b[UX(S - q)v+ <5922/PRPY) - (Swz/ezxezz/PRPX)] + UX
E(§zr)'= aq[(RezlfpuX) - (RW2V921922/pUY] - UY '

'Thén by substitution
B(gzr) = {aq[(Rez1/P“X) - (sz/ezlezz)/PUY] + UY} - {b{UX(S - q)

+ (Sezz/PRPY) - (Sw2V621622/pRuX)1 + HX} - Hy * My
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= aql (R821/puy) ~ (RY.V8,,8,,/pu,)] - bluy(s - q)
+ (sezz/pRpY) - (sw2/921922/pRuX)],

This bias becomes negligible for large values of n, m.

Comparison of the BLUE and ratio estimatof. Again, it would be
useful to compafe the efficiency of the BLUE and the RE in estimating
change. Because of the complexity of the variance fﬁnctions of change,
only a riumerical comparison will be done. Following the same procedufe
adopted in comparing the efficiency with respect to estimating the current
mean,we proceed as follows. The gain in precision ofbgzm over gz is
given by

Var(gzr) - Var(gzg)

Q, =
Var(gzz)

Using equations (10.1) and (22.2), the values of Ql for some values
of @, &, Py, P,, ¢,, and ¢2 were tabulated. The results are given in
Table II.

It seems obvious from Table II that the ratio estimator of change

is overall very inefficient as compared to the BLUE.
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CHAPTER 4

OPTIMUM ALLOCATION AND'REPLACEMENT

In most applications of sampling, cost is an important factor since
the funds available for sampling are usually limited. It is therefore
necessary to include methods of optimal sample allocation in the overall
design of a sampling scheme. In this chapter we discuss the use of
dyna@igsprogramming (DP) in the determination of the optimum replacement
polic?ifor multistage sampling on successive occasions for several vari-
ables Qé interest.

For sampling on successive occasions, the sampling design is
expected to be statistically efficient over the whole series of succes-
sive occasions considered in its entirety. In particular, the following
questions must be answered. Should all the sampling units be remeasured
at the successive occasions, and if not, what proportion of units should
be remeasured? Is the replacement policy adopted optimal with respect
to each of the several variables of interest estimated at the current
occasion, and have the side conditions imposed oﬁ,the estimation proce-
dure been met? These and other questions constitute én optimal SPR
design problem. For example, the objeétive of a two-occasion timber
inventory design may be to determine tﬂe proportion of sampling units to
remeasure and new ones to take at the current occasion such that the cost
of sampling is minimised and subject to the side conditions (constraints)

that the specified precision levels are met on several variables of
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interest (such as timber volume and periodic growth).

Typically, the objective and constraint functions are non-linear,
and the problem of determining the optimal SPR design is a non-linear
decision problem. Several authors, for example, Rana (1976), Singh and
Kathuria (1969), Kulldorff (1963), Tikkiwal (1953), Pattefson (1950),
Yates (1949), and Jessen (1942), have considered the problem of deter-
mining the optimum replacement policy in SPR. They were interested
mainly in the situation where thére was only one variable of interest at
a time. Ware and Cunia (1962) and Hazard and Promnitz (1974) determined
optimayESPR designs in situations where there were several variables of
intégégé at a time. Rana (1976) and Singh and Kathuria (1969) assumed
multiggége sampling and the others simple random sampling on the succes-
sive occasions.

Ware and Cunia used a graphical technique to solve the non-linear
decision problem. Graphical methods are suitable for the case of two-
occasion SPR, where there are no more than two decision variables and the
number of side conditions is relatively small.

Hazard and Promnitz solved their optimal SPR problem with an algo-
rithm that required that the cost and constraint equations be differen-
tiable convex functions. (The assumption of convexity will usually be
met in optimal SPR problems in forestry.) Although a number of iterative
solution techniques have been developed for such non-linear programming
problems, there is no assurance that a 'solution will always be reached in
a reasonable number of iterations. Furthermore, a subsequent sensitiv-
ity analysis on the derived decisioné'is recommended in order to firmly
establish the optimality of the decision variables.

Optimal sample design for SPR involves a sequence of interrelated
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decisions over time. APrevious workers in this field apparently did not
take advantage of this underlying process in determining their oétimal
feplacement policies. We shall exploit the sequential nature of the
problem to cast the optimal sample design problem as a multistage model
which can be optimized through dynamic programming.

First, dynamic programming is discussed in general. Next, the
dynamic nature of the optimal SPR design problem is examined. Then the
solution procedure of the optimal two-stage SPR problem is presented.

Dynamic programming (DP) is an optimization method for multistage
decisiqﬁ processes. DP involves separating the multivariable optimization
probiéaginto a series of one-variable optimization problems. The
resulééﬁt one-variable problems may then be solved readily using standard
methods of differential calculus or simple search procedures. Tﬁe theory
of DP is covered extensively elsewhere, for ex;mple;

Dano (1975), . Wilde and Beightler (1967), and Nemhauser (1966).
Briefly, the characteristics of a DP problem are reviewed and these are
as follows:
(i) the problem can be divided into stages, with a decision at each
stage;
(ii) each stage has a number of states associated with it, and the
effect of the decision at each stage is totransform the current state
into a state associated with the next stage;
(iii) the principle of optimality as stated by Bellman (1957) holds at
each stage:
An optimal policy has the properﬁylthat whatever the initial
state and initial decisions are, the remaining decisions must
constitute an optimal policy with regard to the stage

resulting from the first decision;

(iv) a recursive relationship can be developed which identifies the
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optimal decisions for each state with r stages remaining, given the
optimal decisions for each state with (r - 1) stages remaining. This

relationship is of the general form

fr(Xr) = Zptigize {cr(Xr,dr) + fr—l(xr—l)}
r T r
whére,
Dr is the const:aint set for the decision variable dr’
fr(Xr) is the optimal value when starting in state X, with
r stages remaining,
Xr-l = t(xr’dr) is the transformation of state when decision dr
is used when in state Xr’
Cr(xr’dr) is a value function (profit, cost, etc.) for using dr
when in state Xr r=1, 2, ... 3
(v) the problem is golved péing the recursive relationship. At each

stage, an optimal solution frbm all previous stages, under any conditions,
is found and carried into the next stage, until the last stage when the
optimal decisions are found for the whole problem.

Unlike linear or other non-linear programming problems, there is no
standard mathematical formulation of dynamic progfamming problems;
épecific formulations must be developed to fit individual problems. Now

we examine the dynamic nature of the SPR optimal design problem.

\.
SPR as a Multistage Model

To facilitate this general discussion, we introduce some new
notation to includeésampling on more than two successive occasions as
follows. \

Let pr.. =n,. /n
ij...w ij...w

be the proportion of sample units at occasion r measured on occasions
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i,jsee., and w
where
r is a measuremeﬁt occasion r = 1,2,...,t
i,5000,W are indicator variables and their positions
correspond to occasion of measurement such that i represents cur-
rent occasion r, j represents (r - 1)th occasion, and so on and
w represents lst occasion
nij...w is the total number of sample units obéerved on occasions
iyjysesy, and w, and
+ n is the total sample éize on occasion l.
The indicator variables take on the value 1 if the sample unit was measured
on corresponding occasion and O (zero) otherwise. For examble, Pio1o
is the proportion of sample units measured on both current and second occa-
sions in four-occasion sampling. Similarly, p,, is the proportion of
units measured on current occasion only in two-occasion sampiing.
We note that the number of groups of sample units measured at u

occasions at occasion 1 is ’

m = ( i Q = r!/[(r = u)tu!]

ru

For example, in two-occasion sampling r = 2

21/[(2 = 1)1t ]

t
—

My,

21/[(2 = 2)121]

|
o

my2
That is, there ié only one group of sample units measured only once and only
one group measured on both occasions (see Figure i). Note also that r
in pr is not an exponent, and that at occasion r, there are r - 1 occasions
remaining.
In SPR, the total sample at each_successivevmeasurement occasion r

will consist of several groups of remeasured and new sampling units. For
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Figure 1. Groups of sampling units in SPR

on_ two occasions.

sampling occasion

;Szp" = proportion of units measured
on both occasions

S= P, = pProportion of units measured
on the second occasion only

qQ=Pp, = proportion of units ‘measured
on the first occasion . only
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example, in two-occasion sampling r = 2, there would be the following
groups of sampling units as shown in Figure 1. The total sample size
at measurement time r is

n_ = n( ; ; ; ; r ) r=1, 2 t
r o %0 1o . s ) i3, : s 2y weey
For the example of two-occasion sampling, the sample size on the current
occasion 2 would be
np = n(Pio + Pil)
tor as in earlier notation n, = n(s + p)].
DP is used in the solution of the optimal SPR design problem because
of the following.

(1) It is recognised that SPR optimal design problem is characterised

by "time" stages, a stage being defined as a measurement time r

(r=1, 2, ..., t). At each stage a decision n_ is required. If we
assume that n is known, the decision n_ then consists of 2;:1 components
(or "sub-decisions'") of new and remeasured sample units. We can create
"sub-problem" stages 2r—1 within each time stage such that the sub-
problem stages are nested within the time stages. An example of this
'nesting is given for two-occasion sampling in Figure 2.

(ii) At each stage r, there are a number of states for each state
variable Xi 1i=1, 2, ..., 2z). A state is defined as the amount of
variance of the variable of interest Yi (i=1, 2, ..., z) corresponding
to state variable Xi remaining to be accounted for by the-sample n_
taken.

(iii) The principle of optimality holds in the SPR optimal design model.
That is, at a particular measurement occasion r, an optimal sample size

for the remaining measurement occasions is independent of the sample
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sizes taken on previous measurement occasions.
(iv) AArecursive relationship used to solve the SPR problem can be
developed which identifies the optimum replacement policy (prijk...w's)
for the specified variance levels of variables §f interest with r more
occasions remaining, given the optimal policy wigh r-1 octaéions remaining.

In order to develop the recursive relétionship we require (a) a cost

(objective) function relating the decision variables to the cost of sampling,

and (b) variance (constraint) functions relating specified variance (preci-

sion) levels of the variables of interest to the decision variables.
The optimal design problem can then be expressed as a multi-stage process
by (1) separating the costand variance functions into stage components,

and (2) decomposing the decision problem, that is, replacing the

t t t
z 2r~1—decision problem with I 2" one-decision problems. The I 2

r=1 r=1 r=1

one—decision problems are then solved recursively.

We shall now return to the specific problem of determining the optimal
replacement policy for the sampling plans described in chapter 3. We shall
restrict ourselves to two-stage SPR with equal-sized sampling units at each
stage on two successive occasions. Extension to the other sampling designs
is straightforward. It will be further assumed that n and m are already
knéwn, that is, we are someWhere in between the first and second occasions.
We now want to plan the inventory on the second occasion, that is, to choose
the sample sizes n'" psu's (and mn'" ssu's) and n' psu's (apd mn' ssu's)
in the most expedient way as regards the estimation of the current population
mean and change between the two successive occasions. In choosing n"

and n', we shall pay attention to the aim of keeping the cost of the
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inventory as low as possible. (n" is number of remeasured psu's and n' is
the number of new ones and ésSume n'" = np and ﬁ": ns.)

To formulate the problem we shall assume that the total cost C per—

taining to the second occasion is given by the simple <cost function

C = kyp + k,s ' _ (23)
where
k, =c¢'jn + c',mn
k, = c¢'"yn + ¢c'",mn
c'i = cost of a new psu (i = 1) and a ssu (i = 2), aséumed to be known,
and c”i = cost of a remeasured psu (i = 1) and a ssu (i = 2) assumed to

be known.

Further, we shall assume the variance functions developed earlier (equa-
tions 6 and 10.1) that-relate the variance of current mean and change,
respeciively, to p and s.

The two-stage SPR optimal design decision problem is then stated
as follows. Find p and s such that the cost of samplihg C is minimized
_and such that the specified variance levels V, and V, of current mean and
growth, respectively, are met.

| Expressed in another way,
find p, g such that

C = minimum {k,s + k,p}

P,ss

and var(?zl) <V,
var(gzz) <V,

'p,s > 0.

(We are going back to our old notation where p = p?,, and s = p2,,, in

this case.)
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If we set var(§2z) <V, and var(gzz) < V,, then equation (6)
yields .
0,24[1 ~ qv21/[s + p - qsw3] < v, (24)
and equation (10.1).yields

[(5 + P - SW§)921 + (1 - qQ¥3)e,, -~ prz/ezxezzj/

(s + p - gsy3) <V, (235)
where
q = (1 - p).
First, we separate the cost and variance functions into stage com-
ponents. Separation of the cost function C into stage cost components

Ct is already accomplished by virtue of its linear and additive nature.

Separation of the variance functions is somewhat more difficult. How-

ever, after some lengthy algebraic manipulation, inequation (24) becomes
[p/(1 = v2 + p2)] + s + [V, = (8,,/Vy)] <V, (26)

-

and (25) becomes
{lp(o,, - v, - 20,785,08,,) + (1 = v} + pv3)e,,1/[V,(1 - v} + pud) -
8,,(1L = v)]Y - s +V, <V, (27)
The separation of the cost and variance functions is complete; and we
.can now use (26) and (27) to create stage transition functions of the
form Xr—l = t(xr’dr) which compute the amount of variance left to be
allocated subsequent to an inventory on occasion 2, as a function of the
variance left to be allocated prior to occasion 2, and n(p + s) psu's
and mn(p + s) ssu's undertaken at occasion 2. These are shown in a
schematic diagram (Figure 2). (Note that n(p + s) = n, and
mn(p + s) = mn,.)
The expressions on the left hand side of inequations- (26) and (27)

may now be regarded as the 'states'" of the model with X, = (X,,,X,,)
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Figure 2. The stage diégram for the optimal: |

SPR design pro'blenj_.’_’

nz/n
_p <
X,. £ Vo | R, Ky = X0 =0
> 2 — > 1 —
_Xu -<- Vz Xu . ng = Xu -
kzpl + kS
C= s

Transition functions:

Ky
Xaz = X2z - ([ {{p(Gas- Vo - 24, {8,8) » (1 - Y2 ¥ p)OL] |
(=« p¥l) - 0, (1 - ¥} - %]
Xy = X2 - s
X, | .
Ry = Xen - (/01 =5 e p¥2)] ¢ Ve - @IV

X,,1 = X;g + S
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and X, = (X,,,X,,) states pertaining to (26) and (27), respectively.
Computation of tﬁe states of the model at the inventory on occasion
2 is a two-stage process, as indicated in Figure 2. The value of the
first state Xl‘at occasion 2 subsequent to remeasurement of n" psu's and
mn" ssu's is
X1z = X1z = {Ip/(L = p2 + py2)] + vy = (82/V3)) (28)
ané the value of the first state X; subsequent to meaéurement of n' psu's
and mn' ssu's is
Xy, = X9, - S (29)
(The‘pilde [~] denotes the intermediate state or output at stage 1 or 2;
a stéééiQithout [~] denotes an input to stage 1 or 2.) Similarly, the
value;6£_the second state X, subsequent to the remeasurement of n'" psu's
and mn":ésu's is
izz = Xy, - [[{IpCeg1 - V, - 29,V821022) + (1 ‘“wz f wip)ezz]/
[Vo(1 =y +pyy) = 02001 = y) 1} + V] (30)
and after n' psu's and mn' ssu's is
Xy, = Xpp + 8 (31)
(Note Xij = state of model at jth stage for ith state variable, and
recall that n' = ns and n" = np.) The initial and final states of the

state variables X; and X, are, respectively:

Xy t X3, <V, and X34, =0

|
o

X, ¢ X5, <V, and X, =

Note that the incidence identity X, X.., 1,3 = 1,2 exists in the

(3+1) ij

model ‘Wilde & Beightler [1967]).
Separation of the cost and variance functions has produced a multi-
stage model (Figure 2) of sampling with partial replacement on two suc-

cesslve occasions. The SPR optimal design problem which had two deci-
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sions, p and s, can now be decomposed into two problems corresponding to the
two stages of the model, each with a single decision variable p or s. The
two single-decision problems can then be solved recursively by calculus or
simple search procedures. The decomposition is done next as follows.

At stage 1, the decision problem is to find the optimum proportion
of new primary sampling units s* such thaf

f,(X,,,X,,) = min {k;s + £,(X,4,X,,)} ' (32) .
s>0

for all possible values of [X,,,X,,], with £,(%,,,X,,) predicted from
transition equatigns (29) and (31); 1in this case £(X;(,X2,) = O. At
stagéjz;éthe decision problem is to find the optimum proportion of primary
sampiéfﬁnits to be remeasured é* on occasion 2 such that

£,(X,,,%X,,) = min {k,p + £,(X,;,,X,;,)} (33)
0<p<l

for all possible values of [X,,,X,,], with (X,],X,,) predicted from the
transition equations (28) and (30).

Solution Procedure

The equations (32) and (33) can then be solved recursively. The
solution procedure is as follows. Consider the initial and final stages
of the decomposed decision problem. At stage 1, X,, = O. Substituting
the final condition into the stage 1 state transition function (29) one

obtains X,, = X,, = 0 = X,, - s, that is, s* = X,,, since X,, = X,,, that

is, the optimal decision is equal to the input state.

~

Similarly, X,, = O, and substituting into the second transition
function (31) provides X,, 2 X0 =0 =X, + 5
that is, s* = -X,, since X,, = X,,.

Hence, at stage 1,

w = max(X,,, -X;,)
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and the decision problem is simplified to finding s* = w such that

f,(w) = min (k,s) (31.1)
sS=w

for all feasible values of w.
Proceeding with the recursive solution, the stage 2 problem is then
to find p* such that

£,(X,,) = min {k,p + £,(X,)} - - (32)
p20

’but we know that from equation (28)

£,(X,) = &k, (X,, - {[p/(1 = v} + pv3)] + vV, - (8,/V)}D) (33)
Now if;%e set the initial condition X,, = V, in (33) and substitute (33)
intolgéZ) we obtain. that

f;(Xlz) = min {k,p + k,{[{-6,/V,) + [p/(1 - w% + pov) Iy . (34)
. p>0 2

p,* 1is equal to that value of p that minimises (34).
Similarly, if we set X,, = V, in (30) and substitute into (32) we
obtain that

p(6,, — V, = 20,/8,,6,,) + (1 - ¥i + pvile,,
£,(X,,) = min {k,p + k, Y} (35)
pzo VZ(]' - ‘D% + P‘Ui) - 921(1 - ‘bg)

Again p,* is equal to that value of p that minimises (35).
Hence at the second stage 2
z = max(p,*,p,*)
and the decision problem is simplified to finding p* = z such that

£,(z) = min {(k, + k,)p}
p=z

for all feasible values of z.
Once we have found p*, we now trace back to stage 1 to obtain s¥.
Using transition functions (28) and (30), we obtain X,, and X,, by sub-

stituting p = p*. Then s* will be given by
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s* = max(X;,,-X;,).
This completes the solution procedure.

All along it has been assumed that n, m and all variances and co-
variances are known. However, if these values are not kqown, that is,
we are planning a future inventory right from occasion 1, then n and m
can be obtained by an iterative procedure: repeating the procedure described
above for all feasible values of (n, m) and identifying that pair which
minimizes the total cost. The variancés and the covariances will have
to be estimated.

f?Iﬁe use of DP in optimal SPR design problems will be better understood

in chabter 5 where a sample problem is solved.



CHAPTERAS
SAMPLE PROBLEM

In this chapter we investigate the application of the general thgory
developed in the preceding chapters to a specific forest inventory'probiem."
Atténtion will be restricted to the use of two-stage SPR on two éuccessive
occasions. The problem is to determine the current mean volume per hé
and the periodic change in volume per ha (say, over a l5-year périod) in
a forest area. Inventory data collected in recent years from British
Columbia's Cranbrook Public Sustained Yield Unit (PSYU) will be used to
demonstrate the solution of the sample problem. The source and nature-
of the data and the determination of the optimum replacement policy through
dynamic progr;mming‘are described, and then sample calculations are per-
formed based on the existing data base.

Cranbrook is one of the Si PSYU‘s1 in British Columbia. It contains
approximately 506,006 ha of crown2 forest land and 233,032 ha of non-forest
l;nd (Forest Survey and Inventory Division, 1965). - The principai forest

tree species include: spruce (Picea engelmannii Parry), western hemlock

(Tsuga heterophylla [Raf.] Sarg.), and subalpine fir (Abies lasiocarpa

[Hook.] Nutt) in intimate mixture, and stands of lodgepole pine (Pinus
contorta Dougl.). The unit is divided into 40 compartments of varying
areas. The number of samples established varied from compartmeﬁt to com-

partment.

1Timber Rights and Forest Policy in British Columbia, Vol. I, 1976.
Royal Commission on Forest Resources, Victoria, B.C.

2Crown forest land is land belonging to the state or government.
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Several inventories have been conducted by the British Columbia
Forest Service (BCFS) in this unit since 1952. During the period 1953
to 1964 inclusive, 462 samples (fixed area, half-acre and two-fifth acre)
were established in all timber types. During the 1979 inventory, 176 point
samples were established in all the timber types. (Permanent sample plots
were estabiished in 1968 and the first remeasurement was in 1978.) The
basic inventory technique used over all these years was stratified random
sappling, with mature timber types being sampled more.intensively than the
immature or other types. Data summaries based on the 1964 and on the 1979
surveys are available by sample number and the attributes measured included
volume per ha (to various levels of utilization) and the number of stems
per ha.

For our purposes, the compartments will constitute the psu's and the
samples within the compartments, the ssu's. Iﬁ other words, we have a
two-stage SPR design with unequal-sized psu's, but equal—sized‘ssu's.

The 1964 sample data will be assumed to be the first occasion meaéprements
and the 1979 sample data as the second occasion measurements. The objec-
tivevwill, therefore, be to determine the current (1979) mean volume per
ha and the change in mean volume per ha between 1964 and 1979 (that is,
over. a l5-year period).

Twenty-seven out of the 40 psu's were sampled in 1964 and the number
of samples per compartment ranged from 1 to 25 (mean = 11).A In 1979, 35
compartments were sampled with an average of 9 ssu's per psu. (Of the
35 psu's, 16 had not been sampled in 1964.) None of the 1964 samples
were actually remeasured in 1979. For the purposes of determining the
approximate number of psu's to remeasure, we shall take the initial sample

size to be as follows: psu's n = 27 and ssu's per psum = 11l. It will
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be further assumed that m remains constant over the two successive,pécasions;-
Befbre performing the optimization.as described in‘chapéer 4, the‘ foliowing
information is requifed? |
(a) As always for planhing an invgntqry,'a knowledge of the gstimaﬁeé.
of the populatidn:parameters for the‘forest area to ﬁe sampled is.reéuiréa. _ 

'we shall assume the following esfimates of the population parameters in_:
the Craﬁbrook PSYU: |

:(i) évefage volume per ha uY = 475.41 m?

(ii) periodic change (over 15 years) of volqhe per ha + 321.81 ha/ﬁa
(iii) wvariance of volume per ha between psu's oza' = 189876.06, (i=1,25‘

i .
(iv) wvariance of volume per ha between ssu's within the psu's_cze. =
1189.56, (i=1,2) | ’

(v) correlation between the effects due to the psu's in 1964 and 1979._

Py = 0.95

o

(vi) correlation between the effects due to the ssu's within the psu's
in 1964 and 1979 p, = 0.85.
Using the above information we determine that

P

0,, = [(189876.06/27) + (1189.56)/(27 x 11)] = 7420.65

§nd Y,

[(11 x 0.95 x 189876.062) + (0.85 x 1189.562)]/

[27 x 11 x v8,,6,,] = 0.88

(b) 1In addition, we require the allowable erfors for‘current mean volume-
and change. The‘BCFS stat;es3 that the standard allowablé samplipgverror

for estimates of gross volume is * 10% at the 95% confidence level per

3Guidelines for Forest and Range Inventory in British Columbia, 1980.
Inventory Branch, Ministry of Forests, B.C. '
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unit. = In order to be within the range of the data available, however,
we shall assume an allowable error of + 30% at the 95% confidence'ievel
per mean volume per ha or periodic change per ha. This implies that the

allowable variance levels for estimating current mean volume per ha is

v§ = {[0.30 x 475.41]/2}% = 5085.116

and for periodic change (over 15 years) is

]

yg = {[0.30 x 321.81]/2}* = 2330.137.
(c) 1t will also bé assumed that the total cost pertaining to the second

occasion (inventory) is given by the simple cost function (equation[23])

C =k,p + ks

where ki i = 1,2 are as defined earlier in equation (23). We introduce
some new notation. Let
A= k,/k‘2
and
| C' = C/k,. | ' ' o

Then, the cost reiation above can be written as
C' = Ap + s
the expression to be minimized. This.form of the cost relation is more
pgeful, especially when the absolute cost values are not,available;v
Now.we state the invenﬁory planning problem. The problem is that

of determining the optimum number of psu's to remeasure and new ones to
take on the second occasion, and is formally defined:as follows:

Find p, s > O such that C' is minimized and such that the

allowable errors of current mean volume per ha and periodic

change in volume per ha are met.
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Following the optimization procedure developed in chapter 4, the stage
diagram for this sample problem is similar to that showp in Figure 2.
AThe state transition functions are:
for current mean volume per ha X,
X, = Xy, = [P/(1 - 93 + pv})]
X,0 = X, — 8

and for periodic change in volume per ha X,

p(6,, - Vg - 29,78,,0,,) + (1 - Vi o+ p¥v3)e,.,

Vo (1 =93 + pvi) - 05, (1 - ¥:)

X,0 = X,, + 5.
We now proceed with the dynamic programming solution as follows.
At stage 1, we wish to find s*(X,,,X,,) such that

C' (X,,,X;,) =min {s + C' (X,4,Xz,)}
>0

for all feasible values of (X,,,X,,), where C‘i i = 0, 1 are- the costs
associated with the ith stages. - Using the transition functions we see

that

implying ﬁhat
s* = (X,,, -X;,)
Since C',(X,,,X,,) = 0, the solution for the stage 1 problem is given
by the function |
w = max[X,,, - X5,)
and the associated cost is

C',(w) = min {s}
s=w

We notice that s* has beendetermined as a function of p. Hence we
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procéed to stage 2, to determine the value of p¥* ana then trace back to
stage 1 to find s*.

At stage 2, we wish to find p*(X,,,X,,) such that

C',(X,,,X,,) = min {xp + C',(w)}
p>0

for all feasible values of (X,,,X,,). We set
X,, = 0,,/V= = 1.459
y
X,, =0

and compute C',(w) and C',(X,,,X,,) for all feasible values of 0 < p < 1.
(In this example, A» = 1, k, = k, = $500.) The enumeration results are
summarized in Table III. It can be seen from Table III that with
X,, = 1.459 and X,, = 0, p* = 0.67, and tracing back to stage 1 using
p* = 0.67, we see that s¥* = 0.55. This completes the solution.

The solutions obtained imply that given initially n = 27 psu's,
on the second occasion we muét remeasure (0.67)(27) = 18 psu's and take
(0.55)(27) £ 15 new psu's, giving a total of 33 psu's, with an average
of 11 ssu's per psu. The total cost of the inventory after the second
occasion is approximately $181,663. |

A random sample of 18 psu's was taken from the initial 27 psu's,
together with their ssu's. In addition, 15 psu's measured in 1979 but
not in 1964 were taken at random together with their ssu's. The volumes
per ha at each of the sample ssu's in each of the selected psu's are sum-
marized in Appendix I. It should be noticed that the remeasurement data
on the 18 psu's were simulated using the existing volume-age curves for
the area (see Appendix II). First occasion measurements.are labelled
X and second occasion Y.

From the sample data given in Appendix I we obtain the following

sample statistics.



Table III. Enumeration Results

P X, X, c', c', .

.59 .58 19.613 2912567.00  3000181.00
.60 .58 7.176 1065673.00 1154773.00
.61 .57 4.038 599707.0Q 690291.81
.62 .57 2.608 387341.06 479410.87
.63 .56 1.790 265831.18 359386.06
.64 .56 1.260 187150.50 282190.31
.65 .56 0.889 132045.31 228570.18
.66 .55 0.615 91296.18 189306.06
.67*%  .55%  0.404 82167.50 181662.37%*
.68 .55 0.236 81601.43 182581.25
.69 . 54 .0.100 81047.12 183512.00
Note: (1) Those values marked with an asterisk

(*) are the optimum solutions.

(2) C', is the cost of measuring the new

(ns) psu's and their associated ssu's

C', is the total cost of measuring the

n(p + s) psu's and their ssu's.

89
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TXM.. = 414,64 X'.. = 406.90
Cy".. = 420.89 y'.. = 124.96
np _
52 = (x, - x..)%]/(np - 1) = 17318.0336
oy . i .
i=1
np
62 =10 1 (¥, - 3..)2]/(np = 1) = 17814.7747
o, .1 i :
1=l
np m. » np
62 =[ £ (x..,-x)%]/[ £ m,) - np] = 28859.2144
€1 i=1 j=1 3 ' i=1 * i
npomy A n(p+s)
52 =[: = (y..-y.02)/[Cz m) -np] =31673.3209
€2 i=1 j=1 iy T i=l P
np -~ _ _
b, = [iil (xi - x..)(yi - y..) Y/ [(ap - l)caloazj = 0.99
m,
np i . np
6, =[ ¢ £ (x.,-x)(y,. -y D)J/[Cz m, -np)d & = 0.96
5, [i=l LA RIS IR 1T EmT P °51052]

And using the above sample statistics we obtain that

g, = 1079.65034 §', = 1159.73642
", = 1116.92573 §', = 1091.27952
8' = 1084.22304

ﬁe.now have all the necessary statistics to proceed with the computa-
tion of the estimates of (i) current mean gross volume per ha (17.5v
cm +) My and (ii) pefiodic change in mean volume over the 15 year in-
terval, A.
(i)  Current mean volume

Recall that the minimum-variance linear unbiased estimator of By
for units of unequal size is

Yo, = a¥(X'.. = X"..) 4 eRyraL o+ (1 - ¥y’
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where a* and ¢* are as defined earlier.

USihg the sample estimates of o' Y e, i "‘—1,2 and B', we obtain that
1 1- :

&% = 0.63183

ax 0.19947

and hence

YZQl

]

[0.19947 x (406.90 - 414.64)] + (0.63183 x 420.89) + (0.36817 x 124.96)

310.39 m®/ha.

The variance of this estimate is given by

A

a%2(8',/q + 8",/p) + c*28",/p + (1 = &%)%8',/s - 2a%c*B'/p

Var(?am)'

730.499.

By taking /VE;Y§22) = 27.0277 and using the t—valué at the 95% confidence
level of approximately 2, we obtain that
current volume per ha = 310.39 % 54.055 m’.
'(ii) Periodic changé in mean volume per ha
Again, recall that the minimum—variance linear unbiased estimator
of A for units of unequal size is
g2y = €¥7".. + (1 - e¥)y'e. + £5KN. = (1 + £0)X'..

where e* and f* are as defined earlier.

| Using the sample estimates of e'i and e”i i=1,2 and B', we see that

fx = -0.99664

-~

e* = 0.98514
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and hence

(0.98514 x 420.89) + (0.01486 x 124.96) - (0.99664 x 414.64)

- (0.00336 x 406.90)

i

1.878 m?*/ha

The variance of this estimate is given by:

Var(gzl) gx2p",/p + (1—é*)2§'2/s + f*zé”llp + (1+E*)2§',/q + Zé*f*é'/p

I

41.2828.
.By taking /V;?ngzs = 6.4251 and using the t-value at the 95% confidence
level of approximately 2, we obtain that | |

change in volume in 15 years = 1.878 ¢ 12.8502 m?®/ ha.
The results of the calculations indicate that the total whole-stem volume
(living trees only, dbh 17.5 cm +) in the forest land area (506,006 ha)
éf the Cranbrook PSYU in 1979 was

(506,006) x (310.39 £ 54.055) = 157,059,202.3 * 27,352,402.29 m?
and the change in the volume between 1964 and 1979 was

506,006 x (1.878 * 12.8502) = 950,279.3 * 6,502,348.39 md.
. The change in volume is a resulf of survivor growth (increment on trees
present at both the 1964 and 1979 inventories), mortality (volume of trees
r;ndered useless through natural causes such as old age, insects, windfali,
fire, etc.), cut (logging), and ingrowth (volume of trees growing iﬁto
measurable size, in this case 17.5 cm). For a complete definition of
the growth components see Beers (}962).

According to the BCFS records, the total volume of timber logged
and that lost through mortality between 1964 and 1979 in the forest area
of the Cranbrook was estimated at 24,023,584 m?®. An estimate of the
ingrowth and survivor growth volume obtained from thé permanent sample

plots in the Cranbrook was 4.39 m3/ha/year, giving a total of
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(4.39 x 506,006 x 15) = 33,320,495 m? betwgen 1964 and 1979. Thus the
net change in volume between 1964 and 1979 is 33,320,495 + (-24,023,584)
= 9,296,911 m®. This result is slightly higher than the upper 95% con-
fidence limit of the estimate obtained through the sample problem calcu-
lation. No reasonable independent check was available for the sample
problem current volume estimates, since the results of the BCFS 1979 inven-
tory of the Cranbrook have not been released yet.

The confidence limits on estimates of current timber mean volume

and change were constructed based on the central limit theorem that the
probability distribution of the SPR estimators was sufficieﬁtly close to
the normal distribution and for practical purposes the t-value of 2 was
good enough.4 The high confidence limits on the estimates of the current
mean and on the change may be because the sampling fraction of the psu's
was relatively high and hence inflated the variance estimates. A further
discussion of the various aspects of the sample problem and of the theory

derived in chapters 3 and 4 is given in the next chapter.

T. Cunia, Lecture notes, Workshop on sampling on successive occa-
sions. Colorado State University, July 1979.



CHAPTER 6
DISCUSSION AND CONCLUSION

The theéry of successive forest inventories with partial replacement
of units presented by Ware and Cunia (1962) has been extended to use multi-
stage sampling designs (with partial replacement of ghe primary sample
units). Multistage designs have many desirable features particularly
for an inventory of large forest areas. These designs (i).provide ulti-
mate sample units that can be cost efficiently measured, especially when
construction of the sampling frame is difficult or impossible, and (ii)
cluster the ultimate sample units into larger sample units to reduce the
travel cost between measurement units. Further, multistage designs are
useful in incorporating data from high- and low-altitude andnéfound level
sources simultaneously for efficiency. This is particularly more so if
. variable probabilities of seieétion are used at the various stages of the
multistage designT Simple random sampling was assumed at each stage in
this thesis for simplicity of presentation. A logical extension of the
theory deQeloped here is to use variable probability sampling at the vari-
ous stages. This would, for example, involve extending tﬁe work of
Léngley (1975, 1976) for one-occasion sampling to successive occasions.

‘Multistage sampling is often applied to large regional and national
inventories in order to reduce cost. The major potential disadvantage,
however, is that a small sample of psu's may leave many areas of the target

94
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population unsampled. This makes the pro?ision of information on sub-
divisions (for example, compartments) of the population difficult. - If
the subdivisions are the same as the psu's, making inferences for the
areas not sampled is usually impossible. =~ In such cases other designs
may be employed.

As was pointed out in chapter 1, in the case of multistage designs,
the technique of SPR gives rise to a number of sampling alternatives,
yith different combinations of replacement of primary, secondary, tertiary,
etc., units over time. For practical reasons, it was decided to consider
only the case in wﬁich only the primary units were partially replaced
while maintaining the secondary, tertiary, etc. units corresponding to
the primaries. Partial replacement at all stages of a multistage design
may prove to be too complex in theory and prohibitively too expensive to
apply (Professor T. Cunia--personal communication). In addition, Singh
and kathuria (1969), assuming equal sample size aﬁd equal variance on
both occasions in a two-stage design, concluded that unless the within-psu
variance and correlation were larger in relation to between-psu variance
and correlation, the estimate of the current mean was, in general, more
. efficient in the case of partial replacement of psu's only than in the
case of partial replacement of ssu's only. (This conclusion seems logical
since there is a reduction in both between-psu and within-psu variance
due to partial replacement of the psu's, whereas only the.within—psu vari-
ance component is affected due to partial replacement of the ssu's.)
Further, Rana and Chakrabarty (1976) concluded from a numerical study of.the
relative efficiencies of various sampling plans, given the assumptions

of Singh and Kathuria (1969), that if sampling was inexpensive and the
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precision of the estimates of the current mean and change waé of major
interest, partial replacement of only the psu's was more efficient than
other procedures they considered in most cases.. It would be useful to
study the relative efficiencies of the various sampling alternatives aris-
ing from the different combinations of partial replacement of the different
stage units, for estimating both current values and change, under the {
assumptions of unequal size and unequal variance on successive occasions.

The special case of one-stage SPR as presented, for example, by
Ware and Cunia (1962) can be obtained from the general result presented
here. In particular, the two-stage SPR design becomes one-stage SPR
when oza (i =1,2) are set to zero and hence ¥, becomes p. This is not

i .
surprising since simple random sampling was used within each stage of
the multistage design.

Although the objective of the study was to present minimum—Qariance
(best) linear unbiased estimators in a multistage SPR desigﬂ, other possible
estimators, biased or unbiased, were considered. Specifically, the use
of the ratio estimator was investigated. If it is realized that the
BLUE for current mean is a weighted average of a regression double sampl-
ing estimate and a mean based on current observations only, then it seems
logical to postulate an estimator, one which is a weighted average of a double
sampling ratio estimate and a mean of current observations or.y. The
BLUE was negligibly more efficient (precise) under certain conditions
than the estimator based on the ratio estimate for estimating either the
current values or change. Further, the ratio estimator was.biased;
the amount of the bias was expected to be negligible wheﬁ the sample size

increased. However, the weights of the estimator based on the ratio

estimate were derived by minimizing the variance function of the
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estimator of either current mean or change. It was implicitly assumed
that bias was zero. More appropriate values of the weights would have
been obtained if the mean square error (MSE) function of current mean
(or change) was minimized instead. For example, in estimating the cur-
rent mean, the function to be minimized would have been (stated here with-
out derivation) for a two-stage SPR design
MSE(Y, ) = Var(y, ) + [E(¥, ) - u,]?

However, in practice and to the order of approximation used, the values .
of the weights derived assuming bias to be zero (or negligible) are suf-
ficient.

Although the estimator of the current mean based on the ratio estimate
was slightly less efficient than the BLUE, it is suggested that where
computation of BYX and BXY is costly and when correlations.pj (j = 1,2,

...,h) are high and the variances © (i = 1,2) from occasion to occasion

hi

are roughly the same, the estimator based on the ratio estimate may be
used. Both Sen et al. (1975) and Woodruff (1959) share the same view.
Further, Arvanitis and Fowler (1979: 307) state:

Biased sampling estimators are usually surrounded by a vague,
controversial meaning which works against their acceptance

as more efficient than unbiased ones in certain cases. Most

of the time, the main effort of the samplers is to employ
minimum-variance unbiased estimators. However, biased esti-
mators have a place in sampling. What is often overlooked is
that theoretically unbiased estimators may lead to results with
a constant or built-in undetected bias which could exceed by far
the sampling error.

The method adopted for the determination of the optimum replacement
policy over time used dynamic programming. Dynamic programming has been
used in other forestry problems, for example, in the determination of

the optimum tree bucking policy (Pnevmaticos & Mann, 1972), and in the
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determination of optimum levels of growing stock (Amidon & Akin, 1968).
Using dynamic programming, the optimum replacement policy can be deter-
mined for simultaneously estimating more than two variables of interest.v
Thi; will not, in general, affect the separability of the objective (cost)
and constraint functions; the cost of computation will, however, increase.
There is no need for a subsequent senéitivity aﬁalysis on the derived
‘optimal policy; .this is automatically built intolﬁhe dynamic prégramﬁing.
formulation. The optimal policy and the associated cost are known for
all feasible values of the state variables, since the solutions are deter-
mined as functions of the state variables. For example, if the state
variables X,, and X,, take on values other than V, and V,, respectively
(see equations [34] and [35]), a solution corresponding to the new values
of the state variables would easily be obtained without necessarily having
to re-solve the entire problem.

In the sample problem (chapter 5) optimum replacemenffpolicy was
obtdined using complete enumeration. However, nonlinear search methods,
such as the Golden section search, could have been used instead.
~ Further, it would have been easier to solve the two-decision problem by
the classical calculus methods. However, when there are more than two
decision variables, these classical methods become difficult to use and
the simple search procedures (such as complete enumeration) may be the
only alternative. For problems with several decision vgriables, however,
enumeration is only possible after a dynamic programming decomposition,
Nemhauser (1966).

The major drawbacks of dynamic programming as pointed out by
Nemhauser (1966) are the separability and monotonicity conditions neces-

sary for the decomposition of an N-stage problem into N problems. 1f
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the number of occasions involved is not large, the variance functions should
in genefal satisfy these conditions.

The problem of determining the optimum sample unit size at each
stage of the multistage design has not been treated here. The subject
has been discussed to some extent in some basic sampling texts. It.suf;
fices to mention here that the optimum unit sizes depend on several fac-
tors, such as sample coefficient of variation, cost of measurement at
each»level, and other practical considerations. The optimum unit size
ghould be determined from the experience of ;he inventory manager and
after considering the factors indicated above.

The derived theory was illustrated, for a two-stage SPR design,
by working through a sample forest inventory problem. The nature of
successive inventories did not perﬁit an ideal planning and implementa-
tion of the derived theory. .The sample problem was designed to fit an
existing data set, so that several assumptions had to be made. For example,
in order to deﬁermine the optimum replacement policy, it was asspmed that
the number of ssu's per psu was equal, and the initial population estimates
were such that the resulting optimal policy was within the range of the
_existing data. However, the results obtained were within the range of the
values expected. In the same problem, interest centered on éstimating
current timber volume and the change in volume between occasions. Other
variables of interest could have been estimated, for example, number of
stems per ha, basal area per ha, number of deers, etc. fhe term ''change"
as used here means a type of growth which is the difference between standing
timber volume on occasion two and occasion one, termed ''met increase"
by Beers (1962). The term could be appropriately redefined in order

s

to estimate other components of forest growth (for example, ingrowth)
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as defined by Beers (1962).
In the derivation of the theory, it was assumed that the population

parameters oza , o?

, and p, (i,j = 1,2) were known without error or
i i ]
independent of sampling. In reality however, it is rarely true that

these values are known; they have to be estimated. In the sample prob-

2

lem oza , O and pj (i,j = 1,2) were estimated from the matched sample

data. This means, in general, that the corresponding estimates of current
mean and change are not unbiased. The bias, however, is small if n and

m are relatively large. Furthermore, the calculated optimum réplacement
policy departs from the true optimum in proportion as the estimates of

the parameters depart from their true values.

Very effective sampling methods for resource inventories include
versions of multistage sampling. Extension of the theory from one-stage
SPR to multistage SPR was therefore ofﬁpractical interest,’sérticularly
for the inventory of large forest areas. It would be useful to extend
further the theory to use variable probabilities of selection at the vari-

ous stages of the multistage design; and to examine the cases in which

- partial replacement occurs at other than the primary stage.
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SAMPLE PROBLEM DATA

ID SSU ID
8 13
8 14
8 15
8 16
8 17
8 18
8 19

10 5

19 5

21 3

21 4

25 41

25 42

25 43

25 44

25 45

25 46

25 47

25 48

25 49

25 50

25 51

25 52

25 53

25 54

25 55

25 56

25 57

25 58

25 59

25 " 60

25 61

25 62

25 63

25 64
7 2
7 3
7 4
7 5
7 6
7 7
7 8
7 S

15 1

15 2

15 4

15 "5

15 6

APPENDIX I

WHOLE-STEM VOLUME, M3/HA

X (1964)

275.8
8l.4
199.0
146.0
155.8
143.3
177.1
112.3
82.9
240.1
206.9
303.1
343.5
432.5
297.7
267.2
322.8
374.5
330.6
321.2
344.7
466.4
395.0
344.4
471.1
355.4
343.8
355.1
411.2
391.7
549.8
527.2
420.5
526.4
267.4
325.1
142.0
398.1
503.3
704.1
254.9
748.3
715.5
490.4
714.9
632.9
454,7
194.1

Y (1979)
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THE VOLUMES ARE FOR LIVING TREES ONLY, DBH 17.5 CM+ -
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SAMPLE PROBLEM DATA

PSU ID SSU ID WHOLE-STEM VOLUME, M 3/HA
X (1964) Y (1979)
19 - 15 7 492.8 -
19 - 15 '8 378.3 --
19 - 15 9 574.6 --
19 - 15 10 407.5 --
19 - 15 11 764.5 --
19 - 15 12 436.3 -
19 - 15 13 583.6 --
19 - 15 12 640.3 ' --
19 - 15 15 644.5 --
21 5 43 522.9 -
21 - 5 44 504.2 -
21 - 5 45 510.1 --
21 - 5 46 565.8 ' -
21 - 5 47 316.0 -
21 - 5 48 484.2 --
21 - 5 49 481.5 --
21 - 5 50 286.2 -
21 - 5 51 313.0 --
21 - 5 52 540.2 --
21 - 7 64 448.0 --
21 - 7 65 131.3 -
21 - 7 66 | 742.7 --
21 - 7 67  473.8 Co—-
21 - 7 68 437.8 --
21 - 7 69 475.1 --
21 - 7 70 253.0 --
21 - 7 72 525.9 --
21 - 7 73 365.3 --
21 - 7 74 625.8 ° -
21 - 7 75 328.6 -
21 - 7 76 480.4 -
21 - 7 77 352.3 --
21 - 7 78 359.8 --
21 - 7 79 330.5 -
21 - 7 80 465.1 --
21 - 7 81 401.8 --
21 - 7 . 82 449.4 -
21 - 7 83 551.1 --
21 - 7 84 494.0 --
18 - 6 58 291.4 278.8
18 - 6 59 . 479.,2 401.2
18 - 6 60 409.7 468.3
18 - 6 61 428.3 . . 394.3
18 - 6 62 431.4 442.7
18 - 6 63 340.5 314.4
18 - 6 64 773.2 732.5
18 - 6 65 572.7 537.6
18 - 6 66 562.0 579.2

NOTE: THE VOLUMES ARE FOR LIVING TREES ONLY, DBH 17.5 CM+
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' SAMPLE PROBLEM DATA

ID SSU ID
7 32
7 33
7 34
7 35
7 36
7 37
7 38
7 39
7 40
7 41

15 31

17 45

17 46

17 47

17 48

17 49

17 50

17 51

17 52

17 53

17 54

17 55

17 56

17 57

17 58

20 6

20 7

20 8

22 2

22 -3

22 4

22 5

22 6

23 70

23 71

23 72

23 73

23 74

23 75

23 76

23 77

23 78

24 15

24 16

24 17

24 18

24 19

24 20

X (1964)

273.7
614.0
195.2
368.7
120.1
424.3
314.6
317.0
175.0
430.6
650.6
610.2 -

1.0
527.9
429.1
439.8
392.1
740.5
621.8
374.6
248.3
213.9
498.5
527.2
955.5
107.2
114.2

129.0
201.6
370.8
554.5
183.8
473.6
331.5
406.1
386.2
423.8
619.1
442.0
453.7
328.0
536.0
486.9
403.4
214.3
362.2
354,2
318.9

Y

WHOLE-STEM VOLUME, M 3/HA

(1979)

329,
598.
133.
333.

74.
424.
366.
326.
198.
414.
662.
675.

16.
546.
345,
474,
242,
741.
567.
401.
278.
197.
517.
552.

43,

74,
108.
105.
248,
379.
629.
261.
468.
404.
495,
364.
451.

.
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THE VOLUMES ARE FOR LIVING TREES ONLY, DBH 17.5 CM+
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SAMPLE PROBLEM DATA

ID 'SSU ID
24 21
24 22
24 23
24 24
24 25
24 26
24 27
24 32
24 33
26 4
- 31 10
31 11
31 12
31 13
- 31 16
31 17
- 31 18
31 19
31 20
31 21
31 22
31 23
31 24
31 25
31 26
31 27
31 28
31 29
31 30
31 31
33 24
33 25
33 26
33 27
33 28
34 20
34 21
34 22
34 23
34 - 26
34 27
34 28
34 29
34 32
34 33
34 34
34 35
34 36

WHOLE-STEM VOLUME, M ¥HA

X (1964)

461.9
426.0
378.7
293.8
387.3
367.7
312.7
150.2
471.9
153.3
505.0
381.1
312.6
378.6
354.5
544.0
139.2
578.5
515.3
5983.4
638.8
514.1
. 482.7
301.2
414.7
376.8
304.7
391.0
338.8
307.6
315.2
282.5
428.7
56.0
223.6
509.0
484.9
539.7
385.3
387.2
587.3
510.0
554.5
508.9
249.3
562.8
383.1
325.0

Y (1979)

466.7
415.3
327.9
266.5
464.5
369.8
311.3
155.7
531.1
153.2
444.8
340.2
312.7
369.7
389.6
571.7
157.2
579.7
582.6
600.8
646.8
559.6
488.9
285.1
344.3
368.7
1 310.9
332.0
449.3
333.0
380.5
330.6
518.4

54.0
199.3
446.6
597.1
640.7
364.7
384.0
584.2
491.8
526.2
499.3
204.5
622.2
384.2
375.9
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THE VOLUMES ARE FOR LIVING TREES ONLY, DBH 17.5 CM+
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SAMPLE PROBLEM DATA

ID SSU ID
34 37
34 38
34 39
34 40

- 34 41
34 42
34 43
34 24
34 45
34 46
34 47
34 48
34 49
34 50
34 51
34 52
34 53
34 54
34 55
35 6
35 7
35 8
35° 11
35 12
35 <13
35 22
35 23
35 23
35 24
35 25
35 26
35 27
35 29
35 30
35 31
35 32
35 33
35 34
35 35
36 - 7
36 8
36 9
36 10
36 11
36 12
36 13
36 14
36 15

'WHOLE-STEM VOLUME, M3/HA

X (1964)

571.2
630.2
268.6
444.5
875.8
385.5
449.0
600.3
546.3
4490.4
584.3
331.3
507.7
187.4
449.9
711.9
463.3
561.0
246.6
491.1
387.3
325.6
. 358.1
- 254.8
381.8
262.2
600.1
413.9
232.9
346.8
485.6
469.8
359.5
388.7
527.8
393.0
600.1
716.0
860.6
419.5
500.0
339.0
488.7
553.1
271.9
782.0
262.9
753.6

Y (1979)

677.7
634.3
250.3
487.2
881.4
418.0
454.,2
599.8

- 535.2

453.5
598.8
314.7
488.7
153.4
570.0
736.5
498.4
597.0
271.8
454.6
408.6
310.0
387.6
303.3"

'336.3
258.3
700.8
458.1
218.5
334.8
530.1
457.6
402.1
365.5
474.2
362.1
660.7
684.9
797.9
343.1
494.9
355.5
392.9
539.5
266.6
814.9
350.3
770.1
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SAMPLE PROBLEM DATA

PSU 1D SSU ID
18 - 36 16
18 - 36 17
18 - 36 18
18 - 36 . 20
18 - 37 <17
18 - 37 19
18 - 37 20
18 - 37 23
18 - 37 27
18 - 37 29
18 - 37 30
18 - 37 32
18 - 37 33
18 - 37 34
18 - 37 35
18 - 37 36
18 - 37 37
18 - 37 38
18 - 37 39
18 - 37 40
18 - 37 4]
18 - 37 42
18 - 37 43
19 - 8 5
19 - 8 . 6
21 - 1 12
21 - 1 13
21 - 1 14
21 - 1 15
21 - 1 16
21 - 1 17
21 - 1 18
21 - 1 19
21 - 2 6
21 - 2 7
21 2 8
21 2 9
21 - 2 10
21 - 2 11
21 - 2 12
21 2 13
21 - 2 14
21 - 2 15 °
21 - 2 16
21 - 2 17
21 - 2 18
21 - 2 19
21 - 2 20

NOTE: THE VOLUMES ARE FOR LIVING TREES ONLY, DBH 17.5 CM+

WHOLE-STEM VOLUME, M3/HA
Y (1979)

X (1964)

451.0
359.3
173.
657.

25,
695.
564.
722.
479.
313.
365.
8l6.

80.
696.

51.
896.
794.
346.
406.

77.
165.
599.

CNUOIABNNNFOONHOARFWOE® OWWLND®

330.3
270.4
364.0
423.9
218.4
273.2
117.8
225.9
300.5
404.0
74.0
117.0
493.8
511.4
439.8
432.1
531.6
239.4
222.8
82.4
637.3
647.8
504.7
444.,7
569.0

~

475.7
333.8
202.7
773.1

61.7
785.5
601.2
665.2
446.9
260.5
335.4
872.0
116.3
644.2

39.5
864.5
820.1
288.4
334.1
124.8

89.3
636.7
284.2
356.8
311.4
405.5
366.9
319.3
293.9
108.5
208.0
330.3
403.2
190.1
158.1
565. 2
535.0
395.0
401.8
545.5
239.8
132.9

90.0
680.1
632.3
443.1
401.9
638.4

111
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SAMPLE PROBLEM DATA

PSU ID SSU ID WHOLE-STEM VOLUME, M3/HA
X (1964) Y (1979)
21 - 2 21 199.3 213.4
21 - 2 22 240.6 282.8
21 - 2 23 416.8 376.2
21 - 2 24 677.1 661.1
21 2 25 490.5 498.1
21 - 2 26 403.0 408.6
21 2 27 469.3 508.9
21 - 2 28 603.2 579.0
21 - 2 29 151.3 111.3
21 - 2 30 371.2 357.0
18 - 18 8 -- 138.4
18 - 18 9 - 110.3
18 - 19 6 -- 77.3
18 - 19 7 -- 119.3
18 - 19 8 -- 66.4
18 - 19 9 -- 112.4
18 - 19 10 - 169.1
18 - 19 11 -- 127.6
18 - 28 1 -- 2.5
18 - 28 2 -- 78.4
18 - 28 3 -- 103.7
18 - 28 4 -- 6.4
18 - 28 5 - 60.2
18 - 28 6 -- - 47.9
18 - 30 1 -- 96.4
18 - 30 2 -- | 0.0
18 - 30 3 -- 91.6
18 - 30 5 -- 134.9
18 - 30 6 -~ 102.3
18 - 30 7 -- 61.4
18 - 32 39 -- 0.0
18 - 32 40 -- 4
18 - 38 17 - 381.9
18 - 39 13 -- 128.3
18 - 39 14 -- 77.0
18 - 39 15 -- 85.7
18 - 40 10 -- 341.9
18 - 40 11 -- 262.8
18 - 40 12 -- 597.3
19 - 5 17 -- 70.5
19 - 5 18 -- 152.9
19 - 5 19 -- 132.5
19 5 20 -- 168.9
19 - 5 21 -- 133.4
19 - 5 22 -- 200.1
19 5 23 -- 146.5
19 - 8 7 -- 5.6
19 - 8 8 - 4.3

' NOTE: THE VOLUMES ARE FOR LIVING TREES ONLY, DBH 17.5 CM+
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SAMPLE PROBLEM DATA

PSU ID SSU ID  WHOLE-STEM VOLUME, M3/HA
X (1964) Y (1979)
19 - 8 9 -- 65.3
19 - 8 10 -- 101.1
19 - 8 11 -- 67.1
19 - 10 5 -- 45.2
19 - 10 6 -- 11.9
19 - 12 29 -- 506.7
19 - 12 30 -- 429.5
19 - 15 17 -- 0.0
19 - 15 18 -- 277.5
19 - 15 19 -- 15.6
19 - 15 20 -- 499.2
19 - 15 21 - 92.8
19 - 15 22 -- 88.4
19 - 17 1 - 461.3
19 --17 2 - 3.2
19 - 17 3 -- 20.7
19 - 17 4 -- 349.8
19 - 17 5 -- 386.4
21 - 3 3 -- 71.2
21 - 3 4 -- 26.8
21 - 3 5 -- 41.7
21 - 3 6 -- | 68.1 .
21 - 3 7 -- 4.6
21 - 3 8 -- 28.4
21 - 3 9 -~ 54,5
21 - 3 10 - 20.9
21 - 6 1 -- 87.2
21 - 6 2 -- 75.2
21 - 6 3 -- 53.6
21 - 6 5 -- . 25.3
21 - 6 6 -- 8.5
21 - 6 7 -- 90.1
21 - 6 8 -- 191.4

' NOTE: THE VOLUMES ARE FOR LIVING TREES ONLY, DBH 17.5 CM+
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SIMULATION OF REMEASUREMENT DATA
Remeasurement data were simulated using the Volume-Age curves (VACs)

fitted and currently used by the BCFS. The curves, Chapman-Richards

generalization of the Von Bertalanffy's growth function, take the form

-b.(A-b,) b
v=bl1-e 2 413
1
where
V = stand volume in m3
A = stand age in years

bi (i==l,2,3,4) are constants

e = 2.71828...

Estimates df the bi (i_=152,3,4) are availa%le for each combination of
Forest Inventory zone, Site and Growth Type in British Columbia.

The remeasured volume per ha Vr (net for decay, with utilization

from 30 cm stump height to 10 cm top) at a sample plot was obtained as

follows
V =V_+(V_-V) +¢
r ‘n P c :
where
van= volume per ha at: the plot in 1979 as estimated using the appropriate
VAC (with A = An'= (stand age at the plot in 1964) + 15)
Vp = volume per ha at the plot as actually measured in 1964
VC = volume per ha at the plot in 1964 as estimated using the appropriate
VAC (with A = A, = stand age at the plot in 1964) '
e = a random number drawn from a normal population of random numbers

with mean Vp and variance1927-21 (= estimated variance between

plot volumes).
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The calculation is shown graphically as below

q\
V .o _
S
\ b
p.‘ ;/‘
| v »~ ’
- ,/R/e o
e .
VC s {
Volume/ha ' b
i
3
(m™) -
f
|
/ | |
/ | f
/ ; f
_;wf//// : ! _ s e
: A A
o n

Age (years)

The plot volume was allowed to grow at the rate dictated by the VAC, and
the random element € accounted for natural disasters, such as windfall, etc;
For example, plot number 18-015-31 in good site in growth type I in

forést inventory zone F:

Vp = 650.6 m3/ha

v_ = 479.7227 [1-2.71870+0357(170-0718.6583

= 470.2 m>/ha

V= 479.7227 [1-2.7188 0+ 0357 (18570718.6383

e = %7%.1 m3/ha

474.1 + (650.6 — 470.2) + 7.7

and \Y,
r

662.3 m3/ha



116

The simulated results were in agreement with the results obtained from a

remeasurement pilot study in the Cranbrook PSYU (in which the author participated).

Twenty-three undisturbed (e.g. not burnt or logged) sample plots were selected

at random from the 1964 ordinary inventory sample plots, and actually reméasured

(according to the 1964 standards) during -the-summer of 1980. The correlation

between the 1980 measurements and the 1964 measurements and that between the A

1979 simulated measurements and the 1964 measurements were not significantly

different from each other.

The results of the pilot study and the derived

statistics are summarized below:

A. Data
Plégiiﬁ Whole stem Voiume (living trees only,dbh 17.5cm+) m*ha
e 1980 1964

18-06-62 450.3 431.4
18-07-34 139.0 195.2
18-07-40 195.1 175.0
18-08-15 286.2 199.0
18-08-18 216.5 143.3
18-20-08 185.8 129.0
18-25-47 413.5 374.5
18-24-62 489.6 420.5
18-31-31 ‘ 314.6 307.6
18-33-24 390.7 315.2 .
18-34-28 476.3 510.0
18-34-35 315.5  383.1
18-35-34 684.2 716.0
18-35-35 877.4 860. 6
18-36-10 562.6 488.7
18-36-11 596.2 553.1



117

Plot ID . Whole stem Volume (living treesbonly, dbh 17.5cm+) mdfha
1980 1964

18-37-34 692.0 - 696.7

21-01-14 - 249.3 . 218.4

21-01-15 R 2732

21-01-18 307.3 300.5

21-02-06 106.0 740

21-02-13 362.4 | 239.4

21-07-74 646.1 625.8

B. Statistics °

mean -~ standard deviation
Volume in 1980 399.90 201.98

Volume in 1964 375.23 209,08

Correlation between 1980 and 1964 measurements, @ = 0.97.



