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Abstract. To bring the Life Sciences domain closer to a Semantic Web
realization it is fundamental to establish meaningful relations between
biomedical ontologies. The successful application of ontology matching
techniques is strongly tied to an effective exploration of the complex and
diverse biomedical terminology contained in biomedical ontologies. In
this paper, we present an overview of the lexical components of several
biomedical ontologies and investigate how different approaches for their
use can impact the performance of ontology matching techniques. We
propose novel approaches for exploring the different types of synonyms
encoded by the ontologies and for extending them based both on internal
synonym derivation and on external ontologies.
We evaluate our approaches using AgreementMaker, a successful ontol-
ogy matching platform that implements several lexical matchers, and ap-
ply them to a set of four benchmark biomedical ontology matching tasks.
Our results demonstrate the impact that an adequate consideration of
ontology synonyms can have on matching performance, and validate our
novel approach for combining internal and external synonym sources as a
competitive and in many cases improved solution for biomedical ontology
matching.

Keywords: Ontology Matching, Synonym Derivation, Ontology Exten-
sion, Biomedical Ontologies

1 Introduction

Research in the Life Sciences, and in particular in biomedical research, has much
to gain from Semantic Web technologies due to the amount and complexity of
the data involved. One crucial development has been the creation of ontolo-
gies that describe biomedical knowledge and support several applications, both
theoretical and practical, such as the representation of encyclopedic knowledge,
semantic search and query, data exchange and integration, and reasoning sup-
port [1]. However, to fully benefit from the overall knowledge contained in those
ontologies, meaningful connections need to be established across the concepts
from various ontologies. To establish these relations, we can use ontology match-
ing techniques that are able to find correspondences between semantically related
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entities belonging to different ontologies [2].
The matching of biomedical ontologies poses considerable challenges, given their
particular characteristics. The domains they cover are usually complex and large,
with many biomedical ontologies possessing tens of thousands of classes dedi-
cated to highly specific areas such as genomics, phenotypes or cellular structures.
Moreover, biomedical terminology is characterized by ambiguity and complexity,
features that further complicate the application of many ontology engineering
techniques. However, the biomedical domain also presents some interesting op-
portunities such as the exploration of an abundant scientific literature or the
availability of many related biomedical ontologies. Despite the efforts of the com-
munity to provide orthogonal ontologies [3], many contain overlapping knowl-
edge. For instance, in BioPortal [4], a portal for biomedical ontologies, there are
currently 306 ontologies distributed by categories, of which 59 in health, 38 in
anatomy and 21 in biological processes.
In recent years the OAEI (Ontology Alignment Evaluation Initiative) [5] has
been the major playfield for biomedical ontology alignment, both in its anatomy
track, and more recently in the large biomedical ontologies track. An important
finding of the OAEI is that many of the anatomy ontologies correspondences
are rather trivial and can be found by simple string comparison techniques. To
confirm this finding, a simple string matching algorithm, LOOM, was applied
to several ontologies available in the NCBO BioPortal, obtaining high levels of
precision in most cases [6]. Explanations for this fact include the simple structure
of most biomedical ontologies, the high number of synonyms they contain, and
their low language variability. Several strategies have been used by the top ranked
systems at OAEI to increase recall that go beyond internal lexical similarity, in-
cluding the use of external knowledge resources (SAMBO [7]) and ontologies
(GOMMA [8], AgreementMaker [9]), global similarity computation techniques
(AgreementMaker [10], SOBOM [11]), and more complex measures of label and
structural similarity (AgreementMaker, LogMap [12]). A combination of these
strategies has enabled two of the best systems, GOMMA and AgreementMaker,
to reach a F-measure above 90% in the anatomy track. With the introduction
of the large biomedical ontologies track in 2012, competing systems developed
strategies to handle the very large size of the ontologies therein, including the
selection of specific portions of the ontologies to apply matching [13]. Likewise,
a new emphasis on the coherence of the generated alignments, prompted several
systems to incorporate strategies to improve their alignments coherence [8, 12].
However, this shift in ontology matching systems to ensure the ontological quality
of their strategies and results has not translated to the handling of terminolog-
ical properties, despite the common knowledge of their importance to support
matching.
The purpose of this paper is to show the positive impact that is brought by a
deep understanding of the terminology contained in ontologies, when used in con-
junction with current ontology matching approaches. To support this premise,
we have surveyed the terminological component of several biomedical ontologies
(including those used by the OAEI tracks) with a special emphasis on syn-
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onyms, and tested several novel approaches to improve lexical based matching
approaches. These approaches include: (1) the ranking and weighting of names
and synonyms based on their degree of closeness; (2) the derivation of new syn-
onyms based on the ones encoded by a single or both ontologies; and (3) the
addition of new synonyms based on cross-references or lexical matches to related
external ontologies.
The paper is organized as follows: Section 2 describes the terminological compo-
nent of several biomedical ontologies and discusses their implications for ontol-
ogy matching. Section 3 describes our three approaches to improve lexical-based
matches. Section 4 describes the evaluation methods, while Section 5 presents
and discusses the results obtained using those methods. Finally Section 6 con-
textualizes our contributions including their limitations and future work.

2 Synonyms in Biomedical Ontologies

Biomedical terminology is complex and ambiguous—frequently the same entity
has several names (e.g., gluconeogenesis, glucose synthesis and glucose biosyn-
thesis, all refer to the same metabolic process), a common word refers to a
biomedical entity (e.g., hedgehog, and fruitfly are both gene names), or even the
same word can be applied to two different entities (e.g., lingula, can either be a
structure of the brain or of the lung). These challenges provide one of the major
motivations to develop biomedical ontologies, given their explicit definition of
concepts through ontological properties.
Biomedical ontologies characteristically have a strong terminological component
in the form of names and multiple types of synonyms. Most ontologies define a
primary name or label for each class, which is usually encoded as either a local-
name property or a label property when localnames are reserved for alphanu-
meric identifiers. Since biomedical entities usually have more than one name, on-
tologies encode alternative labels as different kinds of synonym properties, which
help distinguish between the main label of a class and its alternatives, be they
equivalent or merely related. Ontologies under the Open Biomedical Ontologies
initiative [3] usually encode the following synonyms types: hasExactSynonym,
where the alias exhibits true synonymy; hasBroadSynonym and hasNarrowSyn-
onym where the aliases are broader or narrower than the primary name; and
hasRelatedSynonym, where the alias is related to the primary class name but
not necessarily broader or narrower. Other biomedical ontologies usually also
encode distinct types of synonyms, reflecting different degrees of closeness in
meaning to the main term. To the set of main labels and synonyms we hence-
forth call names. Some biomedical ontologies have cross-reference properties that
connect ontology classes to classes from other ontologies. These links can be used
to transfer name properties between cross-referenced classes. Table 1 presents
some statistics on synonyms and cross-references for several biomedical ontolo-
gies, namely those provided by the OAEI, which will be used as a testbed for our
proposed approaches. Most ontologies encode several synonyms for each class,
with the notable exception of SNOMED, where synonyms are very rare. At the
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other end of the spectrum we have UBERON, an ontology designed to integrate
cross-species anatomy, which encodes a high number of distinct synonym prop-
erties, as well as cross-references to several other ontologies, including MA, NCI,
SNOMED and FMA.
Although state of the art ontology matching systems use synonyms in their

Table 1: Name properties in biomedical ontologies.

Ontology Classes Name properties Names per class

NCI Human (OAEI) 3304 label 3304 1.59
hasRelatedSynonym 5264

MA (OAEI) 2739 label 2739 1.13
hasRelatedSynonym 345

FMA (OAEI) 79042 label 133629 1.69
NCI (OAEI) 66917 label 175972 2.63

SNOMED (OAEI) 122464 label 122566 1.00

FMA 78977 label 105490 1.92
hasExactSynonym 45996

NCI 96717 FULL SYN* 303121 4.13
label 96717

UBERON 8659 label 8659 12.11
hasExactSynonym 20955
hasRelatedSynonym 6150
hasNarrowSynonym 562
hasBroadSynonym 442
hasDbXref** 68068

*equivalent to hasExactSynonym, **link to an external ontology or resource

strategies, they do so without considering the ontological property that encon-
des them and its meaning. In ontologies encoding more than one kind of name
property it makes sense that ontology matching techniques differentiate between
them.

3 Methods for Exploring the Use of Synonyms in
Ontology Matching

3.1 Synonym Ranking and Weighting

Considering that several ontologies encode distinct types of synonyms, we base
our approach on the notion that a synonym should contribute to the similarity
score between two ontology classes in proportion to its closeness to the main
name of the class it belongs to. To arrive at this weight, we first rank the syn-
onyms encoded in an ontology according to the synonym property they are as-
signed to. Following the logical definition of commonly used synonym properties,
we propose the following default ranking of name properties: (1) localname, (2)
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label, (3) exact synonym, (4) related synonym, (5) broad synonym, (6) narrow
synonym, (7) other synonyms. Whenever an ontology does not possess one of
these properties, the rank of the following properties can be increased. This is
especially relevant when matching an ontology where the localname corresponds
to a unique alphanumeric identifier to an ontology where the localname is the
main label of the class. These ranks can then be used to attribute weights to a
classs names given the input of a single interval according to:

weight = 1.0 − (interval ∗ (rank − 1)) (1)

3.2 Ontology Lexicon Extension through Synonym Derivation

Despite the already high number of synonyms present in most biomedical on-
tologies, it is a cumbersome task for ontology developers to cover all possible
variants. Moreover, when ontologies belong to similar but parallel domains (for
instance, when they cover the anatomy of distinct mammal species) they will
encode the synonyms that belong to their strict domain, but many times forgo
synonyms of broader spectrum. One strategy that can be used to circumvent
this omission is to extend the synsets of ontology classes with WordNet syn-
onyms [14]. However, in the biomedical domain this strategy has been shown to
slightly increase recall but at a higher cost of precision [15], which is likely due
to the highly specialized vocabulary contained in biomedical ontologies and its
limited coverage by WordNet.
Our novel approach is based on the notion that we can explore the synonymy
relations established between sets of names within the ontologies to derive new
synonyms. A preliminary implementation of this approach was integrated in
AgreementMaker in 2011 [9]. The main idea behind this approach is that by find-
ing common terms (both single and multi-word) between ontology synonyms we
can infer a synonym relation between the remaining distinct terms. These terms
can then be used to generate new synonym names. Since this approach is solely
based on ontology terminology, we expect it to avoid the issues encountered
when using a non-specific resource such as WordNet. For example, in the mouse
anatomy ontology the class named as ‘stomach serosa’ has the synonym ‘gastric
serosa’, which supports the inference that the terms ‘stomach’ and ‘gastric’ are
synonymous. These synonymous terms are then used to create novel synonyms,
by substituting terms with their synonyms in existing names. For instance, we
can create a new synonym for the class ‘stomach secretion’ using the synonyms
‘stomach’ and ‘gastric’ to create the new synonym ‘gastric secretion’.
We implement our approach in two main steps: (1) the construction of one or
two thesauri containing synonym terms; and (2) the derivation of new synonyms
based on thesaurus entries. The thesauri can be built based on a single ontology,
one for each ontology, or based on both ontologies, resulting in a single thesaurus.
This means that when new synonym terms are derived, they can be based on
synonym terms inferred from the same ontology, or from both ontologies. We
name these two options as intra- and inter-ontology synonym derivation, respec-
tively. This approach is described in Algorithm 1, where creating a thesaurus T
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is achieved by finding the overlapping portion of the names of each class c in an
ontology O, and inferring a synonym relation between the non-overlapping por-
tion. Extension of synonyms through derivation is based on the computation of
all ontology classes’ names n-grams, which can then be replaced by appropriate
thesaurus entries. This approach is described in Algorithm 2.

Algorithm 1 Create thesaurus from name properties
input: O

T ← ∅
for each c ∈ O do

names← c.getNames()
for each n1 ∈ names do

for each n2 ∈ names do
common term← n1.overlap(n2)
n1 synonym term← n1.remove(common term)
n2 synonym term← n2.remove(common term)
T.add(n1 synonym term, n2 synonym term)

end for
end for

end for
return T

Algorithm 2 Extend synonyms based on derivation
input: O,max

//get all n-grams of all ontology names with sizes [1,max]
names← O.getNames()
ngrams← names.getNgrams(max)
for each ngram ∈ ngrams do

namesn ← names.contain(ngram)
thesn ← T.get(ngram) //thesaurus entries that match the n-gram
for each name ∈ namesn do

class← O.getClass(name)
for each t ∈ thesn do

new name← name.replace(ngram, t)
class.addNewName(new name)

end for
end for

end for

We also propose another approach to create new synonyms that is based on
removing common words (i.e., words that convey little information) from the
beginning or the end of names, such as ‘structure’ in ‘spinal nerve structure’. To
identify common words, we compute the evidence content for each word present
in ontology names, according to the inverse logarithm of its frequency [16], then
select those below a given evidence content threshold. Then for each name, we
create a new synonym where leading and trailing common words are removed.
We have called this approach Common Word Removal Synonym Extension (CW-
SynExt), and describe it in Algorithm 3.
Coupled with this strategy, we have implemented a weighting method, where
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the weight of the newly created synonym is equal to the weight of the original
name multiplied by a confidence factor, which is given by the total evidence
content of the synonym divided by the total evidence content of the original
name. Thus, the lower the total evidence content of the removed words is, the
closer the synonym captures the information conveyed by the original name and
the higher will be its confidence factor.

Algorithm 3 Extend synonyms based on common word removal
input: O

for each name ∈ O.getNames() do
new name = name
//checks leading words
for each word ∈ new name do

while word ∈ common words do
new name← new name.remove(word)

end while
end for
//checks trailing words
for each word ∈ new name.reversed() do

while word ∈ common words do
new name← new name.remove(word)

end while
end for
if new name 6= name then

class← O.getClass(name)
class.addNewName(new name)

end if
end for

3.3 Ontology Lexicon Extension Using External Ontologies

Given the abundance of biomedical ontologies with overlapping domains, it
makes sense to capitalize on correspondences to a mediating ontology to help de-
rive the final correspondences between the ontologies to align [17]. A mediating
ontology can be particularly helpful if it contains a large number of synonyms.
This approach of matching a mediating ontology to each ontology and then use
these results to arrive at the final alignment has been successfully used by several
ontology matching systems in the biomedical domain [9, 8].
However, many biomedical ontologies encode cross-references to external ontolo-
gies, which represent relationships between classes belonging to distinct ontolo-
gies. To the best of our knowledge these have never been explicitly explored by
ontology matching systems. These cross-references can be used to extend the
lexicon of the ontologies being matched, by adding the name properties of the
cross-referenced class to the class of the ontology being matched. For instance,
the UBERON ontology encodes cross-references to the Mouse Anatomy ontology,
which means that all names and synonyms of an UBERON class that references
a Mouse Anatomy class can be added to its synset. This strategy bypasses the
need to rely on a lexical matching between the ontologies, since the transference
of the names is based on the ontology defined properties.
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4 Evaluation

To evaluate our approaches that use synonyms in biomedical ontology matching
we use the AgreementMakerLight system [18], a lightweight framework based
on the AgreementMaker system [19], which has been optimized to handle the
matching of larger ontologies. AgreementMakerLight supports a wide variety of
matching methods, called matchers, which can be used in series or parallel such
that the results from several matching algorithms can be combined into a single
final result, and where correspondences are filtered by a similarity threshold. It
is based on the same approaches of AgreementMaker, which have achieved top
results in OAEI tracks in several years [20–22].
To remain focused on lexical approaches to ontology matching, we restrict our
evaluation to two matchers that are based on the pairwise comparison of ontol-
ogy classes: a name-based matcher and a word-based matcher. These matchers
correspond to commonly used techniques, which are used across several other
ontology matching systems (e.g., GOMMA, LogMap and YAM++ [23]). The
name-based matcher (NM) consists of a straightforward comparison of the full
labels or synonyms of ontology classes. The word-based matcher (WM) relies
on the comparison of the words belonging to the labels or synonyms of classes
through a weighted Jaccard similarity based on the evidence content of words
within ontologies [18]. Although we implement our approaches as extensions to
the AML framework, they are independent from it and can be used with any
ontology matching system that uses lexical-based matching. To maintain further
the independence of our approaches from any specific configurations of AML, we
choose to combine the results of matchers through a simple join, and select them
based on an empirically chosen threshold of 0.6.
We test our approaches on four matching tasks proposed by OAEI: (1) Mouse
Anatomy (MA) - NCI Human Anatomy (NCI Human), (2) FMA - NCI; (3)
FMA-SNOMED; (4) NCI-SNOMED. The first task corresponds to the anatomy
track, and the remaining three belong to the large biomed track. In the large
biomed tasks we are only aligning small overlapping fragments, which is one of
the tasks supported by OAEI. This means that the portion of FMA being aligned
in task 2 is not the same one that is being aligned in task 3. The same applies
to NCI and SNOMED. The reference alignment used in the anatomy track was
manually created and has been extensively tested. For the large biomed track
the existing reference alignment is a silver standard based on mappings encoded
in UMLS, a biomedical terminology resource [24].

5 Results and Discussion

We first evaluate an approach that uses a ranking and weighting strategy for
name properties. Table 2 shows the impact on F-measure when using our pro-
posed default ranking and weighting strategy with an interval of 0.05, in com-
bination with two matching approaches: NM by itself, or combined with WM.
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Weighting of name properties has a very noticeable impact on the alignment of
the mouse and human anatomies, however that impact is much reduced in the
other three matching tasks. Based on these results, and since the computational
cost for this strategy is quite low, we incorporate the ranking and weighting
approach into our other approaches as well.

Table 2: Ranking and weighting synonym properties.

Matchers MA-NCI Human FMA-NCI FMA-SNOMED SNOMED-NCI

Standard AML

NM 0.819 0.826 0.411 0.689
NM-WM 0.829 0.838 0.586 0.732

Ranking & Weighting

NM 0.825 0.826 0.412 0.689
NM-WM 0.862 0.840 0.586 0.732

NM: name-based matcher; WM: word-based matcher

Comparison of the F-measure obtained in all four tasks when using the ranking and
weighting strategy with two different matching approaches, one based on matching
the full name and the other also considering word matches.

Our second approach extends the number of synonyms in ontologies either
through a synonym derivation technique based on internal ontology synonyms
or on the removal of common words (described in Algorithms 1, 2, and 3). These
we consider to be internal synonym extension strategies, since they only use
information contained in the ontologies that are being aligned. However, exter-
nal ontologies can also be used to increase the number of synonyms through
the transference of names from cross-referenced classes. As a source for cross-
references we use the UBERON ontology, which encodes direct cross-references
to the mouse and human anatomies, as well as NCI. Figure 1 shows the increase
in number of name properties in each ontology after synonym extension. The
number of new name properties created by intra- and inter-ontology synonym
derivation is closely tied to the original number of synonyms (see Table 1), there-
fore for SNOMED the use of intra-ontology synonym extension does not lead to
a noticeable increase in number of name properties, since there are very few syn-
onyms to leverage on to create the internal thesaurus. However, when ontologies
have very frequent words in their terminology, the number of synonyms created
by the common word removal approach increases. This is clearly exemplified
by SNOMED, where the existence of many names with common words such as
‘structure’ (e.g., ‘structure of hair of trunk’, ‘portal vein structure’ and ‘spinal
nerve structure’) results in the creation of many more synonyms.

To test the impact of synonym extension we couple it with the NM matcher.
Both intra- and inter-ontology synonym derivation can lead to a high num-
ber of erroneous names, however when used with the NM matcher these is-
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Fig. 1: Increase in number of names after synonym extension approaches for each on-
tology in each task.

(Intra-: intra-ontology; Inter-: inter-ontology; CW-: common word removal; XR-: cross-references to
UBERON; SynExt: synonym extension)

sues are circumvented since a single match between two names is enough to
map two classes and the presence of erroneous words in the names has no im-
pact. Given the low impact intra- and inter-ontology synonym derivation has on
SNOMED’s terminology, we would expect a reduced impact of these strategies
on the matching performance of SNOMED alignments, particularly when using
the inter-ontology approach. Indeed, in the last two tasks (see Table 3), FMA-
SNOMED and SNOMED-NCI have an equivalent or reduced performance when
using this approach. In particular, extending SNOMED with inter-ontology syn-
onyms leads to a marked drop in precision. On the other hand, for the alignment
of the mouse and human anatomies, synonym derivation improves performance
through an increase in recall, particularly for the intra-ontology approach where
recall increases by 7.5%. In FMA-NCI, there is also an improvement, though not
as marked, with recall increasing by 1.7%. The common word removal synonym
extension approach has little to no impact on the MA-NCI Human and FMA-
NCI alignments, but has a considerable impact on FMA-SNOMED, where it
increases recall by more than 40%, increasing F-measure from 41.2% to 74.5%.
This is due to the fact that removing the common words in SNOMED names
results in direct matches to several FMA classes. This effect is less noticeable in
SNOMED-NCI, but it still increases recall by nearly 5%.

Our third approach is based on exploring external ontologies that contain
cross-references to the ontologies that are to be matched, or whose domains are
closely related. In this evaluation we use three ontologies as external resources:
UBERON, FMA and NCI. FMA and NCI versions correspond to the full ontolo-
gies (obtained from OBO, not from OAEI). Table 4 presents the results of several
distinct matching strategies that use these external ontologies. Using a combi-
nation of NM and a mediating matcher (MM) based on NM to FMA (NM-MM),
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Table 3: Impact of internal synonym extension approaches on matching performance.

No SynExt Inter-SynExt Intra-SynExt CW-SynExt

MA-NCI-human

Precision 0.985 0.983 0.966 0.985
Recall 0.691 0.709 0.766 0.691
F-measure 0.825 0.835 0.860 0.825

FMA-NCI

Precision 0.945 0.936 0.939 0.944
Recall 0.723 0.736 0.74 0.723
F-measure 0.826 0.83 0.834 0.827

FMA-SNOMED

Precision 0.953 0.926 0.945 0.897
Recall 0.178 0.182 0.180 0.618
F-measure 0.412 0.411 0.413 0.745

NCI-SNOMED

Precision 0.97 0.888 0.965 0.967
Recall 0.489 0.477 0.497 0.537
F-measure 0.689 0.651 0.693 0.721

(Intra-: intra-ontology; Inter-: inter-ontology; CW-: common word removal; SynExt: synonym
extension)

results in a better performance in the mouse and human anatomies as well as
in SNOMED-NCI. The same strategy using NCI only impacts SNOMED-NCI
results. However, when UBERON is used, there is a marked improvement in
both MA-NCI Human and FMA-NCI, which is due to MA, NCI Human, FMA
and UBERON sharing the same domain (anatomy).
UBERON encodes cross-references to MA, NCI, SNOMED and FMA. However,
the cross-references are established using alphanumeric identifiers, which are un-
available in the OAEI versions of FMA and SNOMED. Consequently, we have
only explored the cross-references to MA and NCI. For the MA-NCI Human,
given that UBERON encodes cross-references to both ontologies it is possible
to create an alignment based solely on them (XRM). This has an F-measure
of 91.7%, which is higher than any of the other approaches tested so far. A
combination with NM further increases F-measure up to 92.6%. However, the
cross-references can also be explored to extend the name properties of classes
and then be used on an NM matching approach (NM-XR-SynExt), pushing F-
measure up by another 0.9%. Combining this approach with the more complex
WM results in an F-measure of 93.7% (NM-XR-SynExt-WM). The synonym
extension that is based on cross-references can also be used in the NCI matching
tasks, which yields the best performance we obtained for FMA-NCI, 86.4%, but
has no impact on SNOMED-NCI. This is likely due to the fact that the NCI
fragment in FMA-NCI belongs to the anatomy domain (the same as UBERON),
whereas the SNOMED and NCI fragments of NCI-SNOMED do not.
The overall very positive success of exploring cross-references, both for direct
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matching and for synonym extension, clearly demonstrates the untapped poten-
tial of these ontology properties.

Table 4: Using External Ontologies through cross-references and matching.

Matchers MA-NCI H. FMA-NCI FMA-SNM SNM-NCI Ext. Ont.

NM-MM

0.837 0.826 0.412 0.691 FMA

0.826 0.827 0.412 0.691 NCI

0.910 0.849 0.412 0.690

U
B

E
R

O
NXRM 0.917 N.A. N.A. N.A.

+NM 0.926 N.A. N.A. N.A.

NM-XR-SynExt 0.935 0.864 N.A. 0.690

+MM 0.936 N.A. N.A. N.A.

+WM 0.937 N.A. N.A. N.A.

Comparison of the F-measure obtained when using different matching techniques and
external ontologies to support matching. (XRM: cross-references matcher; MM: mediating

matcher; WM: word-based matcher; XR-SynExt: cross-references based synonym extension)

To complete our evaluation we present a table with the comparison of our
best results with the best results obtained by OAEI 2012 competitors in each
task (see Table 5). For simplicity we name the integration of our approaches
into AML as AMLnym. Our best results are obtained using two distinct strate-
gies: for the MA-NCI Human and FMA-NCI tasks the two lexical matchers
(name-based and word-based) are coupled with the synonym extension derived
from UBERON cross-references (NM-WM-XR-SynExt), whereas for the FMA-
SNOMED and SNOMED-NCI they are coupled with the common word removal
synonym extension (NM-WM-CW-SynExt). The only task where we surpass the
best OAEI competitor is the MA-NCI Human, where the use of cross-references
to extend the name properties has a positive impact on performance, with 93.7%
in F-measure, which is 1.4% higher than the top ranked system GOMMA-bk.
For the other three tasks our results are below those obtained by the leading
systems. However, both GOMMA-bk and LogMapnoe use UMLS as an exter-
nal resource. Since the reference alignment is a silver standard based on UMLS,
using the same resource is a biased approach that clearly results in improved
performance. Considering this, we also include in the table the results obtained
by those systems when using their less elaborate variants, which do not use
UMLS. In FMA-NCI we still remain below GOMMA’s results by 2.9%, but in
the remaining tasks our approaches have a better performance, with an advan-
tage of 24.3% in FMA-SNOMED over GOMMA and 3.7% in SNOMED-NCI
over LogMapLt. However, it is important to note that GOMMA and LogMapLt
differ from their more complete variants in more than just the use of UMLS,
which can also explain part of the drop in performance.
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Table 5: Comparison of our approaches with the best OAEI 2012 competitors in each
task.

MA-NCI Human FMA-NCI FMA-SNOMED NCI-SNOMED
A

M
L

+
N

y
m NM-WM-XR-SynExt NM-WM-CW-SynExt

P 0.957 0.940 0.870 0.925

R 0.917 0.802 0.670 0.589

F 0.937 0.869 0.763 0.738

O
A

E
I

2
0
1
2

U
M

L
S

GOMMA-bk GOMMA-bk GOMMA-bk LogMapnoe

P 0.917 0.914 0.826 0.893

R 0.928 0.922 0.912 0.659

F 0.923 0.918 0.886 0.758

n
o

U
M

L
S GOMMA GOMMA LogMapLt

P 0.945 0.834 0.938

R 0.856 0.377 0.560

F 0.898 0.520 0.701

Comparison of the performance obtained by our approaches (AML+Nym) with the
best competitors in OAEI 2012 (GOMMA and LogMap) with and without the use of
UMLS as an external resource (P:Precision; R:Recall; F:F-measure; NM: name-based matcher;

NM: name-based matcher; WM: word-based matcher; XR-SynExt: cross-references based synonym

extension; CW-SynExt: common word removal synonym extension)

6 Conclusions

We have presented three novel approaches for a better use of an ontology’s ter-
minological properties within ontology matching tasks. These approaches capi-
talize on biomedical ontology properties such as a rich terminology, with several
synonyms of different kinds being encoded, as well as the existence of related
ontologies with overlapping domains.
Our first approach distinguished between different name properties by assign-
ing to them weights that reflect their closeness in meaning to the main name.
Our results demonstrate the success of this strategy, which resulted in an in-
crease in performance for several terminological-based matchers. Furthermore,
we have shown that it is possible to extend the number of name properties of
an ontology through two synonym derivation techniques, one which explores the
reflexive property of synonyms to infer synonymy between words or multi-word
terms that belong to synonym labels, and used these terms to compose new syn-
onym labels, and another based on common word removal. In many cases these
approaches increase the performance of name and word-based matchers up to
competitive levels with more complex strategies based on external resources and
structural approaches. However, the success of the synonym derivation technique
based on synonym terms depends on the existence of synonyms encoded by the
ontologies, which is why it is less suited for ontologies with few synonyms such as
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SNOMED. The synonym derivations techniques can be also be used for ontology
extension, since they are able to add novel synonyms to an ontology. Ontology
extension in the biomedical domain is a budding field [25, 26], for which ontology
matching has been identified as a crucial technique [27–29]. Finally, our third
approach consisted in using ontologies with cross-references to the ontologies
being aligned. This was shown to have a high impact on matching performance,
both when the strategy was used to directly produce matches, and when it was
used to extend the number of synonyms within ontologies.
The application of these approaches to OAEI tasks demonstrated the impact
they can have on ontology matching performance. In the anatomy track, our
results were better than those obtained by the best OAEI 2012 participant. In
the three tasks of the large biomed track, our strategies proved insufficient to
place above the leading systems. However, these systems benefit strongly from
using UMLS as an external resource, and also from structural and logic-based
strategies. When we compare our results with simpler versions of the leading
systems that do not use these additional strategies, our approaches produce the
best results in two out of three tasks. These results lead us to believe that the
integration of our approaches in more complex matching strategies, using both
structural and logic-based matchers will lead to an improvement of the current
state of the art in biomedical ontology matching.
Furthermore, our results demonstrate that when there is an adequate external
resource that links both ontologies, using it as a source for synonym extension
can strongly improve matching performance. Ascertaining if an external resource
is relevant for a matching task is then a relevant question, which we will address
in future work. We also hope to address the extension of our synonym derivation
technique to other kinds of relations such as hypernymy and holonymy.
We have demonstrated the importance of an adequate consideration of termi-
nological properties in ontology matching, specifically of distinguishing between
different synonym properties and of extending synonyms based both on ontology
internal knowledge and on references to external resources. Our novel approaches
will become increasingly relevant as ontologies grow and become more refined,
defining more synonyms through distinct properties. We envision that the next
step in exploring synonyms in biomedical ontology matching will include finding
other kinds of relations, not just equivalence, so as to enable linking different
entities such as diseases, symptoms, genes, anatomical structures, phenotypes
and organisms, in a true biomedical Semantic Web.
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