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Abstract

This degree project studies the main results on the bilateral assignment game. This is
a part of cooperative game theory and models a market with indivisibilities and money.
There are two sides of the market, let us say buyers and sellers, or workers and firms, such
that when we match two agents from different sides, a profit is made.

We show some good properties of the core of these games, such as its non-emptiness and
its lattice structure. There are two outstanding points: the buyers-optimal core allocation
and the sellers-optimal core allocation, in which all agents of one sector get their best
possible outcome.

We also study a related non-cooperative mechanism, an auction, to implement the buyers-
optimal core allocation.

Resumen

Este trabajo de fin de grado estudia los resultados principales acerca de los juegos de
asignacion bilaterales. Corresponde a una parte de la teoria de juegos cooperativos y
proporciona un modelo de mercado con indivisibilidades y dinero. Hay dos lados del
mercado, digamos compradores y vendedores, o trabajadores y empresas, de manera que
cuando se emparejan dos agentes de distinto lado, se produce un cierto beneficio.

Se muestran ademas algunas buenas propiedades del nucleo de estos juegos, tales como su
condicién de ser siempre no vacio y su estructura de reticulo. Encontramos dos puntos
destacados: la distribucién 6ptima para los compradores en el nucleo y la distribucién
o6ptima para los vendedores en el ntucleo, en las cuales todos los agentes de cada sector
obtienen simultaneamente el mejor resultado posible en el niicleo.

También estudiamos un mecanismo no cooperativo, una subasta, para implementar la
distribucién 6ptima para los compradores en el nicleo.
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Chapter 1

Introduction

This degree project covers the study of assignment problems in a game theoretical frame-
work, focusing on assignment games and especially in stability notions, that is the core.

What is game theory about?

Decisions are made every day, by all type of agents, let it be individual persons, firms,
governments or any kind of economic agent. The outcomes of the decision do not only
depend on the decision of the agent but also on the decisions of others. Therefore Game
Theory is a formal approach (mathematical in form) to analyze the process of decision
making of several agents in mutually dependent situations.

Von Neumann and Morgenstern (1944) [42] introduces for the first time the term Game
Theory in their book “Theory of Games and Economic Behavior”. They distinguish in this
book two major approaches, non-cooperative game theory and cooperative game theory.

Nash (1951) [23] defines the difference in between the two approaches that in a non-
cooperative game “each participant acts independently, without collaboration or commu-
nication with any of the others”, while in a cooperative game they “may communicate and
form coalitions which will be enforced by an umpire”, and also “this theory is based on an
analysis of the interrelationships of the various coalitions which can be formed by the play-
ers of the game”. While non-cooperative game theory deals with situations with possibly
opposing interests and which actions agents would choose in such situations, cooperative
game theory is concerned with what kinds of coalitions would be formed and how much
payoff every agent should receive.

A cooperative game with transferable utility, or simply a TU-game, considers the situation
in which agents are able to cooperate to form coalitions and the total payoff obtained from
their cooperation can be freely distributed among the agents in the coalition.

More precisely, a TU-game is described by a finite set of agents, called players, and a
characteristic function. A characteristic function of a TU-game assigns to each coalition
the total profit, or worth, which can be obtained by the coalition without cooperating with
players outside the coalition. A fundamental question of TU-games is how much payoff
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each player must receive.

A solution concept for TU-games assigns to each TU-game a set of allocations that satisfy
certain properties, or axioms. One of the well-known solution concepts of TU-games is the
core introduced by Gillies (1959) [13], as the set of allocations that are efficient and exactly
distribute the worth of the grand coalition of all players, and are stable in the sense that
no group of players has the incentive to leave the grand coalition and obtain the worth of
themselves.

Assignment problems and assignment games

One of the earliest works on assignment problems within an economic context is Koopmans
and Beckmann (1957) [16]. The authors study a market situation in which industrial plants
had to be assigned to the designated locations. The idea is to match two disjoint sets
(plants and locations) by mixed-pairs where each possible mixed-pair has a given value.
The problem in this context is to find a matching with the highest total valuation of mixed-
pairs. Making use of Birkhoff-von Neumann Theorem (Birkhoff (1946) [2|; von Neumann
(1953) [43]), they show that an optimal assignment can be obtained by solving a linear
program. Furthermore, they introduce a system of rents (prices) on the locations that
sustain the optimal assignment by solving the dual linear program. Related to that, Gale
(1960) [11] defines competitive equilibrium prices and shows they exist for any assignment
problem.

Shapley and Shubik (1971) [36] introduces the assignment problem in a cooperative game
framework. The authors study a two-sided (house) market. In their setting, there are
two disjoint sets that consist of m buyers and n sellers respectively. Each buyer wants
to buy at most one house and each seller has one house on sale. Utility is identified with
money, each buyer has a value (which can be different) for every house, and each seller has a
reservation value. The valuation matrix represents the joint profit obtained by each mixed-
pair. They define the corresponding cooperative game (assignment game) for the market.
The question is how to share the profit and, to this end, the authors analyze a solution
concept: the core (the set of allocations that cannot be improved upon by any coalition).
They show that the core of an assignment game is always non-empty. Furthermore, it
coincides with the set of dual solutions to the assignment problem, also with the set of
competitive equilibrium payoff vectors, and has a lattice structure. Demange (1982) [9]
and Leonard (1983) [18] prove that in the buyers-optimal core allocation each buyer attains
his/her marginal contribution and in the sellers-optimal core allocation each seller attains
his/her marginal contribution.

This monograph is organized as follows. In Chapter 2, we introduce formally the concept
of cooperative game, and to this end we introduce a short overview of the notion of util-
ity and a first distinction between non-transferable utility (NTU) cooperative games and
transferable utility (TU) cooperative games. Besides that, we introduce the core of a game
and several other essential definitions.

In Chapter 3 we discuss the assignment problem as a part of Operations Research. Linear
sum assignment problem is the first and most important assignment problem, and imme-
diately this connects with linear programming. Therefore, this chapter also presents the
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linear programming as a mathematical technique going through the most basic notions un-
til reaching the duality theorem, which is indispensable to enter into assignment markets
and games.

Next chapter, Chapter 4, is the central core of this dissertation. It introduces the assign-
ment market and its associated assignment game. This model of cooperative game was
introduced by Shapley and Shubik (1971) [36]. We study the model, an outstanding set
solution and the core. We show some good properties of the core of these games, such as
its non-emptiness and its lattice structure. We also speak of two outstanding points: the
buyers-optimal core allocation and the sellers-optimal core allocation. Some single-valued
solutions worthy of mention are the 7-value or fair solution (Thompson, 1981) [39], and
the nucleolus (Schmeidler, 1969) [35].

An assignment market with only one seller is the setting of an auction, either a single-
object auction or a multi-item auction, depending on the number of objects on sale by the
seller. In the final chapter of this dissertation, Chapter 5, we study an auction, which is
a mechanism non-cooperative in nature, to obtain the buyers-optimal core allocation: the
multi-item auction.

Some final conclusions end this dissertation.






Chapter 2

Cooperative games

2.1 Introduction to cooperative games

Game theory can be broadly divided in non-cooperative and cooperative game theory. As
opposed to the non-cooperative models, where the main focus is on the strategic aspects of
the interaction among the players, the approach in cooperative game theory is completely
different. Now, it is assumed that players can commit to behave in a way that is socially
optimal, and therefore the benefits can be as big as possible. The reason can be a contract,
a law or a custom. The main issue is how to share the benefits arising from cooperation.
Important elements in this approach are the different subgroups of players, referred to
as coalitions, and the set of outcomes that each coalition can get regardless of what the
players outside the coalition do'. When discussing the different equilibrium concepts for
non-cooperative games, we are concerned about whether a given strategy profile is self-
enforcing or not, in the sense that no player has incentives to deviate. We now assume that
players can make binding agreements and, hence, instead of being worried about issues like
self-enforceability, we care about notions like fairness and equity.

Utility

In economics, utility is a measure of preferences over some set of goods. The concept
is an important underpinning of rational choice theory in economics and game theory:
since one cannot directly measure benefit, satisfaction or happiness from a good or service,
economists instead have devised ways of representing and measuring utility in terms of mea-
surable economic choices. Economists have attempted to perfect highly abstract methods
of comparing utilities by observing and calculating economic choices; in the simplest sense,
economists consider utility to be revealed in people’s willingness to pay different amounts
for different goods.

In fact it is assumed that any agent has preferences over goods (binary relation, complete

n Peleg and Sudhslter (2003, Chapter 11) [30], the authors discuss in detail some relations between
the two approaches and, in particular, they derive the definition of cooperative game without transferable
utility (Definition 2.1 below) from a strategic game in which the players are allowed to form coalitions and
use them to coordinate their strategies through binding agreements.
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and transitive), and if this preference satisfy some assumptions it can be represented by
an utility function.

Depending on whether transference of utility between players is restricted or not, we distin-
guish between nontransferable utility games (NTU-games) and transferable utility games
(TU-games), respectively.

Nontransferable Utility Games

In this section we present a brief introduction to the most general class of cooperative
games: nontransferable utility cooperative games or NTU-games. The main source of
generality comes from the fact that, although binding agreements between the players are
implicitly assumed to be possible, utility is not transferable across players. Below, we
present the formal definition and then we illustrate it with an example.

Definition 2.1. A non-transferable utility game, NTU-game, is a pair (N,V) where N
is the finite set of players and V' is a function that assigns, to each coalition S C N a set

V(S) € RS. By convention V() = 0. Moreover, for each S C N, S #0 :
i) V(S) is a nonempty and closed subset of R,

ii) V(S) is comprehensive®* . Moreover, for eachi € N, V({i}) # R, i.e., there is v; € R
such that V({i}) = (—o0, v;],

iii) The set V(S)N{y € RS : for eachi € S, y; > v;} is bounded.

In an NTU-game, the following elements are implicitly involved:

i) For each S C N,V (S) C RY is the set of outcomes that players in coalition S can
obtain by themselves.

ii) For each S C N,{(=%);cs} are the preferences of players in S over outcomes in R®.
They are assumed to be complete, transitive, and can be represented through an
utility function.

ili) For each S C N, {U?}ics are the utility functions of the players, which represent
their preferences to R.

Let (N,V) be an NTU cooperative game. Then, vectors in RY are called allocations.

Definition 2.2. Let (N,V) be an NTU cooperative game with a finite set of players N.
An allocation © € RY is feasible if there is a partition {Si,..., Sk} of N satisfying that,
for each l € {1,...,k}, there is y € V(S;) such that, for each i € S;, y; = x;.

Example 2.3. (The banker game, Owen (1972) [28]) Consider the NTU cooperative game

2Given S C N and a set A C R®, we say that A is comprehensive if, for each pair x,y € R® such that
z € A and y < x, we have that y € A.
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(N, V) given by:

V({i}) ={xi 2 <0}, ie{1,2,3},
V({1,2}) = {(z1,22) : x1 + 4z2 < 1000, z; < 1000}
V({1,3}) = {(z1,23) 1 21 <0, z3 <0},

V({{2,3}) = {(x2,23) : 22 <0, xz3 <0},
V{N}) = {(z1, 2, x3) : &1 + x2 + x3 < 1000}.

One can think of this game in the following way. On its own, no player can get anything.
Player 1, with the help of player 2, can get 1000 dollars. Player 1 can reward player 2
by sending him money, but the money sent is lost or stolen with probability 0.75. Player
3 1s a banker, so player 1 can ensure his transactions are safely delivered to player 2 by
using player 3 as intermediary. Hence, the question is how much should player 1 pay to
player 2 for his help to get the 1000 dollars and how much to player 3 for helping him
to make transactions to player 2 at no cost. The reason for referring to these games as
nontransferable utility games is that some transfers among the players may not be allowed.
In this example, for instance, (1000,0) belongs to V({1,2}), but players 1 and 2 cannot
agree to the share (500,500) without the help of player 3.

In the next part, we define games with transferable utility, in which all transfers are
assumed to be possible.

Transferable Utility Games

We now move to the most widely studied class of cooperative games: those with transferable
utility, in short, TU-cooperative games, or TU-games. Here, the different coalitions that
can be formed among the players in N can enforce certain allocations (possibly through
binding agreements); the problem is to decide how benefits generated by the cooperation
of the players (formation of coalitions) have to be shared among them. However, there is
one important departure from the general NTU-games framework.

Definition 2.4. A TU-game is a pair (N,v), where N is the (finite) set of players and
v: 2N = R is the characteristic function of the game. By convention, v(0) :=0.

In general, we interpret v(S), the worth of coalition S, as the benefit that players in S
can generate. When no confusion arises, we denote the game (N, v) by v. Also, we denote
v({i}) and v({i,5}) by v(i) and v(ij), respectively. Let GV be the class of TU-games with
player set N.

Example 2.5. (The glove game, Owen (1975) [29]) Three players are willing to divide the
benefits of selling a pair of gloves. Player 1 has a left glove and players 2 and 3 have one
right glove each. A left-right pair of gloves can be sold for one euro. This situation can be
modeled as the TU-game (N,v), where N = {1,2,3}, v(1) = v(2) = v(3) = v(23) =0, and
v(12) =v(13) = v(N) = 1.

Example 2.6. (The Parliament of Aragon, Gonzilez-Diaz et al. (2010) [14]) In this case,
we consider the Parliament of Aragon, one of the regions of Spain. After the elections
which took place in May 1991, its composition was: PSOE had 30 seats, PP had 17 seats,
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PAR had 17 seats, and IU had 8 seats. In a Parliament, the most relevant decisions are
made using the simple majority rule. We can use TU-games to measure the power of
the different parties in a Parliament. This can be seen as "dividing" the power among
them. A coalition is said to have the power if it collects more than half of the seats of the
Parliament, 34 seats in this example. Then, this situation can be modeled as the TU-game
(N,v), where N = {1,2,3,4} (we denote 1=PSOE, 2=PP, 3=PAR, 4=IU), v(S) = 1 if
there is T € {{1,2},{1,3},{2,3}} with T C S and v(S) = 0 otherwise. The objective
when dealing with these kind of games is to define power indices that measure how the total
power is divided among the players.

The main solution concept studied for cooperative games is the core. In the next section
we introduce this concept and several other notions we need.

2.2 The core and related concepts

In this section we study the most important concept dealing with stability: the core. To
this end, we introduce some definitions and properties of the allocations associated with a
TU-game.

Definition 2.7. Let (N,v) be a TU-game and x € RN an allocation. Then, x is efficient
Zf ZieN xXr; = U(N)

Definition 2.8. Let (N,v) be a TU-game and x € RN an allocation. The allocation = is
individually rational if, for each i € N,x; > v(i), that is, no player get less than what he
can get by himself.

The set of imputations of a TU-game, I(v), consists of all the efficient and individually
rational allocations.

Definition 2.9. Let (N,v) be a TU-game. The set of imputations of v, I(v), is defined by

I(v) := {xERNZZLL“i:U(N) | Vie N,z > v(i)}.
1EN

Now, we do have the main concepts to define the core. The core of (N,v) is the set of
payoff vectors € RY, where z; stands for the payoff to agent i € N, that satisfy efficiency
and coalitional rationality:

Definition 2.10. Let (N,v) be a TU-game. The core of v,C(v), is defined by

Cv):={zel(): VSCN,> x >v(S)}
€S

The elements of C'(v) are usually called core allocations. The core is always a subset of
the set of imputations. By definition, in a core allocation no coalition receives less than
what it can get on its own (coalitional rationality). Hence, core allocations are stable in
the sense that no coalition has incentives to secede. Notice that the core may be empty.
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Now we will see two examples of TU-games, and we describe their cores.

Example 2.11. (The glove game from Ezample 2.5 is a cooperative game with 8 agents)
Let N ={1,2,3} be the set of players and let w be the characteristic function:

w1 =0  w{L2)=1 w({L23)) =1
w{2) =0 w({L,3}) =1
w{3) =0 w({2,3})=0

Table 2.1: Characteristic function of a cooperative game with 3 agents

A payoff distribution x = (x1,x2,23) € C(w) has to be coalitionally rational and hence it
has to satisfy the following inequalities:

1 >0=w{l}) z1+z2>1=w({1,2}) z1+x2+z3>1=w({1,2,3})
ze > 0=w({2}) x1+23>1=w({1,3})
z3 > 0=w{l}) z2+2z3>0=w({2,3})

Table 2.2: Inequalities for a payoff z to be coalitionally rational

The payoff distribution x € R> also needs to be efficient and distribute the worth of the
grand coalition w(N) = w({1,2,3}) among the three agents:

T+ x9 + 23 = 1.

To obtain a better idea of geometry of the core, we use a diagram. FEven though the core
C(w) is a set in R3 the constraint x1 + w2 + x3 = 1 makes it possible to draw the core
in a two-dimensional subset of R® that contains (1,0,0), (0,1,0) and (0,0,1). We use the
following inequalities to determine the core.

r1t+x2 > 1 = 23<0
T1+x3 > 1 = 29<0
ro+x3 > 0 — 21 <1

Figure 2.1: The Core of a Cooperative Game with 3 Agents (Example 2.11)

It is easy to see that the only point that meets the constraints is (1,0,0) and hence we have

C(w) ={(1,0,0)}.
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Example 2.12. (Ezample with 4 agents) Let us consider another cooperative game with
four agents N = {1,2,3,4} and the following characteristic function:

w{1}) =0 w{L,2})=0 w({1,2,3})=1 w({1,2,3,4})=2
w{2}) =0 w({1,3}) =1 w({1,2,4})=1
w({3h) =0 w{L4}) =1 w({l,3,4}) =1
w{4}) =0 w({2,3}) =1 w({23,4})=1
w({2,4}) =1
w({3,4}) =0

Table 2.3: Characteristic Function of a Cooperative Game with 4 Agents

First we will show that the set {(a,a,1 — a,1 — a)|a € [0,1]} is part of the core, i.e.
{(a,a,1 —a,1 —a)|ae[0,1]} C C(w). To show it, we just have to prove that (0,0,1,1)
and (1,1,0,0) are part of the core. These two payoff distributions are obviously efficient
and it is easy to check that they are also coalitionally rational. The core is a conver and
compact polyhedron and hence every linear combination of (0,0,1,1) and (1,1,0,0) s also
part of the core, i.e.{(a,a,1 —a,1 —a)|a € [0,1]} C C(w).

Now we will prove that C(w) C {(a,a,1 — a,1 — ) | € [0,1]}. A payoff distribution
x in the core has to be efficient, thus w(N) = 2 = x1 + x2 + x3 + x4. It also has to be
coalitionally rational hence x1 +x3 > 1, 2o+ x4 > 1 and x1 + x4 > 1, xo +x3 > 1. If
x14+ax3>1 orxe+mx4 > 1, then x1 + 29+ 23+ 24 > 2 =w(N), therefore x1 +x3 =1 and
xotx4=1. Andifxi+x4>1 orxzg+ax3 > 1 then 1+ x93+ 23+ x4 > 2 =w(N), hence
r1+x4=1, x0+x3=1. Sincex1 +x3 =1, xo+x3 =1, we can conclude x1 = x2. Since
x1+x3=1 and r1 + x4 = 1, we can conclude x3 = x4. Let 1 = x9 = a then o > 0 since
r1 > 0=w({1}). Fromzi+zs3=a+z3=1—->23=1—0a and x3 > 0 =w({3}), we see
that o < 1.

Now have proved that C(w) C {(a,a,1 —a,1 —a) | a € [0,1]} € C(w) hence the core of
our game is C(w) = {(a,, 1 —a,1 —a) |a € [0,1]}.

Figure 2.2: The Core of a Cooperative Game with 4 Agents (Example 2.12)

(0,0,0,2)

B (07 07 1’ 1)

(27 07 07 O)

. (0,0,2,0)
(17 ]'7 07 0)

(07 27 07 0)



Chapter 3

Assignment problems and linear
programming

3.1 Assignment problems

Assignment problems deal with the question how to assign n items (e.g. jobs) to n machines
(or workers) in the best possible way. They consist of two components: the assignment as
underlying combinatorial structure and an objective function modeling the “best way”.

Mathematically an assignment is nothing else than a bijective mapping of a finite set
into itself, i.e., a permutation. Assignments can be modeled and visualized in different
ways: every permutation ® of the set N = {1,...,n} corresponds in a unique way to a
permutation matrix Ag = (;;) with z;; = 1 for j = ®(i) and x;; = 0 for j # O(3).

We can view this matrix as adjacency matrix of a bipartite graph Go = (V, W; E), where
the vertex sets V and W have n vertices, i.e., |V| = |W| = n, and there is an edge (i,j) € F
if and only if j = ®(7).

Pentico (2007) [31] explains the development of what is called “assignment problems” mo-
tivated by the 50th aniversary of the seminal paper by Kuhn. This field is a part of
Operations Research, the branch of decision sciences using analytical tools and methods to
help making better decisions. Usually is devoted to applied problems related to businesses,
engineering and organizations. Kuhn’s result allowed a solution of real-world instances,
without computers, and the research area is known today as combinatorial optimization.

It is generally recognized that the beginning of the development of practical solution meth-
ods for the classic assignment problem was the publication in 1955 of Kuhn'’s article on the
Hungarian method for its solution (Kuhn, 1955) [17]. Naval Research Logistics reprinted
it in honor of its 50th anniversary.

There are many different variations corresponding to the assignment problem, and Burkard
et al. (2009) [5] is an excellent survey on theoretical methods, algorithms and practical
developments.

Assignment problems involve optimally matching the elements of two or more sets, where

11
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the dimension of the problem refers to the number of sets of elements to be matched. When
there are only two sets, they are referred to as “tasks” and “agents”. Thus, for example,
“tasks” may be jobs to be done and “agents” the people or machines that can do them, or
students to be assigned to schools.

The original version of the assignment problem is discussed in almost every textbook for
an introductory course in either management science/operations research or production
and operations management. As usually described, the problem is to find a one-to-one
matching between n tasks and n agents, the objective being to minimize the total cost of
the assignments. Classic examples involve such situations as assigning jobs to machines,
jobs to workers, or workers to machines.

The linear sum assignment problem (LSAP) is one of the most famous problems in linear
programming and in combinatorial optimization. Informally speaking, we are given an
n x n cost matrix C' = (¢;;) and we want to match each row to a different column in such
a way that the sum of the corresponding entries is minimized. In other words, we want to
select n elements of C' so that there is exactly one element in each row and one in each
column and the sum of the corresponding costs is a minimum.

Alternatively, one can define it through a graph theory model. Define a bipartite graph
G = (U,V; E) having a vertex of U for each row, a vertex of V for each column, and cost
¢;j associated with edge [i,7] for 4,5 = 1,2,...,n: The problem is then to determine a
minimum cost perfect matching in G (weighted bipartite matching problem: find a subset
of edges such that each vertex belongs to exactly one edge and the sum of the costs of
these edges is a minimum).

Without loss of generality, we assume that the costs ¢;; are non-negative. Cases with
negative costs can be handled by adding to each element of C a fixed value, the minimum
of all entries, £. Since we need to select one element per row, any solution of value z for the
original cost matrix corresponds to a solution of value z + n x £ for the transformed cost
matrix. In this way we can manage the maximization version of the problem by solving
LSAP on a transformed instance having costs ¢;; = —c;;.

We also assume in general that the values in C are finite, with some ¢;; possibly having a
very large value (< oo) when assigning ¢ to j is forbidden.

The mathematical expression of the linear sum assignment problem is the following one!:

Minimize  z = Z Z CijTij (3.1)

i€EN jEN
subject to Z x5 =1, forall j € N,
iEN
inj =1, foralli e N,
JEN

zi; € {0,1} for all (i, j) € N x N.

In this dissertation we will use this kind of problems to build a cooperative model used
in economics. The optimal (linear sum) assignment problem is that of finding an optimal

IN:={1,2,... n}.
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matching, given a matrix that collects the potential profit of each pair of agents. Some
examples are the placement of workers to jobs, of students to colleges, of physicians to
hospitals or the pairing of men and women in marriage. Once an optimal matching has
been found, one question arises: how to share the output among the partners.

Cooperative games arising from Operations Research have been studied by different authors
and Curiel (1997) [7] or Borm et al. (2001) [4] are good surveys.

3.2 Linear programming

Linear programming is a mathematical technique for solving constrained maximization and
minimization problems when there are many constraints and the objective function to be
optimized, as well as the constraints faced, are linear (i.e., can be represented by straight
lines).

The subject of linear programming is older than the Second World War. Fourier? was

among the first to investigate this subject and point outs its importance to mechanics and
probability theory. The problem that attracted his attention was that of finding a least
maximum deviation fit to a system of linear equations. He reduced the problem to that
of finding the lowest point of a polyhedron. His suggested solution to this problem can be
viewed as a precursor to the modern day simplex algorithm devised by Dantzig®. Dantzig
at the time was engaged in a project of an American research program that resulted from
the intensive scientific activity during the Second World War, aimed at rationalizing the
logistics of the war effort. In the Soviet Union, Kantorovitch? had already proposed a
similar method for the analysis of economic plans, but his contribution remained unknown
to the general scientific community until much later.

The problem of optimizing a linear function subject to linear inequality and equality con-
straints is called linear programming (LP). Every linear programming problem can be
written in the following standard form:

max c-x (3.2)
s.t. Az = b,
x> 0.

Here ’s.t.” is an abbreviation for ’subject to’. In this standard form, we are given two vectors
b€ R™ ¢ € R" with a matrix A € R,,xp,. In this LP problem, (x1,x9,...,2,) € R™ are

2Joseph Fourier (1768-1830) was a French mathematician and physicist best known for initiating the
investigation of Fourier series and their applications to problems of heat transfer and vibrations. The
Fourier transform and Fourier’s law are also named in his honor. Fourier is also generally credited with
the discovery of the greenhouse effect.

3George Bernard Dantzig (November 8, 1914 — May 13, 2005) was an American mathematical scientist
who made important contributions to operations research, computer science, economics, and statistics.
Dantzig is known for his development of the simplex algorithm, an algorithm for solving linear programming
problems.

4Leonid Kantorovitch (1912-1986) was a Soviet mathematician and economist, known for his theory and
development of techniques for the optimal allocation of resources. He is regarded as the founder of linear
programming. He was the winner of the Stalin Prize in 1949 and the Nobel Memorial Prize in Economics
in 1975.
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the variables that satisfy the constraints which form a polyhedron. This polyhedron is
called the feasible region of the LP.

Example 3.1. Here is an example of a Linear Program (LP).

max 1 + 2x9
st @+ Sxp <4,
1+ 22 < 2,
2z < 3,
r1,x2 > 0.

Figure 3.1: The feasible region of Example 3.1
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This polyhedron, the shaded part of Figure 3.1 is called the feasible region of the LP. In this
case, the feasible region is a polytope. A geometrical rendition of our optimization problem
is to find a point in the feasible region that mazimizes f(x1,x2) = x1 + 2x2.

Observe that the optimal solution cannot be in the interior of the feasible region.

Suppose it were. Call it (a,b). Let € > 0 be sufficiently small such that (a + €,b + ¢€) is
feasible. Such an € exists because (a,b) is in the interior of the feasible region. Notice that
fla+e,b+¢) = f(a,b)+3e > f(a,b), contradicting the optimality of (a,b). Therefore that
the optimal solution must lie on the boundary of the feasible region.

Last remark suggests that one of the extreme points of the feasible region must be an optimal
solution.

Suppose there is an optimal solution on the boundary between the points A and B marked
on the figure but not the extreme points A, B. Call it (a,b). Since this point is on the
boundary our previous argument does not apply because (a + €,b+ €) need not be feasible.
The idea is to perturb (a,b) to a new feasible point that is still on the same boundary
segment. Consider the point (a + pu1,b + p2). We want this to be on the same boundary
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segment that (a,b) is on. That boundary is defined by the equation x1 + xo = 2. So we
need a+ p1 + b+ pe = 2. Since a+b = 2 it follows that py + pe = 0. We must ensure that
the p1 and pa are chosen so that (a+ p1,b+ pg) is feasible. Given the location of (a,b) we
know that all the other inequalities are satisfied strictly. That is a + %b <4, 2a < 3 and
a,b > 0. So, for |u1|, |u2| sufficiently small (a + p1,b + p2) will be feasible. Notice that
fla+p1, b4+ pu2) = a+2b+ py + 2p9 = a+ b+ pg because py = —pua. If we choose pg > 0
then f(a + p1,b+ pe) > f(a,b) which contradicts the optimality of (a,b).

In this example, the optimal solution is at the point A. It is formed by the intersections of
the lines x1 + xo = 2 and x1 + %:vg = 4.

If an LP has equality constraints, the constraints that are satisfied at equality by a feasible
solution are said to bind at the solution. In our example, the constraints 1 + x9 < 2
and z1 + % < 4 bind at an optimal solution. They will be called binding constraints. The
function ¢ - x being optimized is called objective function and the matrix A defining the
feasible region is called the constraint matriz. The vector b is called the vector of right-hand
sides.

To convert any LP into the standard form, the following modifications listed below are
performed:
e If variable z; is unrestricted, then substitute z; = xj -z, xj, Ty 2 0.
e If a constraint is in the form Z?:l a;;x; < b; then add a slack variable s; > 0 such
that Z?:l a;;x; + s; = b;.

e If a constraint is in the form 2?21 aj;jr; > b; then subtract a surplus variable s; <0
such that Z?Zl aijxj — si = bj.

e [f the objective is min cx then replace it with: max —cz.

e To change 22}21 a;;x; = b; to an inequality constraint, replace equality with these
two sets of inequality constraints: Z?:l a;jzj < b; and —E?zl ajjxy < —b;.

Example 3.2. The standard form of the LP above is

max T1 + 220
s.t. T+ %:L'Q + s1 =4,
1+ 22 + 52 = 2,
2x1 4+ s3 =3,

T1, T2, 51, 52,583 > 0.

Now we define what is called a basic solution. To this end, first consider the rank of
matrix A € R, x, in the LP. If its rank (number of linear independent rows and /or number
of linearly independent columns) is less than the number of rows, this means that some
equations are redundant and can be eliminated. Therefore we can suppose that the number
of rows and the rank of matrix A coincide, and they are less or equal than n + 1.

Definition 3.3. Consider the LP given in (3.2), with b € R™,¢c € R", A € Ryxn and
x € R™. Let B be a basis formed from m linearly independent columns of matriz A, that
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is the corresponding submatriz. Choose x € R"™ so as for x; such that j € B is to solve
BxzB =, and xj =0 if j & B. The resulting solution is called a basic solution.

Notice the choice will be unique because B is a non-singular square matrix.
If a basic solution z associated with the basis B,z = [27|0] = [B~1b|0], is non-negative
then x is a basic feasible solution to the LP.

Example 3.4. Consider the LP

T +x9+23 = 1,
201+ 32 = 1,
z1,x2,23 = 0

The constraint matriz is

and here is one basis:
11
2 0 )°
To find the basic solution associated with this basis, we set xo = 0 and solve

T +x3 = 17
2x1 4+ 0z3 = 1.

So, the basic solution is x1 = %, 9 = 0 and x5 = %, which also happens to be a basic

feasible solution.
11
2 3 )’

The basic solution associated with this basis is found by setting x3 = 0 and solving

Another basis is

1 +x9 = 1,
2x1 4+ 3z = 1.
The basic solution is x1 = 2, xo = —1 and x3 = 0 which is not a basic feasible solution.

Now we prove that the solution of the LP is found in an extreme point if the program is
feasible.

Lemma 3.5. Consider the LP given in (3.2), withb € R™, c € R", A € Ry,xp and x € R™.
If the set {x € R" : Ax = b,x > 0} is feasible, then it has a basic feasible solution.

Proof. Let 2" € R" be a feasible solution. Then z; >0, j € {1,2,...,n} and D jes Wiy =
bi, for i € {1,2,...,m} where A = (a;;). We can ignore terms such that z; = 0 and take
S={je{l,...,n}: 2, # 0}. Let {a’} be the columns of matrix A, for j € {1,...,n}.
If the set {a’ : j € S} are linearly independent we are done: if the cardinality of this set
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is less than m, throw in some additional columns of the A matrix to produce a set of m
linearly independent vectors. The variables associated with these extra columns take the
value zero. Then 2’ is a basic feasible solution.

Assume {a’ : j € S} are not linearly independent. Then there exists {\;} not all zero s.t.
> jes Aja? = 0. Let 2" = 2’ — X > 0 by picking @ as small as necessary. The columns of
A associated with the positive components of z” involve one fewer independent column.
Next, we verify that z” is feasible.

Az = A2 — 0X) = Az’ — AN = Az’ —0) " Njxal = Ar' —6%0= A2’ = b
jeS

If the columns associated with the non-zero components of 2’ are linearly dependent, repeat
the argument above. As there are finite number of columns and the method eliminates one
column at each iteration, it will terminate after a finite number of steps. O

Lemma 3.6. Consider the LP given in (3.2), withb € R™ ¢ € R", A € Ry,xp, and x € R™.
If x* is a basic feasible solution of the set {x : Ax = b,x > 0}, then x* is an extreme point
of the set.

Proof. If x* is not an extreme point there exist feasible y and z, distinct from z*, such that
z* = Ay + (1 — \)z. Let B the basis associated with 2* and set 2* = [#5|2V], A = [B|N],
y = [yB|y"N], z = [2P|2"], where N is the rest of the columns. From the definitions we
have Ay + (1 = N2V =2V =0=yVN =N =0 =2V,

Feasibility implies
Ay=b= ByP =1

and

Az =b= BzP =,
but 2 is the unique solution to Bz = b. Then 28 = 28 = yB, so 2*= 2z = y. As a result
there do not exist z,y different than x*. Therefore z* is an extreme point. O

Theorem 3.7. Consider the LP given in (3.2), with b € R™ ¢ € R", A € Ry,xn and
x € R" and let P ={x € R": Az = b,z > 0}. If A is of full row rank and max,cp cx has
a finite optimal solution, there is an optimal solution at one of the extreme points of P.

Proof. In order to prove this theorem, Lemma 3.5 can be used. The reader is referred to
Vohra (2005) [40] for its complete proof. O

Associated with each LP is another LP called its dual. The original LP is called the primal.

Upper bounds on the optimal objective function value can be found by taking appropriate
linear combinations of constraints (yA) that dominate the objective function ¢, i.e., ¢ <
yA = cx < yAx since x > 0. Using the fact that Az = b allows one to conclude that
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cr <yAr =yb=cx <yb

Thus yb is an upper bound on the objective function value.

Definition 3.8. The dual is the problem of finding the smallest function value such upper
bound from the primal LP.

Primal(P) Dual(D)
Z, = max cr = Z, = minyb
st. Az =1» st. yA>c
x>0 y unrestricted.

Example 3.9 (Example 3.2 continued). We derive the dual to the Example 3.2 above.

max 1 + 29
s.t. T+ %xg + 51 =4,
1+ x2 + s2 = 2,
2x1 4+ s3 =3,

x1,T2, 81, 52,83 > 0.

The dual of the example problem will be

min 4y1 + 2y2 + 3y3

s.t. y1 +y2 +2y3 > 1,
Su1 2 >2,
Y1,Yy2,y3 = 0.

Now we introduce Farkas’” Lemma. It is used for our LP problem and it can also be used
in the proof of the Karush-Kuhn-Tucker Theorem. It simply says that a vector is either in
a convex cone or there is an hyperplane separating the vector from the cone (separating
hyperplane).

Lemma 3.10. (Farkas’® Lemma) Let A be an m x n matriz, b € R™, and F = {x € R" :
Az = b,z > 0}. Then either F # () or there exists y € R™ such that yA > 0 and yb < 0
but not both.

Proof. The proof of Farkas’ Lemma can be found in several books under different forms.
The reader is referred to Vohra (2005) [40]. O

Lemma 3.11. If problem (P) is infeasible then (D) is either infeasible or unbounded. If
(D) is unbounded then (P) is infeasible.

SFarkas Gyula, or Julius Farkas (1847-1930) was a Hungarian mathematician and physicist. The
Hungarian Academy of Science elected him corresponding member May 6, 1898. He has made contribution
to linear algebra with Farkas’ lemma, which is named after him for his derivation of it.
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Proof. Suppose for a contradiction that (D) has a finite optimal solution, y*, say. Infea-
sibility of (P) implies by Lemma 3.10 (Farkas’ Lemma) that there exists a vector g such
that A > 0 and §-b < 0. Let t > 0. The vector y* + ty is a feasible solution for (D)
since (y* +ty)A > y*A > c. Its objective function value is (y* 4 tg) - b < y*b, contradict-
ing the optimality of y*. Since (D) cannot have a finite optimal, it must be infeasible or
unbounded.

Now suppose (D) is unbounded. Because of the feasible set is a polyhedron, we can write
any solution of (D) as y + r where y is a feasible solution to the dual and r is a ray, i.e.,
yA > cand rA > 0. Furthermore 7-b < 0 since (D) is unbounded. By Farkas’ Lemma, the
existence of r implies the primal is infeasible. O

Theorem 3.12. (Duality theorem) Let Zp, Zp be the sets of optimal solutions for (P)
and (D) respectively. If a finite optimal solution for either the primal or dual exists, then
Zp=12p.

Proof. The reader can find two proofs of this theorem in Vohra (2005) [40]. O






Chapter 4

Assignment games

The aim of this chapter is to present formally the assignment market, focusing on the
associated cooperative game, introduced by Shapley and Shubik (1971). The assignment
problem has been analyzed in operations research long before the assignment game was
investigated.

The assignment game is a model for a two-sided market in which a product that comes
in indivisible units (e.g., houses, cars, etc.) is exchanged for money, and in which each
participant either supplies or demands exactly one unit. The units need not be alike, and
the same unit may have different values to different participants.

4.1 The assignment model

An assignment game is a model for a two-sided market introduced by Shapley! and Shubik?
(1971). There are two disjoint sets of agents, let us call them buyers and sellers and denote
them by M and M’ respectively. In this market, there are m buyers and m’ sellers.
Therefore, the assignment market is integrated by a finite set of agents M of cardinality
|M| = m which has to be assigned to a set of tasks M’ of cardinality |M’'| = m/. Each
buyer i € M is willing to buy at most one good and each seller 7 € M’ has exactly one
good on sale. Assume h;; > 0 is how much buyer i € M values the good of seller j € M’
and ¢; > 0 is the reservation value of this seller, meaning j will not sell his good for a lower
price. Then, whenever h;; > ¢;, there is room too agree on some price h;; > p > ¢; and the
joint profit of this trade is (h;; —p) + (p — ¢j). As a consequence, we consider a valuation
matrix A = (aij) (i )enmxnr that represents the joint profit obtained by a mixed-pair of a
buyer and a seller that is a;; = max{h;; — ¢;,0} Vi e M,Vj € M".

Formally, we denote this market by v = (M, M'; A).

'Lloyd Stowell Shapley (June 2, 1923 - March 12, 2016) was a distinguished American mathematician
and Nobel Prize winning economist (2012). He was a Professor Emeritus at University of California, Los
Angeles (UCLA), affiliated with departments of Mathematics and Economics. He contributed to the fields
of mathematical economics and especially game theory.

2Martin Shubik (born March 24, 1926) is an American economist, who is Professor Emeritus of Math-
ematical Institutional Economics at Yale University. Shubik specializes in strategic analysis, the study of
financial institutions, the economics of corporate competition, and game theory.

21
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4.2 The assignment game

Shapley and Shubik (1971) [36] associates to each assignment market (M, M’, A) a coop-
erative game which is called the assignment game.

Definition 4.1. Let v = (M, M'; A) be an assignment market. The associated assignment
game (M UM’ wa) is defined by a set of agents (the union of buyers and sellers: M UM’)
and the characteristic function w4 which associates to each coalition of agents the maximum
benefit they can get by assigning buyers and sellers inside this coalition.

Definition 4.2. Let v = (M, M'; A) be an assignment market. A matching u between M
and M’ is a subset of the cartesian product, M x M', such that each agent belongs to at
most one pair.

We denote by M(M, M’) the set of all possible matchings.
Definition 4.3. A matching p € M(M,M') is optimal for the market (M, M'; A) if

Yo oai; > Y. aij forallp € M(M,M').
(i,5)€n (d.5)en’

The set of all optimal matchings for the market (M, M’; A) is denoted by M 4(M, M’). An
optimal matching © can be found by solving the so-called linear assignment problem.

Definition 4.4. Let v = (M, M'; A) be an assignment market and (M U M’ wya) its
associated assignment game. The value for the total coalition wa(M U M') is the optimum
value of the linear program:

max Z = Z Z Qi g (41)

ieM jeM’
s.t. Z wij <1, forall j € M',
ieM
Z wij <1, for alli e M,
JjeM’

wij € {0,1} for all (i,j) € M x M'.

Notice that this is an integer linear program, and by the definition of the linear program,
matrix (,udij)(i’j)e Mx e has at most only one non-zero entry for each row and column. If
€ {0, 1}M*M" ig o solution of (4.1), then pu = {(4,) | pij = 1} is an optimal matching.

We now consider the continuous relaxation, or continuous case of this integer linear pro-
gram. This is our next linear program (4.2) and we will solve it using several well known
algorithms. Notice that matrices (Mij)(i,j)e Mx e which are solutions of our first program
are also solutions of the continuous relaxation program:
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max z = Z Z Qg g (42)

ieM jeM’
s.t. Z,uij <1, forall j € M,
ieM
> iy <1, foralli € M,
jEM

Mij = 0 for all (7,,]) €M x M.

One of most well-known solutions of the assignment problem, the Hungarian method, was
provided by Harold Kuhn 2 [17] in 1955, even though Carl Gustav Jacobi already discovered
the same solution in the 19th century?.

In fact, the assignment problem is a special case of the transportation problem. Other
solutions e.g. the simplex method provided by Dantzig (1963) [8] can also be used to find
an optimal matrix that maximizes z. The solution of the assignment problem (see Dantzig
(1963), p. 318) shows that the optimal value for 4.2 is attained with all p;; € {0,1}, for
all (i,5) € M x M’ . This result was independently proved in Birkhoff> (1946) [2] and von
Neumann® (1953) [43]. Hence this implies a solution to the assignment problem 4.1.

Since the solution of the assignment problem deals with a linear program, it allows us to
consider the linear program that is dual to the first program (4.2):

min z= Z u; + Z v (4.3)

ieM jeM’
s.t. u; +vj > a;; for all (i,7) € M x M,
u; > 0, for all i € M,
uj > 0, forall j € M.

Therefore, because of the Duality Theorem (Theorem 3.12) for linear programming, we
can state the following corollary.

Corollary 4.5. The solution of the dual program (4.3) coincides with the solution of the
linear program (4.1).

3Harold William Kuhn (July 29, 1925 — July 2, 2014) was an American mathematician known for the
Karush—Kuhn—Tucker conditions, for Kuhn’s theorem, for developing Kuhn poker as well as the description
of the Hungarian method for the assignment problem.

4Jacobi’s solution was rediscovered in 2006. Further information can be found in Carifiena, J. et al.
(2006) [6].

5George David Birkhoff (March 21, 1884 — November 12, 1944) was an American mathematician, best
known for what is now called the ergodic theorem. He introduced the chromatic polynomiale and proved
Poincaré’s "Last Geometric Theorem," a special case of the three-body problem.

5John von Neumann (December 28, 1903 — February 8, 1957) was a Hungarian-American pure and
applied mathematician, physicist, inventor, computer scientist, and polymath. He was a pioneer of the
application of operator theory to quantum mechanics, in the development of functional analysis, and a key
figure in the development of game theory.
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To finish the description of the game, now we can define the characteristic function. Recall
that N = M U M’, The characteristic function wa(S) defines the benefit that can be
obtained by each coalition.

Definition 4.6. Let v = (M, M’; A) be an assignment market and (M U M’ ,wya) its
associated assignment game. The characteristic function wa(S) defines the benefit that can
be obtained by each coalition and it is expressed in the following form

S) = ij IS CN.
A s 2 0 S E

Notice that wa(S) is the optimal value of the linear program (4.1) restricted to i € SN M
and 7 € SN M.

The concept of solution more studied for cooperative games in general, and for the assign-
ment games in particular, is the core.
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4.3 The core of the assignment game

Definition 4.7. Given an assignment game (M U M’ wy), an imputation is a vector of
payments (u,v) € R} x RT/ where u; > 0 is the payment to buyer « € M and v; > 0 s
the payment to seller j € M', such that

Z“i+ Z v; = wa(M UM,

ieM jeM’
We denote I(wy) the set of imputations of the assignment game.

Now we define the core of the assignment game.

Definition 4.8. The core of an assignment game (M U M’ ,w,) is the set of those impu-
tations such that every coalition receives, at least, its value according to the characteristic
function:

Clwa) =S (w,v) € I(wa)| Y wit Y, vj>walS) VSCMUM
1€SNM jeSNM’

Theorem 4.9. (Shapley and Shubik, 1971 [36]) Let v = (M, M'; A) be an assignment mar-
ket. Then, its corresponding assignment game (N,w4) has a non-empty core. Moreover,
the core coincides with the set of dual solutions to the linear assignment problem.

Proof. Consider the assignment market v = (M, M'; A) and its corresponding game (N, w4).
An optimal matching p can be found by solving the so-called linear assignment problem:

maxz Z Qi Tij (44)

i€M jeM'

s.t. inj <1, forall j € M’,
ieM
Z x5 <1, for all i € M,
jeM’

zi; € {0,1} for all (i,7) € M x M.

By the Birkhoff-von Neumann Theorem the solution of the above integer linear program
coincides with its LP relaxation, which is the related continuous linear program with
z;; > 0 for all (¢,j) € M x M'. The fundamental duality theorem states that every linear
program can be transposed into a dual form and, if the primal program has a solution,
then the optimal values of both programs coincide. Then, the dual of the LP relaxation of
the primal program (4.4) is:

min Z u; + Z vj (4.5)
ieM JjEM’

s.t. u; +v; > a;; for all (i,5) € M x M,
u; > 0 for all i € M,
v; >0 for all j € M'.
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In our case, the fundamental duality theorem tells that (4.5) has a solution and, over the
respective sets of constraints, min Y w; + >, v; =max y, > a;;%;; = wa(M UM').

ieM jeM’ ieM jeM'
Hence, a payoff vector (u,v) is a solution of the dual program (4.5) if and only if it is an
element of the core of (N,wy4). As a consequence, the core is non-empty. O

Shapley and Shubik (1971) [36] shows that it is sufficient to take into account mixed-pair
coalitions to describe the core. Then, for each optimal matching p € M4 (M, M'), the core
of the corresponding assignment game (N,w4) is described by

C(wa) = {(u,v) e RY x RM' | " +v; = aj; for all (i,7) € p and }

U; +vj = Qg for all (Z,j) eM x M

By the nature of the assignment game, the core only considers u;,u; > 0 for alli € M, j €
M’ where u; = 0 if ¢ is unmatched by p and v; = 0 if j unmatched by p.

Shapley and Shubik prove that the core of an assignment game is always non-empty, that
is, assignment games are balanced”.

The set of dual solutions of the assignment problem had already been analyzed by Gale
(1960) [11] and related to his notion of competitive equilibrium. As in Roth and Sotomayor
(1990) [33], let us assume that M’ contains as many copies as necessary of a null object
o € O such that a;0o = 0 for all « € M. Then, for any matching g, all buyers can be
assumed to be matched either to a real object or to a null object O.

Definition 4.10 (Gale, 1960 [11]). Given a vector of non-negative prices p € RM' | with
po =0, the demand set of buyer i € M at prices p is

Dy(i)y={jeM | ay—p;= ’?el%{aik —Di}}

This means that buyer ¢ asks for those objects that give him the maximum profit, given
by the difference of valuation and price.

Then, a pair (p, 1) formed by a vector of prices and a matching is a competitive equilibrium
if (i) € D;(p) for all ¢ € M and p; = 0 whenever j € M’ is unassigned by p. In this
case, p is said to be a competitive equilibrium price vector. Given a competitive equilibrium
(p, 1), the payoff vector (u,v) where u; = a;, ;) — pu@) for all i € M and v; = p; for all
j € M’ is a competitive equilibrium payoff vector.

Theorem 4.11 (Gale, 1960 [11]). For any assignment game, the set of solutions of the
dual program of (4.1) coincides with the set of competitive equilibrium payoff vectors.

Proof. Given a solution (u,v) of the dual program, define p = v € Rf '. Take 1 an optimal

matching. From > a;; = > wi+ > v; and u; +v; > a5 for all (¢,7) € p it follows
(i) ieM jeM

that p; = v; = 0 for all unassigned object j € M’ and w; +vj = a;j if (¢,j) € p. Moreover,

for all i € M,

iy (i) — Pu(i) = Wi > A5 — Pj for all j € M/,

A game (N, v) is said to be balanced if it has a non-empty core.
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where the inequality follows from the dual program constraints. Hence, p is a competitive
price vector.

Conversely, if p is a competitive price vector, then there exists u € M(M, M’) such that
p;j = 0 if j is unassigned by p and for all i € M,

(i) € Di(p).

Define now (u,v) € RM x RM by vj = p; for all j € M’ and u; = Qi) — Pu() for all
i € M. Notice that if i € M is assigned to a null object, then u; = 0. Also, v; = 0 if
J ¢ n(M). Let us check that (u,v) is a solution of the dual problem.

We see first that if (p, ) is a competitive equilibrium, then g is an optimal matching.
Indeed, take another matching p' € M(M, M’). Now, since @,y — PuG) = Giw (i) — P/ (i)
for all i € M,

Do oai =Y a2 Y (@)~ Pu) T D Pug)

(i,5)€n ieM ieM ieM
=D Gw@— Y, Pt Y P
icM Jeu (M) JEu(M)
= Z Qipy' (i) — Z pj+ Z Dj
ieM JEW (M)\p(M) JERDM)\p/ (M)
> > i)
ieM

where the last inequality follows from the fact that (p, u) is a competitive equilibrium and
hence p; = 0 for all j & p(M).

Since p is an optimal matching and agents assigned to the null object receive zero,

wAMUM') = 37 a6y = > ui v, = 2o i+ Y. vj,
ieM ieM ieM JEM

which means (u,v) is efficient.
Finally, for all : € M and for all j € M/,
Ui TV = Ui+ Pj = Qi) — Pu@) +Pj
> iy — pj + pj = Gij,

which concludes the proof that (u,v) is a solution of the dual program. O

Theorem 4.12. Let v = (M, M’; A) be an assignment market and (M U M' wy) its
associated assignment game. For the assignment game, the four sets below coincide:
o The core, C(wa).

e The set of dual solutions to the assignment problem (4.1).

o The set of competitive equilibrium payoff vectors of the market.
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o The set of pairwise-stable payoff vectors.

Now we put several examples of an assignment game and its core.

Example 4.13. Consider an assignment game with two sellers M = {1,2} and two buyers
M’ = {1',2"}. The worth of a mized-pair coalition is put in the next table, that is matriz
A, where the optimal matching is shown.

V[
1 ®] 4
212 [ ®

Once we have found an optimal matching, we can determine the core directly without
calculating the characteristic function. We just make use of the constraints of the dual
problem of the corresponding assignment problem.

Cloa) = {(ul»u2;vl,v2) € R} xR} up vy =5, uz+vz=3 }

up +ve >4, up+vy > 2

Let us now represent the core in a two-dimensional space, that is, its projection on the first
two coordinates:

Cy(wa) =A{u] (u,v) € C(wa)}.
From ui +v1 =5 and uy,v1 > 0, we obtain 0 < uy < 5. Similarly from us + v9 = 3 and
ug,v2 > 0, we have 0 < us < 3. In uj + ve > 4 we substitute vo = 3 — uy and hence have

up — uo > 1. In ug + v1 > 2 we substitute v1 = 5 — uq and obtain us — u; > —3. Now we
can draw the core in a two-dimensional space.

Figure 4.1: The Core of Example 4.13 in a two-dimensional space

U2

up <5

v
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Example 4.14 (Shapley and Shubik, 1971 [36]). Consider an assignment game with three
sellers M = {1,2,3} and three buyers M' = {1',2',3'}. The worth of a mized-pair coalitions
1s put in the next table, that is matriz A, where the optimal matching is shown.

1/ 2/ 3/
15 [®] 2
7196
3@ 3]0

p = {(1,2,(2,3),(3,1)} is an optimal matching for this game. Once we have found
W, we can determine the core directly without calculating the characteristic function as
i Example 4.13 above. We just make use of the constraints of the dual problem of the
corresponding assignment problem.

Ul +v >0, ur+veo=8, uy +v3 >3
C(WA) = (Ul,UQ,Ug;’U17'1)277)3) eRi XRi U + U1 Z 77 U + Vg 297 U2+'U3:6
us+v; =2, uz+v2 >3, ug+wv3>0

Let us now represent the core in a three-dimenstonal space, that is, its projection on the
first three coordinates:

Culwa) ={u | (u,v) € C(wa)}-

The same procedure applied in Example 4.13 provides us the lines and constraints to draw
the core in a three-dimensional space.

Figure 4.2: The Core of Example 4.14 in a three-dimensional space

VA
Vo

us = 6 — v3
2

U3:2—U1

T 0 2 4 6 8

—> U =8 — vy —>»

The reader might observe that buyers and sellers are upside down according to the way
we have been defining the games in the examples above. This is due to the fact we have
wanted to keep the original form from Shapley and Shubik (1971) [36].
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Notice that some examples seen as cooperative games from Chapter 2 are actually assign-
ment games. Let us show them down below.

Example 4.15. (Ezample 2.5: The glove game) Consider an assignment game with 1
buyer (one person with a left glove) M = {1} and 2 sellers (two people with a right glove
each) N ={2,3} . The worth of a mized-pair coalition is put in the next matriz.

2 3
1 (1 1)

This is because the glove market only considers a positive utility when a left glove is allocated
to a right glove (and the other way around).

Example 4.16. (Ezample 2.12) Let us consider another assignment game with 2 buyers
M ={1,2} and 2 sellers N = {3,4}. The worth of a mized-pair coalition is represented in
the following matriz.

3 4

4.4 Lattice structure of the core of the assignment game

The second main contribution in the paper of Shapley and Shubik (1971) [36] is the study
of the structure of the core of the assignment game. If we consider on the core elements
the partial order defined by one side of the market, for instance (u,v) <ps (u’,v’) if and
only if u; < w for all i € M, it results that the core has the structure of a complete lattice
with respect to this order. Indeed, Shapley and Shubik prove the following theorem.

Theorem 4.17. (Shapley and Shubik, 1971 [36]) Let v = (M, M'; A) be an assignment
market. Given two core elements (u,v) € C(wa) and (u',v") € C(wa), the join

(u,0) V (', 0") = ((max{uz, ui})ien, (min{vs, vi})jenr)
and the meet
(u,v) A (u',v") = ((min{wi, wi})iem, (max{vj, vj})jemr)

also belong to the core.

A consequence of this lattice structure of the core is the existence of two special extreme
core points, one for each side of the market, namely, buyers-optimal core allocation and
sellers-optimal core allocation. In one of them, (@4, v4) each buyer maximizes her payoff
in the core, while each seller minimizes his. This core element is related to the minimum
A

)

competitive equilibrium price vector. In the other one, (u?,74), each seller maximizes

his core payoff while buyers get their minimum one, and this is related to the maximum
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competitive equilibrium price vector. Moreover, these are the two more distant points
inside the core. What is remarkable is that all agents on the same side of the market,
despite being competing for the best deal, obtain their maximum core payoff in the same
core element.

Theorem 4.18. (Shapley and Shubik, 1971 [36]) Let v = (M, M'; A) be an assignment
market. The core of the assignment game C(wa) always contains a buyer and a seller
optimum.

Proof. The basic idea behind the proof is related to the special form of the restrictions of
the core, where each variable has 1 as a coefficient. Figure of Example 4.13 might help
visualizing this idea. We will show that for any allocations (u/,v’) and (u”,v”) that are
part of the core the allocations (u, ) and (@, v) with

. !/ " -

w; = minf{u;,u; ie M,
o . 1o . /

vj = min{vj,v; je M,
~ !/ " -
u; = max{u;,u; i€ M,
~ 1o . /
U5 = max{v},v] je M.

are themselves in the core. This is equivalent to say that the core points form a lattice
(Birkhoff, 1973) [3]. We first prove that (u,?) is coalitionally rational. For all i € M,
j € M’', we have

~ . 5y o~ o~
ui+0; = min{u; + 05, ui + 5}
. / / " "
> min{u; + vj, u; +vj}
> Q.

Now we have to show that (u,?) is an imputation. Let p be an optimal assignment, then
we have

U = min{u;, u;'
= min{aw(i) - U;L(z‘)v Fip(i) — Uﬁ(i)}
= ay,() — max{vy ), v}

= Qip(i) — Up(i)-
For any player that is not assigned we have u; = 0 and v; = 0, and hence

Zyi + Z 'LNJJ' = Zaw(i) = ’LU(MUM/).

ieM jem ieM
Similarly (u,?) € C(wa).

Let us consider u; = min, )ec(w,)iwi} for all i € M and @; = max(, y)ec(w,){ui} for all
i € M. In the same way we define v; and v;. Since the core is compact (for any general
cooperative game), there exists a vector that contains the minimum w;, and another vector
which contains the minimum u;. With these two vectors we can construct a new vector,

using the lattice structure, which contains u; and u; and is also part of the core. If
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we continue this process we obtain a core allocation (u,v) where all sellers receive there
minimum payoff. We know that in the core each optimal pair (i, u*(i)) receives a;,»(;) ,
Le. Uj + V(i) = Qi (g)- S0 if w; 1S minimum vy« (;) Is maximum, 1L.e. Uy = Qi (5) — Uy
Therefore we have (u,v) = (u,7). In the same way we can show that (@, v) is part of the
core, too.

It is quite obvious that there are no other core allocations which are further away from each
other than (u,v) and (u,v) since for any core elements (u’,v") and (u”,v”) the following
inequalities hold true:

[, —w;| > |uj—uf| Vie M,
5 —v;l > vy —vi| Vjie M.

We have proved that the core is a lattice with a maximum and a minimum. Since the
total payoff of any core vector is always the same, a maximum in this context refers to a
maximum payoff for all buyers or all sellers. If the payoff for all buyers is maximum, the
payoff for sellers is also determined and minimum. O

Roth and Sotomayor (1990) [33] provides a neat proof of a result presented, independently,
in Demange 9] (1982) and Leonard [18] (1983). It says that the maximum core payoff of
an agent, be it a buyer or a seller, is her/his marginal contribution to the grand coalition.
That is the following lemma.

Lemma 4.19. Given an assignment game (M UM’ wy4), the mazimum core payoff of an
agent is his/her marginal contribution to the grand coalition, that is,

T = wa(MUM) —wa(M\{i}) UM, Yie M,
vl = wa(MUM)—wa(MU (M \{j})), VjeM.

Then we can state the following theorem.

Theorem 4.20. There exists an element in the core of the assignment game where each
buyer receives her marginal contribution to the grand coalition.

Demange proves that in any mechanism that, from the valuation matrix, implements the
buyers-optimal core allocation, truth telling is dominant strategy for each buyer.

Another question that was first studied by Mo [22] (1988) in the assignment game, and
later also consider by Roth and Sotomayor [33] (1990) for the marriage market, is concerned
with the effect on the core of changing the market by introducing a new agent.

Remark 4.21. Let (MUM' wy) be an assignment game and assume a new buyer i* enters
the market. The new game will be (M U {i*}) U M',war) where a;; = ai; for all i € M
and j € M'. Then,

yf‘/ for alli e M,
v forall j € M.
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This means that each of the previously existing buyers is worse off in the market with the
new entrant and each of the sellers is better off in this new market.

We find more precise conclusions in Mo (1988) [22] about the changes in the core when
the market faces a new entrant.

Remark 4.22. If the new buyer i* gets matched by some optimal assignment for the new
market, then there exists a non-empty set of agents such that for all buyer i in this set
HiA/ = giA; and for all seller j in this set gf, = Hj‘. That is, all buyers in this set are so

punished by the presence of the new entrant that their best payoff in the core of the new
market equals their worst payoff in the core of the original market.

Earlier, we have seen the proof which proves the core of these kind of games is always a
lattice. Observing the core of a 2 x 2 assignment game, when projected to the space of
payoffs to one side of the market, has a quite particular shape: it is a 45-degree lattice.®
This fact is extensively analyzed in Nunez and Rafels (2015) [27].

Definition 4.23. Let v = (M, M’; A) be a square assignment market, and p an optimal
matching. Denote by i’ = u(i) the i-th seller and then pu = {(i,i") | i € M}. Then, the
projection of C(wa) to the space of the buyers’ payoff is

Cyu(wa) = {u e RM

Qij — Qjj Sui—Uj Saij—aji for alli,jE{l,Q,...,m}
0 <wu; <ay forallie{l,2,...,m} '

Notice that Cy(wa) is a 45-degree lattice.

Theorem 4.24. (Quint, 1991 [32]; Characterization of the core ) Given any 45-degree
lattice L, there exists an assignment game (M, M’ A) such that Cy(wa) = L.

For m = 2, the lattice L determines either a unique valuation matrix A with two rows and
two columns such that C(ws) = L, or a unique valuation matrix A with two rows and
three columns such that C(wa4) = L.

Example 4.25. With 3 or more agents, the same 45-degree lattice may represent the core
of several valuation matrices of the same dimension. The two following matrices define
markets with the same core.

110 1 01
A= 0 1 1 B=|110
1 01 011

Cu(wa) = Culwp) = {(t,t, ;1 —t,1—t,1— 1) | 0 <t <1}

8Quint (1991) proves that this also holds for markets with more agents on each side and in fact this
property gives a geometric characterization of the core of the assignment game
L is a non-empty 45-degree lattice in R™ if can be expressed as:

L:{u e RM

u; —ug > di for all i,k € {1,...,m},i #k
bi <wu; <e;forallie{l,...,m} ’

where d;k, bi,e; € R, b;,e; > 0.
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Quint (1991) [32] poses the question of which is the maximum matrix A among those
matrices with C(wy4) = L, given a 45-degree lattice L. Clearly, this maximality requires
that no matrix entry can be raised without modifying the core, that is, for each (i,7) €

M x M’ there must be a core element (u,v) € C'(wa) with u; +vj = @;;. This is a weaker

form of exactness!?.

Theorem 4.26. A square assignment game (MUM’ w4), with an optimal matching placed
on the main diagonal, is exact if and only if matrix A has:

e a dominant diagonal: a;; > a;; and a; > aj;, for alli,j € M and

e a doubly dominant diagonal: a;; + ar, > a;; + aji, for all i,j5,k € M.

Proof. The reader is referred to Solymosi and Raghavan (2001) [37]. O

If an assignment game is exact, its valuation matrix is maximum among those leading to
the same core.

Theorem 4.27. Given an assignment game (M U M’ w,), there exists a unique matrix
A that is buyer-seller exact and give rise to the same core, C(wa) = C(wy).

Proof. The theorem above is proved in Nuniez and Rafels (2002a) [24]. O

In Nufiez and Rafels (2002a) [24], under the assumption that A is square and p an optimal
matching, for all (i,7) € M x M, the entry in A is given by

El-j = Qipu(i) + au-1(4);j +wa (M U M’ \ {M_l(])nu(l)}) - WA(M U M/)

Corollary 4.28. An assignment game (M UM’ w4) is buyer-seller exact if and only if A
has a doubly dominant diagonal.

Example 4.29. The buyer-seller exact representative of matrices A and B in Example
4.25 is the matriz with entries a;; = 1 for all i,j = 1,2,3. This is a glove market, of the
same type that the one mentioned in Example 2.5.

'9A coalitional game (N, v) is exact if for all S C N there exists z € C(v) such that Y, sz = v(S).
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4.5 Buyer and seller optima

In 1982/83 Leonard [18] and Demange [9] discovered independently from each other a
simple procedure to find the buyer or seller optimum of an assignment market. We will
explain this procedure briefly, and first we will explain what this concept means.

Let (M, M'; A) be an assignment market and (M U M’ ;w4) be its associated assignment
game. We start with calculating the maximum payoff each buyer j in the core can receive.
This is equal to 7;, and Leonard and Demange prove that it is the value that buyer j adds
to the grand coalition N = M U M’ in case he joins as the last member:

U, =wa(N) —wa(N\{j}) VjeM.

Roth and Sotomayor [33] have a rather simpler proof to show this equality. Once each
buyer received his maximum payoff, it easy to determine the minimum payoff for each
seller ¢ hence for any optimal assignment u the equation w; + v,;) = a;,(;) holds true.
Hence each seller ¢ receives

(i
Wi = Qi) — V(i) = Qi) — Wa(N) +wa(N\{pu(i)}) Vie M.

To calculate the seller optimum we use the same procedure but starting with calculating
the sellers” maximum payoffs

U; = wA(N) — wA(N\i) Vi e M,
and afterward the buyers’ minimum payoffs
V) = @iy — 1) = Gty — wa(N) FwaN\eTH()) Vi € M.

Example 4.30. We apply this last formula to Example 4.14 and we obtain the next buyer
and seller optima. The calculations can be found in Example 4.34.

(w,v) = (5,6,1;1,3,0), (u,v) = (3,5,0;2,5,1).

The buyers-optimal core allocation corresponds to the minimal competitive price vector.
The sellers-optimal core allocation corresponds to the maximal competitive price vector.
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4.6 The extreme core allocations of the assignment game

The core of a cooperative game can be described with a set of equalities and inequalities
and it is always a compact and convex set. Therefore it can also be described by its extreme
points. There does not exist a simple procedure to find these extreme points in general.
Due to the special form of the core of the assignment game, it is a lattice, there exists
a quite intuitive way, similarly to the finding of the sellers-optimal and buyers-optimal
allocation, to find the extreme allocations of the core of the assignment game.

Nuniez and Rafels (2003) [26] shows that the set of extreme core allocations of the assign-
ment game coincides with the set of reduced marginal worth vectors. It is a complex but
complete procedure to calculate the set of reduced marginal worth vectors!!. However, in
2007, Izquierdo, Nunez and Rafels [15] discovered another and simpler method to calculate
the extreme core allocations of an assignment game.

To this end, let us introduce a set of vectors called max-payoff vectors. with one max-payoff
vector 27(A) for each possible ordering of the agents. An ordering 6 = (ki, ko, ..., ky) is

a bijection from N = M UM’ to N = M U M’'. Each agent k; € N is assigned to
a position ¢ € {1,2,...,n}. The function 6(i) returns agent k; for all i € N and the
inverse function §~!(k;) = i gives back the position i for each agent k; € N. The set of

orderings on N is called ©. The set of antecessors of an agent k£ € N in the ordering 0 is
P ={j e MUM97'(j) <67 (k)}.

Definition 4.31. Given an assignment game (M UM’ w4) we recursively define a payoff
vector x%(A) € RM x RM' named a max-payoff vector, for each possible order 6 on the
player set in the following way: le (A) =0 and

max;cpo {0, aiv, — 2 (A)}if ke € M,

(
) = —ela)
manePgrﬂM’{Ovakrj xj (A)} Zf kr e M.

Example 4.32. As an exercise, take the order 6§ = (1,2',1',2) on the player set of the as-
signment game of Example 4.13. The associated mazx-payoff vector is a:(f(A) =0, :cg,(A) =
max{0,4—0} = 4, 29,(A) = max{0,5—0} = 5 and 2(A) = max{0,2—5,3—-4} = 0. Then
2%(A) = (0,0,5,4). It is not efficient, which is not surprising since A has not a dominant
diagonal. Some other orders, take for instance ' = (2,2',1,1'), lead to an extreme core

point.

The total number of orderings |©| = (m +m/)! is large even for small games. It is possible
to reduce to the number of required orderings to a subset ©#. Here each buyer or seller

" Given a coalitional game (N,v) and any order k on the player set N, the marginal worth vector
mPv e RY pays each agent his/her contribution to the set of predecessors according to the order k. That
is, m’,j’(% =v({k(1)}) and, for all i € {2,...,n},

ml = o({k(L), .., k(D)}) — o({k(D), .., k(i — 1)})
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who occupies an odd number is followed by his optimal match, i.e. for p € M% (M, M'):

for all r € {0,1,2,...,%—1}
OF=<{0= (kl, ce kn) e 0| if kor+1 € M then kopyo = M(k2r+1)
if ko1 € M’ then kopio = p~ (kors1)

The number of required orderings |©#| for an assignment game with an equal number
of buyers and sellers (m = m/) still increases rapidly since there are m optimal buyer-
seller pairs, hence m! different pair orderings. Each optimal pair can be switched around
(k,u(k)) — (n(k), k) thus another 2™ different combinations are possible. If we combine
these two numbers we obtain the number of orderings:

01 = mlx 2™

This number is already much smaller than the total number of orderings |©| = (2m)! but
still quite large. To show the increasing number of orderings, we calculate the number of
orderings for games with different size. It becomes quite obvious that for large games e.g.
a used car market with 30 different cars the max-payoff vectors are so numerous that it
becomes impossible to calculate them.

Table 4.1: Number of Orderings |O#| and |O|

m |©¢] [E]
1 2 2
2 8 24
3 48 720
4 384 40, 320
5 3,840 3,628, 800
6 46, 080 479,001, 600
7 645, 120 87,178,291, 200
8 10, 321, 920 20, 922, 789, 888, 000
9 185, 794, 560 6.402, 373, 705, 728, 000
10 3,715,891, 200 2,432,902, 008, 176, 640, 000
11 81,749,606,400 | 1,124,000, 727,777,607, 630, 000
12 [ 1,961,990, 553,600 | 620,448, 401, 733, 239, 439, 360, 000

Izquierdo, Nunez, and Rafels [15] prove that max-payoff vectors are not, in general, efficient
and that only the efficient max-payoff vectors are extreme core allocations.

Theorem 4.33. Let (M UM’ wy) be an assignment game with an equal number of buyers
and sellers and let p* be an optimal matching, p* € M} (M, M'). Then,

Ext(C(wa)) = {z¥ | 0 € 4, 2¢ + x? =a;; forall (i,j) € p*}.

This is a full characterization of the extreme core allocations and therefore closes the search
for the extreme points.
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Example 4.34. (A numerical example) Let us consider an example that Shapley and Shu-
bik (1971) [36] use in the first analysis of the assignment game, to illustrate the geometry
of the core. This example consists of a house market with three sellers (1,2,3) and three
buyers (1/,2/,3).

The reader will notice this is an assignment game whose core has been studied before (see
Ezample 4.14).

The features of the market, in other words the valuation of each house by its corresponding
seller and the valuation of each house by each buyer, are shown in the next Table 4.2.

Table 4.2: A House Market

Houses | Sellers’ basis in $§ | Buyers’ valuation in $
i Ci hi1 hi2 hi3
1 18,000 23,000 | 26,000 | 20,000
2 15,000 22,000 | 24,000 | 21,000
3 19,000 21,000 | 22,000 | 17,000

Based on this information we can calculate the benefit of each buyer-seller pair a;; =
max{0, hi; — ¢;}, which is shown in matrix A (Table 4.3). Furthermore the optimal assign-
ment and the worth of the grand coalition, which is 16, can be determined.

Table 4.3: The Benefit of each Buyer-Seller Pair

(buyers M)
1 2 ¥
1{5 @& 2 | (unitsof §1000)
(sellers M) 2|7 9 ®©®
3/@ 3 0

We will first find the buyers- and sellers- optima and later use the max-payoff vectors to
calculate all extreme core allocations. We start with calculating v1. To do so, we have
to know the value of the grand coalition w(N) with N = {1,2,3,1',2',3'} which we have
already determined and the value of the grand coalition without seller 1: w(N\{1}). The
latter can be found by erasing row 1 of matriz A and looking for the new optimal assignment.

Table 4.4: A House Market without Seller 1
(buyers M)

(units of $ 1000) 1 2 ¥
(sellers M) 217 O 6 | (units of $ 1000)
3/@ 3 0

From w(N\{1}) = $9,000 + $2,000 = $11, 000 we obtain:
1 = w(N) — w(N\{1}) = $16,000 — $11,000 = $5,000
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In the optimal matching seller 1 trades with buyer 2'. Therefore their payoffs must equal
a2, 1.e. up + vy = aja = $8,000. We see that buyer 2’ receives $8,000 — $5,000 = $3, 000.

From

uy = $16,000 — $10,000 = $6,000
u3 = $16,000 — $15,000 = $1,000
v $16,000 — $14, 000 = $2, 000
[ $16,000 — $11, 000 = $5,000
v3 = $16,000 — $15,000 = $1,000

<
S
I

we obtain the following data: Now the sellers-optimum (u,v) = (5,6,1;1,3,0) is found.

Table 4.5: The Sellers-optimum

M(Z) Ay Vu@)
2/ 8
3 6
g 2

I~
<
=
2
S

(units of $ 1000)

| DN = .

=] O Ot

3
0
1

Table 4.6: The Buyers-optimum

3170 [ ey [ | )

K 3 2 2 0 (units of $ 1000)
2’ 1 8 5 3

3’ 2 6 1 5

The buyers-optimum can be stated: (u;v) = (3,5,0;2,5,1).

In this example we already have to deal with 48 maz-payoff vectors which makes it quite
cumbersome to calculate the extreme core allocations. To show the procedure, we will
calculate one maz-payoff vector for the ordering (1,2',2,3',3,1") and provide the other
maz-payoff vectors without calculation.

Let us put 2% = (21,29, 23,01, o, 23) = (u1,u2,us; v1,ve,v3). By definition the first
agent in the ordering, seller 1, receives a payoff equal to 0. Hence the first number of the
maz-payoff vector is already determined: x° = (0, ua,us;v1,v2,v3). In second place comes
buyer 2" with a payoff equal to

ve = max{0,a12 — 1} = max{0,8 — 0} = 8,
hence x% = (0, uz, us; v1,8,v3). In third place comes seller 2 with a payoff of
ug = max{0, azs — o} = max{0,9 — 8} =1,

thus ¥ = (0,1, us;v1,8,v3). Next in the ordering is buyer 3" who can trade with seller 1
and 2. His payoff is

vy = max{0,a13 — x1,a23 — r2} = max{0,2 — 0,6 — 1} =5,
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and therefore we obtain x? = (0,1, us;v1,8,5). Then seller 3 receives his payoff
uz = max{0,asy — ro,a33 — xy } = max{0,3 — 8,0 -5} =0,

and we have z% = (0,1,0;v1,8,5). Last buyer 1" who can trade with seller 1,2 and 3
Tecelves

v1 = max{0,a11 — x1,a21 — x2,a31 — 3} = max{0,5—0,7—1,2 -0} =6,

and we obtain x¥ = (0,1,0;6,8,5). The maz-payoff vector is not efficient since 3. 2% =
20 # 16 = w(N) and therefore it is not an extreme core allocation. All maz-payoff vectors
are shown in Table 4.7. The ones that are efficient, and hence are extreme core allocations,
are shown in boldface.

Table 4.7: Extreme Core Allocations

0 c O 2? = (u1,uz,u3;v1,v2,v3) | > a7
1,2.2.9,3,1) (0,1,0:6,8,5) 20
(1,2,2,3.1,3) (0,1,0;6,8,5) 20
(1.2.3.2.3.1') (0,4,0;5,8,2) 19
(1,2,3,2,1,3) (0,4,0;5,8,2) 19
(1,2,3,1,2,3) (0,2,0:5,8,4) 19
(1.2.3.1.3.2) (0,4,0;5,8,2) 19
(1,2,1,3,2,3) (0,2,0:5,8,4) 19
(1.2.1.3,3,2) (0,4,0;5,8,2) 19
(21.2.3.3 1) (8,9,3:0,0,0) 20
(2,1,2,3,1,3) (8,9,3:0,0,0) 20
(2,1,3,2,3,1) (8,9,3;0,0,0) 20
(2,1,3,2,1,3) (8,9,3:0,0,0) 20
(2,1,3,1,2,3) (8,9,3;0,0,0) 20
(2/,1,3,1,3,2) (8,9,3:0,0,0) 20
(2,1,1,3,2,3) (8,9,3;0,0,0) 20
(2/,1,1,3,3,2) (8,9,3:0,0,0) 20
(2,3,1,2.,3,1) (0,0,0:7,9,6) 22
(2,3,1 ,2’,1’,3) (0,0,0:7,9,6) 22
(2,3,2,1,3,1 (0,0,0:7,9,6) 22
(2,3,2,1,1,3) (0,0,0;7,9,6) 22
(2,3,3,1,1,2) (0,0,0;7,9,6) 22
(2,3,3,1,2,1) (0,0,0;7,9,6) 22
(2,3,1,3,1,2) (0,0,0;7,9,6) 22
(2,3,1,3,2,1) (0,0,0:7,9,6) 22
(3.2.1.2.3 1) (2,6,0:3,6,0) 17
(3,2,1,2,1,3) (2,6,0;3,6,0) 17
(3,2,2,1,3,1) (5,6,0;2,3,0) 16
(3,2,2,1,1,3) (5,6,1;1,3,0) 16
(3,2,3,1,1,2) (3,6,0:2,5,0) 16
(3,2,3,1,2,1) (5,6,0;2,3,0) 16
(3,2,1,3,1,2) (4,6,1;1,4,0) 16
(3,2,1,3,2,1) (5,6,1;1,3,0) 16
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Table 4.7: Extreme Core Allocations

0 € O+ 2? = (u1,u2,uz;v1,v2,v3) | Y ¥
3.1,1,2,2.3) (3,5,0;2,5,1) 16
(3,1,1,2,3,2) (3,6,0;2,5,0) 16
(3,1,2,1,2,3) (5,6,0;2,3,0) 16
(3,1,2,1,3,2) (5,6,0;2,3,0) 16
(3,1,2,3,1,2) (3,5,0;2,5,1) 16
(3,1,2,3,2/,1) (4,5,0;2,4,1) 16
(3,1,3,2,1,2) (3,6,0;2,5,0) 16
(3,1,3,2,2/,1) (5,6,0;2,3,0) 16
(1,3,1,2,2,3) (5,7,2:0,3,0) 17
(1,3,1,2,3,2) (5,7,2;0,3,0) 17
(1,3,2,1,2,3) (7,8,2:0,1,0) 18
(1,3,2,1,3,2) (7,8,2;0,1,0) 18
(1,3,2,3,1,2) (5,7,2;0,3,0) 17
(1,3,2,3,2,1) (6,7,2;0,2,0) 17
(1,3,3,2,1,2) (5,7,2;0,3,0) 17
(1,3,3,2,2,1) (6,7,2;0,2,0) 17

We have found 14 efficient max-payoff vectors. However, many of them coincide and
therefore 6 max-payoff vectors are sufficient to describe the core:

C(wa) = Co{(5,6,0;2,3,0)(5,6,1;1,3,0)(3,6,0;2,5,0)(4,6,1;1,4,0)(3,5,0;2,5,1)(4,5,0; 2,4, 1) }.

4.7 Some single-valued solutions

Other cooperative solutions have been studied for the assignment game. Among the single-
valued solutions, that are defined for arbitrary cooperative TU-games, the nucleolus stands
out. We will briefly give its definition applied to the assignment game.

Let v = (M, M’; A) be an assignment market and the corresponding assignment game
(N,w4) where N = M U M. Consider all basic coalitions B (singletons and mixed-pairs)
and at each imputation x € Rf X Rf " the excess of x at coalition S € B, is defined as
e(S,x) := wa(S) — > ;cq xi- Let us denote by 6(z) the vector formed by the decreasingly
ordered excesses of all basic coalitions at imputation x € ]Rf X RJE " Then, the nucleolus
(Schmeidler, 1969) [35] is the imputation that lexicographically minimizes this vector of
excesses: 0(n) <p, 0(z) for all x € I(wa). The computation of the nucleolus for arbitrary
cooperative TU-games involves solving a series of linear programs, and it is not an easy
task. An algorithm to compute the nucleolus of the assignment game is given in Solymosi
and Raghavan (1994) [37] and a simple procedure in Martinez-de-Albéniz et al. (2013) |21].
A geometric characterization is in Llerena and Nufez (2011) [19], and an axiomatization
in Llerena et al. (2015)[20].

Another single-valued solution for the assignment game was introduced by Thompson
(1981) [39] with the name of fair division point, since it is the midpoint of the segment
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between the buyers-optimal and the sellers-optimal core allocation. If (M U M’ ,w,) is an
assignment game, the fair division point is given by

T(wa) = 3@t v?) + 5w, o).

Nuiez and Rafels (2002b) |25] proves that the fair division point coincides with the 7-value
(Tijs, 1981) [38].



Chapter 5

Multi-item auctions

As seen in Chapter 4, the core of the assignment game coincides with the competitive
equilibria of the assignment market. There is a one-to-one correspondence between each
core allocation and competitive prices. A very natural question arises from this fact, if it
is possible to design a mechanism (non-cooperative in nature) such that the equilibrium of
the associated non-cooperative game correspond to some of these competitive equilibrial.
In particular we care about the buyers-optimal core allocation.

5.1 Multi-item auction mechanism

In this section we describe a mechanism to determine the buyers-optimal core allocation
given the data of the market. The question above is addressed in Demange et al. (1986)
[10]. Studies by Demange (1982) [9], Leonard (1983) [18] and Gale and Demange (1985) [12]
consider an allocation mechanism that turns out to be a generalization of the well-known
“second-price?” auction first described by Vickrey (1961) [41].

In order to describe the multi-item generalization of this mechanism it is convenient to
think of the second-price scheme as an ordinary competitive equilibrium, when there is
only one item on sale. The most important property of the second highest bid is that it is
the smallest equilibrium price since for any smaller price at least two bidders would demand
the item. In the multi-item generalization it is assumed that each bidder is interested in
acquiring at most one item, as might be the case if, for example, the auction was designed
to assign individuals to positions, as considered by Leonard (1983) [18].

The multi-item auction mechanism requires each bidder (buyer) to submit in a sealed bid
listing his valuation of all the items. The auctioneer then allocates the items in accordance
with the minimum price equilibrium.

A main point of the papers cited is that the important “incentive capability” of the single-
item auction carries over to the multi-item case, meaning that submitting true valuation is

'Reader can check the definition of competitive equilibrium in Definition 4.10.
2In this auction, the participants submit sealed bids for a single item. That item is sold to the highest
bidder at a price equal to the second highest bid.
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a dominant strategy for the bidders. Therefore, by jointly falsifying valuations, no subset
of bidders can improve the outcome for all its members.

In this chapter we are going to study the ezact auction mechanism from Demange et al.
(1986) [10] applied to a second-price auction.

Clearly, a second-price auction can be read into as an assignment game within the next
framework.

e A finite set Nof agents and a finite set O’of indivisible objects.

e The finite set of objects O C N that includes O’ and as many copies of a null object
as agents in N. This null object is denoted by 0.

e Fach 7 € N can acquire at most one object and each ¢ € N has a valuation a;; € Ry
for each j € O. Null objects have a valuation of zero.

e Agent i’s valuation a; = (ai;)jeo0 € A and a valuation profile a = (a;)ien € AN
where AN = A x ... x A.

e An assignment p = (i;);en is a vector that assigns u; € O to i and each object is
assigned at most to one agent.

e Let M(S,Q) be the set of all allocations of objects @ C O to agents S C N.

e A price vector is p € Rg such that py = 0 for each 0.

Thus, as we can see, we have an assignment problem where the question is how to assign
objects to agents in the best possible way. In Vickrey (1961) [41], it is shown a mechanism
to find the maximum competitive equilibrium and the minimum competitive equilibrium
under certain circumstances: the gross-substitutes (GS) condition® and quasi-linear prefer-

ences4.

In other words, the GS condition supposes that given an initial price vector, an agent
wants to consume a bundle of objects. Assume that some prices increase and considers a
new vector of prices, then the agent still wants to consume those objects belonging to the
bundle with the same price in both price vectors. This is exactly what is happening in
the framework above. The quasi-linear preferences are satisfied by the assignment game
we are considering. We have seen in Chapter 4 that competitive equilibrium price vectors
of an assignment game belong to the core of the assignment game. And we have also seen
that the core of the assignment game is non-empty and forms a complete lattice.

Once checked these two conditions, it is possible to apply which is known as VCG mech-
anism® to obtain the maximum competitive equilibrium and the minimum competitive

3A valuation a; = (ai;)jeo € A satisfies gross-substitutes condition if, and only if, for every price
p € RY, every set S € D;(p), and every ¢ > p,q € RS, there is a set T C A with (S\ A)UT € D;(p) where
A={j:q(j) >p()}, JE€O.

4The set of competitive equilibrium price vectors of the market is non-empty and forms a complete
lattice.

SVCG mechanisms allow for the selection of a socially optimal outcome out of a set of possible out-
comes in a Vickrey—Clarke-Groves (VCG) auction. This is a type of sealed-bid auction of multiple items.
The auction is named after Vickrey (1961) [41], Clarke (1971) and Groves (1973) for their papers that
successively generalized the idea. The VCG auction is a specific use of the more general VCG mechanism.
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equilibrium.

This mechanism is not shown in this dissertation® but two interesting results come out
from this process.

e The payoff obtained via VCG belongs to the core of the assignment game.
e The payoff obtained via VCG is supported by the minimum competitive equilibrium
in the replicated market.
The exact auction mechanism derived in order to find the best possible outcome for all the
agents works as follows:
e Step 1: The auctioneer announces the initial price vector. Then, every agent “bids”

by announcing which object or objects are in his demand set given the prices.

e Stept (t > 2): If it is possible to allocate to each agent an object belonging to his
demand set given the price vector, the algorithm stops. If no such allocation exists,
then there is an overdemanded set of objects. The auctioneer chooses a minimal
overdemanded set of objects and raises the price of each object in the set by one
unit. The price of all other objects remain at the same level.

The example below represents the operating of this mechanism.

Example 5.1. Consider a second-price auction with a set of 3 agents {1,2,3} and a set
of 8 objects {1',2',3'}. Suppose the valuations are a1 = (10,9,8), a2 = (10,9,4) and
az = (10,4, 2).

The auction begins, consider the initial price vector p* = (0,0,0). The demand sets of the
agents are:

o Di1(p°) = {1'}, D2(p°) = {1}, D3(p") = {1'}.

Since there is an overdemanded set, the auctioneer raises the price. Consider now p' =
(1,0,0) (p* > p°, satisfies the GS condition).

o Di(p') ={1,2'}, Da(p") = {1, 2}, D3(p') = {1'}.
Notice that {1'} is not an overdemanded set because
[{i € NIDi(p") € {1'}} = {3} = {1},
but, note that {1',2'} is overdemanded:
[{i € NIDi(p') € {1, 2} = {1, 2,3} > {1, 2}].

Now prices in the overdemanded set are raised. Consider p* = (2,1,0) (p? > p', satisfies
the GS condition again).

o Di(p?) ={1,2,3}, Da(p?) = {1',2'}, Ds(p?) = {1'}.

Now we can assign object 1’ to agent 3, object 2" to agent 2 and object 3' to agent 1.

SInterested reader is referred to Vickrey (1961) [41].






Chapter 6

Conclusions

Matching markets is an active area of research. This research consists of the study of
resource allocation problems in which two sets of agents, or a set of agents and a set of
goods, have to be assigned to one another in a way the respects the preferences of the
market participants. There are several types of allocation problems. For example, two-
sided matching markets where prices cannot be used; markets without money where we
desire to assign or re-allocate indivisible goods; and assignment markets where we want to
find prices that clear markets for potentially distinct and heterogeneous indivisible goods.

These are marriage markets, college admission problem, roommate problem, depending
on the precise characteristics of preferences, and so on. There are mechanisms that have
been succesfully applied for the allocation of students to universities, resident doctors to
hospitals (see Roth and Sotomayor (1990) [33]) or kidneys to patients in need of a transplant
(Roth et al. (2005) [34]).

In this dissertation we have focused on markets with money, that is markets where pref-
erences are quasilinear in money, and agents ask for one unit each. Money is the common
utility for all agents.

These markets allow the modeling of auctions of multiple objects (Demange et al. (1986)
[10]) as it has been introduced in Chapter 5: Multi-items auctions. In the case of auctions
where agents are allowed to bid for bundles of objects, it is also possible to model through
the assignment markets. For instance, licenses for mobile telephony in different states
which are represented by what is known as package assignment game (Bikhchandani and
Ostroy (2002) [1]).

The multi-item auction model seen in this project is “unsymmetrical” which means that
each seller specifies only one number, his reservation price, while buyers specify their
valuations for each of the items. There are, however, economically natural situations in
which sellers “discriminate” specifying different reservation prices to different buyers. The
job assignment problem is an example of this situation. Here the sellers are workers who
are selling their services to employers. Clearly, the minimum salary a worker would accept
might vary depending on the job; for example, the more disagreeable the job, the higher
the minimum acceptable salary.

47
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The model of the assignment game, as defined by Shapley and Shubik (1971) [36], relies on
several economic assumptions: there are two sides in the market, utility is identified with
money, side-payments are allowed and the supply of each seller and the demand of each
buyer are unitary. We could consider two different extensions that follow from relaxing
the two-sided nature of the market and the unitary demand and supply of the agents. It
results that some of the nice properties and structure of solutions do not hold when we
consider these generalized assignment markets. The extension of the assignment market
with multiple sides and multiple partners is called multi-sided assignment markets and is
studied in Nunez and Rafels (2015) [27].
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