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Abstract

We consider the design of a repeated contest in the presence of a potentially biased

judge. Beliefs about the judge’s bias may discourage contestants from exerting effort. In

a repeated contest, the identity of a previous winner influences these beliefs. The contest

designer is able to commit to a strategy of selectively and stochastically overruling the

judge’s ranking of the contestants. Overruling the judge can increase contestants’ total

expected effort and the designer’s optimal intervention may improve or worsen expected

outcomes for a type of contestant the judge is more likely to favor.
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1 Introduction

Contests are frequently used to incentivize effort by rewarding contestants that outperform their

peers. The designers of these contests often rely on a third party to evaluate the contestants: executives

elicit nominations from employees’ direct supervisors for performance bonuses and promotions, expert

reviewers advise governments about which researchers to fund, and universities use students’ teaching

evaluations to give awards. However, these judges may be biased against certain types of contestants.

Beliefs about the judge’s bias evolve as contestants observe the results of previous contests and can

reduce contestants’ incentives to exert effort. In this paper, we study how a contest designer should

use the recommendations of a potentially biased judge to incentivize effort provision over sequential

contests.

Consider a firm that hires interns each year to perform basic tasks for the firm. At the conclusion

of the internship, one of the interns is selected to stay on with the firm permanently. A manager that

works directly with the interns and observes their efforts provides a recommendation to the firm about

which intern should be selected. A successful internship program incentivizes the interns to work hard

for the permanent position. Given the potential for the manager to be biased toward interns with an

observable characteristic, e.g. gender, race, affiliation, age, etc., the identities of previous successful

interns impact the beliefs that future interns have about their likelihood of earning the permanent

position. A manager that is perceived to be biased towards one type of intern can undermine the

ability of the program to incentivize hard work. Therefore, it may be in the interest of the firm to

manage beliefs about bias in the program by including selection criteria beyond the rankings of the

manager.

As an example, the firm may use a selection process that incorporates the ranking of the manager

along with input from a committee that is less informed of the efforts of the interns. Moreover, the

makeup of this committee can change from year to year, so that deviations from the manager’s rankings

appear random from one year to the next. The presence of the committee’s input on the selection

process adds variation in selection that is not directly related to effort. This directly reduces the

incentives to exert effort in the current round of the program. However, this variation also limits the

perception of bias in the selection process, potentially increasing the incentives for future interns to

exert effort in the following year.

We model this situation as a repeated contest in which the contest designer cannot directly

evaluate the effort of the contestants that participant in each contest. Instead, in each contest, a long-
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lived judge observes the effort of the contestants and privately ranks contestants for the designer. The

designer observes the ranking provided by the judge and selects the winner of the contest. Winners

of previous contests are publicly known. Importantly, contestants have observable characteristics that

do not directly affect the designer’s welfare, but the judge’s ranking may be determined both by the

contestants’ efforts and their characteristics. How contestants’ observable characteristics influence the

judge’s ranking is initially unknown to both the contestants and the contest designer, who share a

common prior about the judge’s bias.

Our analysis focuses on how the designer should use the ranking provided by the judge to

maximize contestants’ efforts. The designer can decide to respect the ranking of the judge and declare

the highest ranked contestant the winner, or the designer can overrule the judge by choosing a different

winner. More generally, for a given ranking, the designer can determine winning probabilities for each

contestant. If the winning probabilities are independent of the ranking, i.e. the designer ignores the

rankings of the judge, then the effort of the contestants cannot impact the identity of the winner.

On the other hand, if the designer always follows the ranking of the judge by setting the winning

probability of the highest ranked contestant to one, then the identities of the winners can quickly

create a perception of a biased judge, even in the case where the judge is unbiased.

Contestants are incentivized to exert effort when higher effort increases their chance of winning

the contest. Because the judge’s ranking is informative about contestants’ efforts, awarding the prize on

the basis of this ranking incentivizes contestants to put forth effort. However, when contestants believe

that the judge is biased against them and they are unlikely to win regardless of their effort choice,

they put forth less effort. Since the ranking is also informative about the judge’s bias, respecting the

judge’s ranking in the current contest can increase the perception of the judge’s bias in future contests.

This is the central trade-off that the designer faces: overruling the judge jams the signal about the

judge’s bias and leads to less pessimistic beliefs about the judge in future contests, but it does so at

the cost of incentives in the current contest.

We find that the designer should always follow the ranking of the judge when there are no

future rounds of the contest. This is true both in a single-period contest and in the final round of

a repeated contest. In these cases, overruling the judge weakens incentives in that period, and with

no continuation game, there are no benefits to changing contestants’ beliefs. When there is a future

round of the contest, the designer can increase the total expected effort by occasionally overruling the

ranking of the judge for some initial beliefs about the judge’s bias. Specifically, expected effort can

be increased when there is a moderate likelihood that the judge is biased. When the judge is likely

3



unbiased, there is no benefit of overturning the judge as contestants always exert effort. When the

judge is very likely to be biased toward one type of contestant, other types never put in effort.

Intervention by the contest designer can increase total expected effort via two different mech-

anisms. First, if one outcome of a contest leads to contestants exerting more effort in the following

contest, the designer can selectively overturn the judge’s rankings to increase the likelihood of this

outcome. Consider the case where the judge is likely to favor male candidates. If a female candidate

loses the first contest, other female candidates may be discouraged from exerting effort in the following

contest. Therefore, by sometimes overruling the judge when a man is ranked over a woman in the first

contest, the designer increases the chance that the female candidate in the second contest will exert

effort. This affirmative action style policy benefits the contestant that is less likely to be favored.

Second, overturning the judge’s rankings jams the signal of the contest outcome, de-coupling

the identity of the contest winner from the bias of the judge. This mechanism can be complementary

to the affirmative action style policy. Reconsider the case with a judge that is likely to favor male

candidates, but suppose that there is also a chance that the judge favors female candidates instead.

By sometimes overruling the judge when the male candidate is ranked first, future male candidates can

attribute previous losses to randomness beyond the judge’s control and still decide to exert effort. In

general, however, this signal jamming intervention does not necessarily benefit the disadvantaged type

of contestant. We show that for certain prior beliefs about the judge’s bias, the designer maximizes

total effort by jamming the signal about the judge’s bias created from the female contestant losing.

The most effective way to jam this signal is to increase the likelihood the loss came from the designer’s

intervention rather than the judge’s bias. This implies the designer must overturn the judge when the

female contestant is ranked higher. While this intervention encourages a female contestant to exert

effort in the following contest, it decreases the chance the female contestant wins the current contest.

In addition to designers using their contests to induce effort, they use contests to screen contes-

tant ability. For example, firms often use internship programs not only as a source of cheap labor, but

also as a mechanism to identify high ability candidates for permanent positions. While this incentive

is not present in our main model, we consider an extension that allows the designer to use contests

as a screening device. We show that while the benefit of overturning the judge is the same, the cost

is higher as the judge’s rankings are informative about the relative ability of the contestants. Despite

this, the designer can still increase payoffs by overturning the judge for some prior beliefs about the

judge’s bias.

The paper adds to the literature on the impact of bias on contestants’ effort. In this paper,
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a higher likelihood of bias unambiguously decreases effort. This is consistent with the idea that an

unbiased contest leads to the most effort from contestants on average. In particular, if contestants

are asymmetric then it is often optimal to favor the weaker contestant, leveling the competition and

increasing overall effort (Baye et al., 1993; Che and Gale, 2003; Terwiesch and Xu, 2008). More

recently it has been shown that bias can increase total effort even when contestants are ex-ante

symmetric (Franke et al., 2013; Drugov and Ryvkin, 2017; Barbieri and Serena, 2020; Fu and Wu,

2020).1 Given the contest success function in the current paper, the designer prefers to minimize the

perceived bias of the judge. However, if bias increases expected effort the designer would still be able

to impact the perception of bias by deciding when to overturn the judge.

Deciding how or whether to bias a contest toward a specific type of contestant is related to

the policy of affirmative action. Chowdhury et al. (2020) gives a comprehensive overview of these

policies and how results from the contest literature, some of which are mentioned above, inform the

efficacy of the policies. This paper provides complimentary insights. The contest designer cannot

choose bias and does not care about fairness of outcomes for their own sake. Instead, faced with

a judge that is potentially biased, the designer wants to manage beliefs about the bias in order

to increase contestant effort. We show that this goal and the goal of affirmative action are only

sometimes aligned. In particular, the effort maximizing intervention can reduce the probability that

a disadvantaged contestant wins.

Contests have been shown to be valuable when the judge or evaluator has different preferences

from the designer but does not discriminate between types of decisions or agents. Frankel (2014)

shows that ranking mechanisms are max-min optimal when the bias of the judge is unknown. Our

approach is closer to that of Letina et al. (2020), which shows that a contest is optimal for judges

who are known to be lenient, in that the designer’s goal is to affect the actions of a third parties (the

contestants) rather than the judge alone. However, rather than focusing on a bias which treats all

contestants symmetrically, this paper focuses on a judge which favors certain types of agents.

Previous research has studied the impact of feedback on effort choice in dynamic contests. When

the feedback gives information about relative position in the contest, a motivation effect may increase

output prior to feedback and a discouragement effect may lower effort after (Aoyagi, 2010; Ederer,

2010). Private feedback about relative position can dominate public information when uncertainty

is high (Mihm and Schlapp, 2019). When feedback yields information about contestant abilities,

1In dynamic contests, the bias imposed on one round may impact the effort choice in the others (Meyer,
1992; Ridlon and Shin, 2013; Barbieri and Serena, 2020). Including bias in a later period may reduce effort in
that period but increase effort in the prior round.
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sandbagging can lead to less effort from higher types prior to feedback, lowering expected effort

(Zhang and Wang, 2009; Kubitz, 2022). In this paper, contestants are short-lived and therefore are

only motivated by current beliefs, not by how current actions may affect future beliefs. This allows

us to study how the release of interim information affects subsequent behavior without introducing

signalling concerns into contestants’ strategies. Our novel type of intervention by the designer seeks

to reduce the feedback which discourages contestants.

More generally, the paper is related to the literature of information design where the contest

designer can commit to a information disclosure rule over potential asymmetries between the contes-

tants.2 A majority of work focuses on optimal information disclosure about contestants’ abilities or

the number of contestants prior to a single contest (Lim and Matros, 2009; Fu et al., 2011; Feng and

Lu, 2016; Zhang and Zhou, 2016; Zheng et al., 2018, 2019; Chen, 2020; Ryvkin and Drugov, 2020). Lu

et al. (2018) and Serena (2019) identify optimal disclosure when only full or no disclosure is available.

Our setting captures the common situation where future contestants can only observe past contest

winners and the identity of those winners cannot be hidden by the contest designer. In this setting,

the designer can only impact the information that future contestants have by changing the selection

process and the identity of the winners of past contests.

The paper proceeds as follows. Section 2 describes the economic setting. Section 3 characterizes

the solutions of both the static and dynamic versions of the model. Section 4 extends the analysis to

the case where the designer prefers that subjects with higher ability win, then discusses assumptions

of the model.

2 Model

A designer holds a contest for two short lived contestants each period for 2 periods. In each

period, one contestant of type A and one of type B participates. The type of each contestant is publicly

observable. During the period t in which they participate, each contestant can choose ai,t ∈ {0, 1} for

that period. If they choose ai,t = 1 (which we refer to as “putting forth effort”), they pay a cost c,

and otherwise pay no cost. The (predetermined) prize in each period is v. Without loss of generality,

we will assume that c = 1, since all contestants’ incentives are only related to the ratio between v and

c rather than the levels. We present the optimal contest in a single period as a benchmark and then

2See Bergemann and Morris (2019) and Kamenica (2019) for recent overviews of the information design
literature.
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compare it to the optimal dynamic contest.

Effort levels are observed by a judge who ranks the contestants and sends the ranking privately

to the designer. The same judge evaluates participants in each contest. This judge may evaluate

the contestants’ output with bias. We say that the judge either favors type A, favors type B, or is

unbiased. These characteristics are mutually exclusive and both the designer and all contestants have

a common prior for these events of pA,1, pB,1, and 1− pA,1 − pB,1 respectively.

The likelihood that the judge ranks a particular contestant first in any period depends on both

contestants’ efforts and the (potential) bias of the judge. In particular, if both contestants put forth

effort then a judge biased toward type i ranks that type higher with probability one, and an unbiased

judge reports each ranking with equal probability. If only one contestant puts forth effort the judge

ranks this contestant first with probability one. Finally, if neither type puts forth effort, the judge

reports each ranking with equal probability.3

Two comments about the judge’s ranking process are in order. First, the potential bias of the

judge and the effort of the contestant are complementary. Bias could have instead been modeled as a

substitute for effort, where ties are broken for the favored type of contestant in the case where either

both or neither contestant puts forth effort.4 Second, the judge does not have direct preferences over

the outcome of the contest but instead may have a preference to reward the effort of a particular

type. These two properties of the ranking system are chosen to capture a judge that either prefers the

effort of one type of contestant over the other or simply perceives that effort to be more valuable.5

Importantly, the contest designer does not share this preference or perception.

The designer has a discount factor of δ < 1 and maximizes the discounted sum of effort provided

by the contestants.6 Prior to the start of the first round, she can set the likelihood that each contestant

3A more general model would have the judge observing the following score in each period for an agent of
type i:

biai,t + εi,t,

where bi is an unchanging bias parameter, εi,t is a noisy shock, and the judge reports the contestant with the
highest score to the designer. The reported model is then a limiting case of this structure, where bA > bB with
probability pA,1, bB > bA with probability pB,1, and the variance of εi,t goes to 0.

4While equilibria would be different and may involve mixed strategies in this model, we expect that many
of the insights of our results will still be applicable: The designer still trades off between stronger incentives in
the present and better beliefs in the future.

5For instance, if submissions are judged by a computer program or algorithm that produces rankings, the
designer need not worry about strategic interference by the judge. Alternatively, the designer might also act as
a judge knowing that they might display subconscious bias, but not know what or how strong that bias is.

6Restricting δ to be strictly less than one has the effect of eliminating equilibria in which the designer
commits to overturning the judge enough in the first period such that only one type of contestant puts forth
effort in that period. Doing so prevents any beliefs updates and ensures that both types put forth effort in the
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receives the prize conditional on the judge’s report. Let γi,t be the probability that the contestant

of type i wins the prize in period t given the judge ranks them first. This choice is public and the

designer has the power of full commitment.7

In what follows, we focus on the Perfect Bayesian Equilibria (PBE) of the game between the

designer and all contestants. A strategy of the designer is Γ = (γA,1, γB,1) in the one period game and

Γ = (γA,1, γB,1, γA,2, γB,2) in the two period game. Strategies of each contestant consist of an action

choice in the round each is active for each history, ai,t(ht). Histories in each period are: h1 = Γ and

h2 ∈ {(Γ, A), (Γ, B)} where the second argument indicates which type won the first contest. Beliefs

about the judge’s bias for each history are denoted pi,t(ht). Note that pi,1(Γ) = pi,1 for all Γ.

For a given prior belief about the judge’s bias, (pA,1, pB,1), a PBE consists of strategies for the

designer and each contestant such that

1. Given the strategy of the designer, Γ, the contest outcomes, and conjectures about the actions

of contestants, âi,t, beliefs about the judge’s bias are updated using Bayes rule where possible.8

2. Actions, ai,t, maximize the payoff of each contestant, i = A,B, in each period, t = 1, 2, given

history, ht, beliefs about the judges bias, pi,t(ht), and conjectures of the action of the opposing

contestant â−i,t.

3. The designer’s strategy, Γ, maximizes the discounted expected effort of the contestants, E[aA,1+

aB,1 + δ(aA,2 + aB,2)], given 1 and 2.

4. Actions equal conjectures, ai,t = âi,t.

In cases in which one or more of the contestants is indifferent about whether to put forth effort,

we assume that the contestant breaks that indifference in favor of putting forth effort.9 We will also

assume that v > 2 to focus on situations in which it’s possible for both contestants to put forth effort in

equilibrium. Due to the symmetric nature of the problem, our analysis in Section 3 is done under the

second period. The value of δ has no other effect on the equilibria presented in Section 3.
7We discuss the implications of commitment and what equilibria survive without it in Section 4.
8The only players who could cause a probability zero event to happen are the contestants in period 1.

Since their payoffs do not depend on beliefs in the future, they will never have an incentive to change actions.
Therefore it never matters what beliefs are after the zero probability event.

9This assumption has two implications. First, it eliminates cases of multiple equilibria over the measure-zero
set of priors for which the designer’s optimal choices must involve indifferent contestants. Second, and more
substantively, it rules out equilibria in which contestants use mixed strategies. Such equilibria can be optimal
for the designer in the two period model, but we consider the precise incentives required to induce such an
equilibrium to be impractical.
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assumption that the judge is more likely to be biased toward contestants of type A, i.e. pA,1 ≥ pB,1.

Results for when pB,1 > pA,1 directly follow.

3 Results

3.1 One Period Solution

Before presenting the solution to the one period problem, we define the discouragement due to

bias as

D(v, pA,1, pB,1) =
2

v
· 1

1− (pA,1 − pB,1)
.

Discouragement plays an important role in the solutions of both the one period and two period models.

Simply put, D(v, pA,1, pB,1) captures the discouraging effect that the judge’s potential bias has on the

less favored type, in this case type B. Discouragement increases with the difference in the likelihood

that the two types are favored. However, this discouraging effect is weaker when the prize v is higher:

even if a contestant thinks they are unlikely to win, they will still put forth effort if the prize is high

enough.

With this definition of discouragement, describing the equilibrium of the single-period model is

straightforward.

Theorem 1 In any equilibrium of the single period model, both types of contestant put forth effort if

D(v, pA,1, pB,1) ≤ 1.

Otherwise, only type A puts forth effort. The designer sets γA,1 and γB,1 high enough so that neither

contestant has the incentive to stop putting forth effort.

A graphical representation of the equilibrium described in Theorem 1 can be found in Figure 1.

When one contestant is very likely to be favored while the other is very unlikely to be favored, only

the contestant who is more likely to be favored puts forth effort. Essentially, the disparate beliefs have

a discouraging effect on the contestant with a lower prior; he knows that even if he puts forth effort,

he’s unlikely to win. Discouragement happens for a wider range of initial beliefs when the prize is

smaller. On the other hand, when pA,1 and pB,1 are similar and the other contestant is putting forth

9



effort, switching from ai,1 = 0 to ai,1 = 1 increases the perceived likelihood of winning by roughly

50%, so both contestants put forth effort.

II

I

I

pA

pB

Figure 1: Solution to the single period model when v = 3. Both types of contestant put forth
effort in the region labeled II, while only one type puts forth effort in the region labeled I.

One notable feature of the equilibrium described in Theorem 1 is that the designer has no use for

setting γA,1 or γB,1 less than one. While the designer may be able to manipulate contestants’ beliefs

for the future by not giving the prize to the contestant the judge chose, doing so comes at a cost of

weaker incentives in the current period. Because there is no continuation game in the single-period

model, lowering γA,1 and γB,1 can only hurt the designer and reduce incentives to put forth effort.

3.2 Two Period Solution

In the static model, the designer had no reason to give the prize to the contestant which was

not reported as the winner by the judge. Essentially, giving the prize to someone other than the re-
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ported winner simply weakens incentives without any additional benefits. Making the model dynamic

introduces a new feature which may make it beneficial to give the prize to a different agent: reallo-

cating the prize away from the reported winner can affect the beliefs of contestants in a later period,

potentially causing them to put forth effort when they otherwise would not. Additionally, if one type

of contestant winning the first contest leads to higher effort in the second contest, the designer can

increase the probability of that type of contestant winning.

Figure 2 shows how beliefs update between the first and second period for the case of γ1,A =

γ1,B = 1 when a contestant of type B wins in the first period. The starting point of the arrow indicates

the prior beliefs, while the end of the arrow shows where beliefs are at the beginning of the second

period. These posterior beliefs are on the vertical axis because there is zero possibility that the judge

favors type A: given that both types put forth effort in the first period, observing type B win means

that the judge either favors type B or is unbiased.

In the case of the blue arrow in Figure 2, beliefs updating does not cause a problem; even

after the contestant of type B wins in the second period, both second period contestants think it is

relatively likely that the judge is unbiased and are still willing to put forth effort. However, for both

red arrows this updating process leads to pessimistic beliefs about contestants of Type A. In these

cases, contestants of Type A would be unwilling to put forth effort in the second period.

More generally, from Bayes’ rule, updated beliefs when both contestants are conjectured to exert

effort in the first round must satisfy

pA,2(Γ, A) =
γA,1pA,1

1
2γA,1(1 + pA,1 − pB,1) + 1

2(1− γB,1)(1 + pB,1 − pA,1)

pB,2(Γ, A) =
(1− γB,1)pB,1

1
2γA,1(1 + pA,1 − pB,1) + 1

2(1− γB,1)(1 + pB,1 − pA,1)
.

(1)

Setting γA,1 or γB,1 to less than one introduces noise into the learning process and causes contestants

to update less. Specifically, the posterior belief about bias toward the losing type of contestant is not

as low and toward the winning type of contestant is not as high. For γA,1 = γB,1 = 1
2 , the prize is

assigned in a way which is uncorrelated with the judge’s report and beliefs do not update at all.

Lemma 1 The following relationships between posterior beliefs about the judges bias and the designer’s

strategy hold when both contestants are conjectured to exert effort in the first contest and γi,1 > 1/2
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pA

pB

Figure 2: Updated beliefs after the type B contestant wins in the first period without inter-
vention from the designer. For the blue arrow, both types of contestant put forth effort in the
second period. For the red arrows, only contestants of type B put forth effort in the second
period.

for i = A,B.

∂pi,2(Γ, i)

∂γ−i,1
>
∂pi,2(Γ, i)

∂γi,1
> 0 and

∂pi,2(Γ,−i)
∂γi,1

<
∂pi,2(Γ,−i)
∂γ−i,1

< 0.

Given that the contestant of type B is putting forth effort in period t, a contestant of type A

only puts forth effort if

γA,t + γB,t − 1 ≥ 2

v
· 1

1 + pA,t(ht)− pB,t(ht)
. (2)

This captures the features which are payoff-relevant to a contestant in a given period. For a contestant

of type i, higher values of pi,t(ht), γi,t, and γj,t make it more valuable to put forth effort, while pi,t(ht)

makes effort less valuable.

The cost of lowering γA,t or γB,t is weaker incentives in period t, while the benefit arises from
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“better” beliefs (from the point of view of the designer) in later periods. Thus, in the final period the

designer does not benefit from lowering either value, and sets both equal to one.

Lemma 2 It is optimal for the designer to set γA,2 = γB,2 = 1 in the second period.

Beliefs about whom the judge favors are updated after observing whom the prize is given to

when both types are putting forth effort in the first period. However, this is not true when at least

one type doesn’t put forth effort. In this case, beliefs do not update for either type of contestant no

matter whom the prize is given to. Given that only one contestant put forth effort, the judge reports

that they are the winner with probability one, and the only way that the other contestant could be

awarded the prize is if the designer went against the judge’s recommendation. Combining this with

the fact that δ < 1, it is never optimal for the designer to decrease γA,1 or γB,1 to increase effort in

future periods at the cost of lowering effort today. Thus, for all equilibria where prior beliefs are in

region II, the designer’s strategy must be such that both contestants exert effort in the first period.

We can combine the inequalities given in (2) in period one for both types to get this condition which

characterizes the minimum levels of γA,1 and γB,1 which ensure that both constants put forth effort

in the first period.

D(v, pA,1, pB,1) ≤ γA,1 + γB,1 − 1 (IC-1)

While beliefs about who is favored are updated when the first period’s prize is awarded, whether

those posteriors still allow for effort provision in the second period depends on both initial beliefs and

the designer’s strategy, Γ. We combine the updating rules (1) with the incentive constraints given in

inequality (2) to find

γA,1 −
(
1− 2

v

)
(1 + pB,1 − pA,1)− 2pB,1(

1− 2
v

)
(1 + pA,1 − pB,1) + 2pA,1

γB,1 ≤ 1 (BC-A)

γB,1 −
(
1− 2

v

)
(1 + pA,1 − pB,1)− 2pA,1(

1− 2
v

)
(1 + pB,1 − pA,1) + 2pB,1

γA,1 ≤ 1. (BC-B)

These belief constraints, (BC-A) and (BC-B), characterize the values of γA,1 and γB,1 for which A

and B (respectively) put forth effort in the second period conditional on their type losing. Specifically,

they ensure that the beliefs about type i do not fall too much upon observing type i lose. In principle

we must also check that beliefs about type i do not fall too much upon observing type i win. However,
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one can show that beliefs only fall in this way if γA,1 + γB,1 < 1. Such values of γA,1 and γB,1 would

violate (IC-1), and thus will never hold in equilibrium.

We interpret the coefficient on γB,1 in (BC-A) and on γA,1 in (BC-B) as the confidence that

types A and B respectively have that the judge does not favor the other type. It will be convenient

to denote this as

CA(v, pA,1, pB,1) =

(
1− 2

v

)
(1 + pB,1 − pA,1)− 2pB,1(

1− 2
v

)
(1 + pA,1 − pB,1) + 2pA,1

and

CB(v, pA,1, pB,1) =

(
1− 2

v

)
(1 + pA,1 − pB,1)− 2pA,1(

1− 2
v

)
(1 + pB,1 − pA,1) + 2pB,1

.

We say that type i is confident if Ci(v, pA,1, pB,1) ≥ 0. This cutoff is relevant because when it is

satisfied, a contestant of type i is willing to put forth effort in the second round after observing their

type lose even when γA,1 = γB,1 = 1.10 Furthermore, for more negative values of CA(v, pA,1, pB,1) and

CB(v, pA,1, pB,1), the set of values of γA,1 and γB,1 which satisfy (BC-A) and (BC-B) is smaller.

The incentive constraint for the first period (IC-1) and belief constraints for the second period

(BC-A) and (BC-B) capture the designer’s problem. Lowering γA,1 or γB,1 may help to satisfy (BC-A)

or (BC-B). However, doing so cannot come at the cost of violating (IC-1). Thus, the solution to the

designer’s problem will depend on the priors, which determine whether (BC-A) and/or (BC-B) can

be satisfied without violating (IC-1).

Our first result characterizes the equilibrium of the two period game when neither type A nor

B is confident. In this case, without intervention from the designer, the contestant whose type lost in

the first period would never put forth effort in the second period. We suppress the arguments of the

discouragement and confidence functions for the remainder of the section for expositional ease.

Theorem 2 Suppose that no type of contestant is confident.

• If D ≤ (1+CB)(1+CA)
1−CACB

, then in any PBE both types of contestant put forth effort in both periods

and the designer occasionally overturns the judge.

• If (1+CB)(1+CA)
1−CACB

< D ≤ 1 + CB, then in any PBE only contestants of type B put forth effort in

the second period conditional on their type losing in the first. The designer sets γA,1 = 1, and

10This can be seen by considering (BC-A). When CA(v, pA,1, pB,1) ≥ 0, the inequality holds for any values
of γA,1 and γB,1 that are between 0 and 1.
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γB,1 to the minimum level possible so that both types put forth effort in the first period.

• If 1 + CB < D ≤ 1 + CA, then in any PBE only contestants of type A put forth effort in the

second period conditional on their type losing in the first. The designer sets γB,1 = 1, and γA,1

to the minimum level possible so that both types put forth effort in the first period.

• If 1 + CA < D ≤ 1, then in any PBE neither type of contestant puts forth effort in the second

period conditional on their type losing in the first. The designer sets γA,1 and γB,1 high enough

so that neither contestant has the incentive to stop putting forth effort in the first period.

• If 1 < D, then in any PBE contestants of type A put forth effort in both periods but contestants

of type B do not put forth effort in either period.

The way in which equilibria vary with primitives in Theorem 2 is intuitive. When discourage-

ment is low and contestants’ confidence is not too low, the designer is able to induce both types of

contestant to put forth effort in both periods by occasionally overturning the judge. For higher levels

of discouragement or lower levels of confidence, the designer is able to extract correspondingly less

effort from the contestants.

The sets of parameters for associated with the types of equilibria described in Theorem 2 can

be found in Figure 3. The non-grey region corresponds to parameter values such that neither type is

confident and pA,1 ≥ pB,1. Each color represents a different form of the equilibria from Theorem 2:

D ≤ (1+CB)(1+CA)
1−CACB

is in light blue, (1+CB)(1+CA)
1−CACB

< D ≤ 1 + CB is in green, 1 + CB < D ≤ 1 + CA is

in yellow, 1 + CA < D ≤ 1 is in orange, and 1 < D is in red. Note that when CA < 0, then pA ≥ pB

implies that CA ≥ CB, so Theorem 2 characterizes all of these cases.

Figure 4 graphically shows how the three constraints determine what values of γA,1 and γB,1

should be chosen for fixed values of pA,1, pB,1, and v. The graph in panel (a) corresponds to the case

in which neither type of contestant is confident but D ≤ (1+CB)(1+CA)
1−CACB

. The shaded blue triangle is

the set of γ which satisfies (IC-1), (BC-A), and (BC-B). Thus, any values of γA,1 and γB,1 which lie

within this triangle guarantee that both types of contestant put forth effort in both periods.

One portion of Theorem 2 which merits further discussion is the range of priors for which

(1+CB)(1+CA)
1−CACB

< D ≤ 1 + CB. The fact that (1+CB)(1+CA)
1−CACB

< D indicates that the designer cannot

simultaneously incentivize both types to put forth effort conditional on losing, but since D ≤ 1 + CB

and D ≤ 1 +CA, the designer can incentivize either. This can be seen in panel (b) of Figure 4, where

values of γA,1 and γB,1 in the orange region guarantee that the contestant of type A puts forth effort
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Figure 3: The colorful regions of this figure show how the form of the equilibrium varies with
priors when v = 3 and neither type is confident. Total effort provision decreases from left to
right. The designer overturns the judge in the light blue, green, and yellow regions.

conditional on losing in the first period, while this is true for type B in the red region. Since only

one type will put forth effort conditional on losing, the designer prefers to choose the type which can

be induced to lose the most often, because this increases the likelihood both types exert effort in the

second period. To do this, the designer’s intervention ensures that the type which is disfavored a

priori puts in effort in the second period even after that type loses the first period. Furthermore, the

optimal way to do this is to minimize the chance that this type wins conditional on both parties still

having an incentive to put forth effort in the first period (in this case, setting γB,1 to the minimum

value which does not violate (IC-1)). The optimal choice of γA,1 and γB,1 in this case is exactly the

point where γA,1 = 1 on the line representing (IC-1).

Reducing γB,1 while keeping γA,1 = 1 has two impacts that benefit the designer. The first is the

direct impact of having contestant B lose more often. As type A will not put in effort in the second
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Figure 4: This figure shows the interaction of three constraints for two sets of parameters. In
panel (a), the blue triangle represents the values of (γA,1, γB,1) which satisfy (BC-A), (BC-B),
and (IC-1). In panel (b), values within the orange triangle satisfy (BC-A) and (IC-1), while
values in the red triangle satisfy (BC-B) and (IC-1). No values in panel (b) satisfy all three
constraints.

period after a loss, the designer wishes to minimize the probability that this happens. Secondly, the

best way to make type B more optimistic about the second period after losing the first period is to

reduce γB,1. This can be seen from Lemma 1. Decreasing γB,1 both increases pB,2(Γ, A) and decreases

pA,2(Γ, A) at a faster rate than decreasing γA,1. Intuitively, a bad outcome for B can more easily

attributed to (bad) luck for lower values of γB,1; a loss by type B is more likely to have been caused

by the judge being overruled by the designer when B was actually ranked higher.

The next result characterizes the equilibrium of the two period game when type A is confident

but type B is not.

Theorem 3 Suppose that contestants of type A are confident but contestants of type B are not con-

fident.

• If D ≤ 1 +CB, then in any PBE both types of contestant put forth effort in both periods and the

designer occasionally overturns the judge.

• If 1 +CB < D ≤ 1, then in any PBE both types of contestant put forth effort in the first period,

but only contestants of type A put forth effort in the second period conditional on their type

losing in the first. The designer sets γB,1 = 1, and γA,1 to the minimum level possible so that
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both types put forth effort in the first period.

• If 1 < D, then in any PBE contestants of type A put forth effort in both periods but contestants

of type B do not put forth effort in either period.

Given that type A is confident, the designer does not need to intervene in order for contestants

of type A put forth effort in both periods. Instead, the form of the equilibrium depends on the

discouragement and confidence of type B. When confidence is not too low, only a small decrease in

γB,1 is necessary for (BC-B) to be satisfied. This small decrease does not lead to a violation of (IC-1)

when D is not too high. For lower confidence levels, the intervention necessary to incentivize second

period effort from type B conditional on them losing in the first period becomes infeasible. Finally, if

discouragement is too high, type B is not even willing to put forth effort in the first period.

A graphical depiction of the of the regions described in Theorem 3 can be found in Figure 6.

The non-grey region corresponds to parameter values such that type A is confident, type B is not,

and pA,1 ≥ pB,1. Each color represents a different form of the equilibria from Theorem 2: D ≤ 1 +CB

is in light blue, 1 + CB < D ≤ 1 is in yellow, and 1 < D is in red.

Finally, we characterize the equilibrium of the two period game when both types are confident.

Theorem 4 Suppose that both types of contestant are confident. Then both types put forth effort in

both periods. The designer sets γA,1 and γB,1 high enough so that neither contestant has the incentive

to stop putting forth effort in the first period.

This result is straightforward. Since both types are confident, both types have the incentive to

put forth effort in the second period conditional on their type losing in the first period. This is true

even without interference from the designer. The only point left to check is that both types have the

incentive to put forth effort in the first period, but (IC-1) is always satisfied with γA,1 = γB,1 = 1 when

both types are confident. The region for which both types of contestant are confident and pA,1 ≥ pB,1

can be seen in Figure 7.

4 Extensions & Discussion

4.1 Extension: Screening

In the model presented in Section 2, the designer’s objective was to maximize the effort that the

contestants put forth. In addition to incentivizing effort, contests are also used to identify the “best”
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Figure 6: The colorful regions of this figure show how the form of the equilibrium varies with
priors when v = 3, type A is confident, and type B is not. Total effort provision decreases from
left to right. The designer overturns the judge in the light blue region.

contestant, i.e. to screen contestants’ ability. Indeed, returning to the leading example we gave in

Section 1, it is likely that in addition to using a contest to incentivize the interns to put forth effort,

the firm would also prefer that the intern with higher ability wins the contest, as they are given the

permanent position as the prize.

Thus, we extend our model to introduce ability on the part of contestants and extend the

designer’s objective function to account for the desire to assign the prize to high types. Specifically,

we assume that contestants have high skill with probability µ ∈ (0, 1) and low skill with probability

1 − µ. We assume that skill levels are not directly observable to anyone in the game, including the

contestants themselves.

While no one can directly observe the skill levels of the contestants, we assume that an unbiased
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Figure 7: The blue region of this figure shows the priors for which both types are confident
when v = 3.

judge is able to correctly identify whether one contestant has a higher skill level than the other

when both contestants put forth effort. To be more precise, if both contestants put forth effort, one

contestant has high skill, and the other contestant has low skill, an unbiased judge ranks the contestant

with high skill first. If the judge favors type i and both contestants put forth effort, then the judge

ranks type i first with probability one. If only one contestant puts forth effort any judge will rank

that contestant first, and if neither contestant puts forth effort any judge will report each ranking with

equal probability.11

In addition to valuing effort, as before, the designer prefers that the prize is awarded to a

contestant with high skill. We introduce a single parameter λ ∈ [0, 1] that captures the relative weight

11In this section, we still focus on the case in which pA,1 > pB,1.
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that the designer places on effort. Specifically, in each period t, the designer receives

λ(eA,t + eB,t) + (1− λ)P(period t winner is high type).

Furthermore, we again study optimal contest design when the designer’s instrument is the ability to

commit to stochastically overturning the judge (i.e. setting γi,t < 1). This nests the model that was

studied in Sections 2 and 3 with the case of λ = 1.

We first show how this extension affects the equilibrium in the single contest model.

Proposition 1 In the equilibrium of the single period model with screening and λ < 1, both contestants

put forth effort if

D(v, pA,1, pB,1) ≤ 1.

Otherwise, only type A puts forth effort. The designer sets γA,1 and γB,1 equal to 1 if both types are

putting forth effort.

Proposition 1 is essentially identical to Theorem 1, except that the designer is guaranteed to

respect the judge’s ranking when both types are putting forth effort. The reason for this is intuitive.

As before, lowering γi,t weakens incentives to put forth effort in period t, and there is no subsequent

improvement in beliefs if there is only one contest in the game. The difference from the model without

skill is that when the designer cares about the skill level of the winner, overturning the judge comes at

an additional cost - any judge that may be unbiased is more likely than not assigning the prize to the

contestant with high skill, given that the contestants have differing skill levels and are both putting

forth effort.

The intuition behind the result in Proposition 1 suggests a broader idea, namely that overturning

the judge is more costly to the designer when there are concerns about the skill of the contest’s winner.

With this intuition, we can confirm that if the designer would not benefit from overturning the judge

in the two period model without contestant skill, then the designer will never overturn the judge in

the two period model with contestant skill.

Proposition 2 In the equilibrium of the two period model with screening and λ < 1, the designer

maximizes her payoffs by setting γi,t = 1 for all i and t if (1) neither type is confident and 1+CA < D,

(2) type A is confident and 1 < D, or (3) both types are confident.
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The results stated in Propositions 1 and 2 show that, in a sense, incentives to overturn the judge

in order to improve beliefs are weaker when there are screening concerns in addition to a desire to

increase effort: If the designer would not overturn the judge without screening, then she does not do

it with screening either. However, the core feature that makes overturning the judge valuable in this

model—the fact that it can induce greater participation and effort by preventing contestants from

getting discouraged—is still present. We show this in the next proposition.

Proposition 3 Suppose that neither type is confident and D ≤ (1+CB)(1+CA)
1−CACB

. Then if

δ ≥ (1− λ)(1− µ)µ(1− pi,1 − pj,1)(2CACB + CA + CB)

[λ+ (1− λ)(µ2 + µ(1− µ)(2− pi,1 − pj,1)− µ)](CACB − 1)
,

committing to occasionally overturn the judge increases the designer’s payoffs.

Proposition 3 states that for some priors about the judge’s bias, the designer is made better off

by committing to overturn the judge if she is patient enough. The intuition for this result follows from

the above discussion. Overturning the judge induces more effort and an increased likelihood of a high

type winning in the second contest, but at the cost of lowering the likelihood of a high type winning

in the first contest.

Corollary 1 provides a simplification of Proposition 3 for the case in which the designer only

cares about the skill level of the winning contestant and does not directly value contestants’ effort.

Corollary 1 Suppose that neither type is confident, λ = 0, and D ≤ (1+CB)(1+CA)
1−CACB

. Then there exists

a δ∗ ∈ (0, 1) such that if δ > δ∗, committing to occasionally overturn the judge increases the designer’s

payoffs.

The intuition is straightforward. Without ever overturning the judge, neither type of contestant

puts in effort in the second contest when the contestant of the other type wins the first contest,

and the probability that a high type is selected in the second contest is equal to the prior. Because

D ≤ (1+CB)(1+CA)
1−CACB

the designer can induce both types of contestant to put forth effort in the second

period by only sometimes overturning the judge in the first period. Then in the case where the judge

is unbiased and only the type that lost the first contest is high ability in the second contest, the

designer would benefit from the judge identifying the higher ability contestant. If the designer values

the two periods roughly equally (δ near one), committing to stochastically overturn the judge in the

first contest improves the designer’s expected payoffs.
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4.2 Discussion

We study a dynamic contest in which sequentially arriving contestants learn about the contest

judge’s bias by observing who has won in the past. We allow a contest designer to manipulate who

is awarded a prize in order to manage contestants’ beliefs and maximize effort. We show that for

some prior beliefs about the judge’s bias, the designer can increase total expected effort. Specifically,

there are beliefs for which this intervention can ensure that all contestants put forth effort conditional

on losing when neither (light blue area in Figure 3) or only one (light blue area in Figure 6) would

without it. For priors where intervention can only induce one type of contestant to exert effort in the

contest, she prefers to choose the one which is more likely to face bias from the judge (green area in

Figure 3). The optimal intervention in this case lowers this type of contestants likelihood of receiving

the prize in the first round even further. Lastly, where no intervention can prevent the type more likely

to face bias from not exerting effort after losing the first contest, we show the designer can benefit

by reducing the likelihood this type loses the first round (yellow area in Figures 3 and 6). We also

report an extension of the model in which the designer uses the contest to screen contestants’ ability,

and show that while overturning the judge becomes more costly, the incentive to overturn the judge

remains in some cases.

The results from Theorem 2 demonstrate the difficulty caused by the signal space being restricted

to the report of the winner. Regardless of the intervention chosen in our setting, there are at most two

signals that contestants can observe after the first round. Manipulations of the judge’s report impact

the informativeness of each signal and how often each occurs. Interventions to maximize effort can

harm the type of contestant more likely facing bias. In this case, the designer wishes to reduce the

informativeness of the signal that is more likely to happen, namely that this type loses. This is done

by artificially increasing the likelihood of this event - overturning rankings when this disadvantaged

type is chosen by the judge.

In settings where a more continuous measure of quality could be sent (e.g. one in which a

continuous “score” is generated and observed from each contestant’s submission) this incentive on

the part of the designer need not be present. More generally, the question of what signals should be

revealed in various environments is likely to be a fruitful path for future research which draws upon

both the dynamic contest and information design literatures. We show how the designer is able to

manipulate information in this realistic setting where only basic outcomes of past contests are publicly

available.
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We conclude by discussing a few of the assumptions of the model.

The contest designer has the power to publicly commit at the beginning of the game to a

strategy with randomization that depends on the judge’s report. This ability to commit is important

at several points. If the randomization is chosen after contestants choose their effort in the first

period, the designer would sometimes benefit from ignoring (IC-1) and assigning the prize in a way

unrelated to the judge’s report. Furthermore, without the commitment to respect the outcome of the

randomization, equilibria with intervention would only remain when total effort is the same in the

second contest given either outcome from the first contest (light blue area of Figures 3 and Figure 6).

Our analysis also assumes the designer knows the precise common prior beliefs of the contestants.

The assumption is easy to (partially) relax without qualitatively changing the results. Some values of

γA,1 and γB,1 solve the designer’s problem for a range of the contestants’ prior beliefs. Thus, as long

as the designer’s beliefs about the contestants’ priors fall within this range, the same choice of of γA,1

and γB,1 solve the designer’s problem. Inducing additional uncertainty on the part of the designer is

an interesting pathway for future research.

The restriction to a two period model is another restriction that brings with it meaningful

consequences: the designer’s problem is centered around mitigating the effects of a loss on one type

of contestant. This leaves no space for intuitive strategies such as occasionally awarding the prize to

the type which has lost several past contests in order to make them less pessimistic. We expect such

strategies to be valuable to the designer when there are more than two successive contests.
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A Proofs

Theorem 1 In any equilibrium of the single period model, both types of contestant put forth effort if

D(v, pA,1, pB,1) ≤ 1.

Otherwise, only the type more likely to be favored puts forth effort. The designer sets γA,1 and γB,1

high enough so that neither contestant has the incentive to stop putting forth effort.

Proof. If the contestant of type B is not putting forth effort, the type A contestant puts forth effort

if

P(A receives prize|aA,1 = 1, aB,1 = 0)v − 1 ≥ P(A receives prize|aA,1 = 0, aB,1 = 0)v.

We can substitute in the judge’s decision rule to get

γA,1v − 1 ≥
[

1

2
γA,1 +

1

2
(1− γB,1)

]
v.

which simplifies to

2

v
≤ γA,1 + γB,1 − 1.

Notice that this equality also holds for type B putting forth effort when A is not.

If the contestant of type B is putting forth effort, the type A contestant puts forth effort if

P(A receives prize|aA,1 = 1, aB,1 = 1)v − 1 ≥ P(A receives prize|aA,1 = 0, aB,1 = 1)v.

We can substitute in the judge’s decision rule to get

[
pA,1γA,1 + pB,1(1− γB,1) +

1

2
(1− pA,1 − pB,1)(1 + γA,1 − γB,1)

]
v − 1 ≥ (1− γB,1)v

which simplifies to

2

v

(
1

1 + pA,1 − pB,1

)
≤ γA,1 + γB,1 − 1

with a symmetric inequality holding for the contestant of type B.
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Thus, increasing γA,1 and γB,1 increases the incentive to put forth effort for both contestants in

all situations, so without loss of generality we can assume that the designer will set γA,1 = γB,1 = 1.

Since v > 2, this shows that there is no equilibrium in which neither contestant puts forth effort and

the inequality given in the theorem immediately follows.

Lemma 1 The following relationships between posterior beliefs about the judges bias and the designer’s

strategy hold when both contestants are conjectured to exert effort in the first contest and γi,1 > 1/2

for i = A,B.

∂pi,2(Γ, i)

∂γ−i,1
>
∂pi,2(Γ, i)

∂γi,1
> 0 and

∂pi,2(Γ,−i)
∂γi,1

<
∂pi,2(Γ,−i)
∂γ−i,1

< 0.

Proof. The posteriors when both contestants are conjectured to put in effort in period one are

pi,2(Γ, i) =
γi,1pi,1

1
2γi,1(1 + pi,1 − p−i,1) + 1

2(1− γ−i,1)(1 + p−i,1 − pi,1)

pi,2(Γ,−i) =
(1− γi,1)pi,1

1
2γ−i,1(1 + p−i,1 − pi,1) + 1

2(1− γi,1)(1 + pi,1 − p−i,1)
.

Taking partial derivatives

∂pi,2(Γ, i)

∂γi,1
=

1
2(1− γ−i,1)(1 + p−i,1 − pi,1)(

1
2γi,1(1 + pi,1 − p−i,1) + 1

2(1− γ−i,1)(1 + p−i,1 − pi,1)
)2

∂pi,2(Γ, i)

∂γ−i,1
=

1
2γi,1(1 + p−i,1 − pi,1)(

1
2γi,1(1 + pi,1 − p−i,1) + 1

2(1− γ−i,1)(1 + p−i,1 − pi,1)
)2

∂pi,2(Γ,−i)
∂γi,1

=
−1

2γ−i,1(1 + p−i,1 − pi,1)(
1
2γ−i,1(1 + p−i,1 − pi,1) + 1

2(1− γi,1)(1 + pi,1 − p−i,1)
)2

∂pi,2(Γ,−i)
∂γ−i,1

=
−1

2(1− γi,1)(1 + p−i,1 − pi,1)(
1
2γ−i,1(1 + p−i,1 − pi,1) + 1

2(1− γi,1)(1 + pi,1 − p−i,1)
)2

The result follows from γi,1 > 1/2 and γ−i,t > 1/2.

Lemma 2 It is optimal for the designer to set γA,2 = γB,2 = 1 in the second period.

Proof. Notice that in the second period, the analysis of whether each contestant will put forth effort

is exactly equivalent to the analysis from the single period game in the proof of Theorem 1, except

that pA,1, pB,1, γA,1, and γB,1 are replaced by pA,2, pB,2, γA,2, and γB,2. Thus increasing γA,2 and γB,2

increases the incentives to put forth effort, and it is optimal to increase both of them all the way to

one.
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Theorem 2 Suppose that no type of contestant is confident.

• If D ≤ (1+CB)(1+CA)
1−CACB

, then in any PBE both types of contestant put forth effort in both periods

and the designer occasionally overturns the judge.

• If (1+CB)(1+CA)
1−CACB

< D ≤ 1 + CB, then in any PBE only contestants of type B put forth effort in

the second period conditional on their type losing in the first. The designer sets γA,1 = 1, and

γB,1 to the minimum level possible so that both types put forth effort in the first period.

• If 1 + CB < D ≤ 1 + CA, then in any PBE only contestants of type A put forth effort in the

second period conditional on their type losing in the first. The designer sets γB,1 = 1, and γA,1

to the minimum level possible so that both types put forth effort in the first period.

• If 1 + CA < D ≤ 1, then in any PBE neither type of contestant puts forth effort in the second

period conditional on their type losing in the first. The designer sets γA,1 and γB,1 high enough

so that neither contestant has the incentive to stop putting forth effort in the first period.

• If 1 < D, then in any PBE contestants of type A put forth effort in both periods but contestants

of type B do not put forth effort in either period.

Proof. The contestants put forth maximal effort in both periods if there exist γA,1 and γB,1 which

satisfy both (IC-1), (BC-A), and (BC-B). Since both CA and CB are negative, this is true when the

intersection of the lines defined by (BC-A) and (BC-B) falls below the line defined by (IC-1). This

intersection is where

γA,1 − CAγB,1 = 1

γB,1 − CBγA,1 = 1.

This can be solved to find that the intersection is where γA,1 = 1+CA
1−CACB

and γB,1 = 1+CB
1−CACB

. This

intersection satisfies (IC-1) if

1 + CA

1− CACB
+

1 + CB

1− CACB
− 1 ≥ D,

or (1+CA)(1+CB)
1−CACB

≥ D.

Next, we show the conditions under which there exist γA,1 and γB,1 which satisfy both (IC-1)

and (BC-A). This is only possible when CA > −1, because otherwise the only γA,1 and γB,1 which
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satisfied (BC-A) would need to sum to less than one, which violates (IC-1) for any v. Furthermore,

when CA > −1, lowering γA,1 while increasing γB,1 by the same value relaxes (BC-A) while having

no effect on (IC-1), so we can focus on the case where γB,1 = 1. Checking whether both (IC-1) and

(BC-A) can be satisfied simultaneously is equivalent to checking whether there exists a γA,1 which

satisfies

γA,1 ≥ D

and

γA,1 ≤ 1 + CA.

Thus, it is possible to satisfy (IC-1) and (BC-A) simultaneously if D ≤ 1 + CA. Because the case for

type B is symmetric, it is possible to satisfy (IC-1) and (BC-B) simultaneously if D ≤ 1 + CB.

Suppose that the designer chooses γA,1 and γB,1 such that (IC-1) and (BC-A) are satisfied, but

(BC-B) is not satisfied. In this case, contestants put forth a total of two effort in both periods when

type B is awarded the prize, but only one effort in the second period when type A is awarded the

prize. Thus, the expected discounted sum of effort is

2 + P(B wins|aA,1 = aB,1 = 1)(2δ) + P(A wins|aA,1 = aB,1 = 1)(δ)

which can be expanded as

2+

(
1

2
(1− γA,1)(1 + pA,1 − pB,1) +

1

2
γB,1(1 + pB,1 − pA,1)

)
(2δ)

+

(
1

2
γA,1(1 + pA,1 − pB,1) +

1

2
(1− γB,1)(1 + pB,1 − pA,1)

)
(δ).

This simplifies to

2 +

(
3

2
+

1

2
pA,1 −

1

2
pB,1

)
δ −

(
3

2
+

1

2
pA,1 −

1

2
pB,1

)
γA,1δ +

(
3

2
+

1

2
pB,1 −

1

2
pA,1

)
γB,1δ.

Thus, the expected discounted sum of effort is decreasing in γA,1 and increasing in γB,1. The optimal

values of γA,1 and γB,1 subject to them satisfying (IC-1) and (BC-A) (but not (BC-B)) are γB,1 = 1
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and γA,1 = D. For the optimal choice of γA,1 and γB,1, the expected discounted sum of effort is

2 + 3δ −
(

3

2
+

1

2
pA,1 −

1

2
pB,1

)
δD.

A symmetric argument shows that when satisfying (IC-1) and (BC-B) (but not (BC-A)), the expected

discounted sum of effort is

2 + 3δ −
(

3

2
+

1

2
pB,1 −

1

2
pA,1

)
δD.

Thus, when pA,1 ≥ pB,1 and (1+CB)(1+CA)
1−CACB

< D ≤ 1 + CB ≤ 1 + CA, it is optimal to set γA,1 = 1,

γB,1 = D so that the contestant of type B puts forth effort conditional on losing but the contestant

of type A does not. If 1 + CB ≤ D ≤ 1 + CA, then it is not possible to ensure that the contestant of

type B puts forth effort conditional on losing, and it is optimal to set γA,1 = D and γB,1 = 1.

The proof of Theorem 1 demonstrates that there are values of γA,1 and γB,1 which satisfy (IC-1)

if and only if D ≤ 1. This implies that the designer can ensure that (IC-1) but not (BC-A) or (BC-B)

can be satisfied when 1 + CB ≤ 1 + CA < D ≤ 1. Because pA,1 ≥ pB,1 implies that CA ≥ CB when

CA is negative, this exhausts the cases.

Theorem 3 Suppose that contestants of type A are confident but contestants of type B are not confi-

dent.

• If D ≤ 1 +CB, then in any PBE both types of contestant put forth effort in both periods and the

designer occasionally overturns the judge.

• If 1 +CB < D ≤ 1, then in any PBE both types of contestant put forth effort in the first period,

but only contestants of type A put forth effort in the second period conditional on their type

losing in the first. The designer sets γA,1 and γB,1 high enough so that neither contestant has

the incentive to stop putting forth effort in the first period.

• If 1 < D, then in any PBE contestants of type A put forth effort in both periods but contestants

of type B do not put forth effort in either period.

Proof. Type A being confident implies that (BC-A) is satisfied for any feasible values of γA,1 and

γB,1.

Since (BC-A) is satisfied, the contestants put forth maximal effort in both periods if there exist

γA,1 and γB,1 which satisfy both (IC-1) and (BC-B). In the proof of Theorem 2 we showed that such
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γA,1 and γB,1 exist if and only if D ≤ 1 + CB.

The proof of Theorem 1 demonstrates that there are values of γA,1 and γB,1 which satisfy (IC-1)

if and only if D ≤ 1. This implies that the designer can ensure that (IC-1) but not (BC-B) can be

satisfied when 1 + CB < D ≤ 1.

Theorem 4 Suppose that both types of contestant are confident. Then both types put forth effort in

both periods. The designer sets γA,1 and γB,1 high enough so that neither contestant has the incentive

to stop putting forth effort in the first period.

Proof. Both players being confident implies that (BC-A) and (BC-B) are both satisfied when γA,1 =

γB,1 = 1. Furthermore, when type A is confident,

2pB,1 +

(
2

v
− 1

)
(1 + pB,1 − pA,1) ≤ 0

which can be restated as

2

v

(
1

1 + pA,1 − pB,1

)
≤

1− pA,1 − pB,1

1− (pA,1 − pB,1)2

≤ 1.

which is exactly (IC-1). Thus, for γA,1 = γB,1 = 1, (IC-1), (BC-A), and (BC-B) are all satisfied and

both types of contestant put forth effort in both periods.

Proposition 1 In the equilibrium of the single period model with screening and λ < 1, both contestants

put forth effort if

D(v, pA,1, pB,1) ≤ 1.

Otherwise, only type A puts forth effort. The designer sets γA,1 and γB,1 equal to 1 if both types are

putting forth effort.

Proof. This result follows from the proof of Theorem 1 and the discussion in the text.

Proposition 2 In the equilibrium of the two period model with screening and λ < 1, the designer

maximizes her payoffs by setting γi,t = 1 for all i and t if (1) neither type is confident and 1+CA < D,

(2) type A is confident and 1 < D, or (3) both types are confident.

Proof. The proofs of Theorem 2, Theorem 3, and Theorem 4 showed that under the conditions given

in the statement of the proposition, lowering γi,t for any i or t below 1 weakly decreases effort from

both types and in both periods.
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If both types put forth effort in a period then the likelihood that the prize is awarded to a high

type in any period is

µ2 + µ(1− µ)[(1− pB,t)γA,t + pB,t(1− γB,t)] + µ(1− µ)[(1− pA,t)γB,t + pA,t(1− γA,t)]

= µ2 + µ(1− µ)[(γA,t + γB,t)(1− pA,t − pB,t) + pA,t + pB,t].

This is strictly decreasing in γA,t and γB,t, so the designer is strictly better off setting both values

equal to one.

If only one type is putting forth effort in period t, then the likelihood that the prize is awarded

to a high type is µ regardless of whether the judge is biased or the values of γA,t or γB,t.

Proposition 3 Suppose that neither type is confident and D ≤ (1+CB)(1+CA)
1−CACB

. Then if

δ ≥ (1− λ)(1− µ)µ(1− pi,1 − pj,1)(2CACB + CA + CB)

[λ+ (1− λ)(µ2 + µ(1− µ)(2− pi,1 − pj,1)− µ)](CACB − 1)
,

committing to occasionally overturn the judge increases the designer’s payoffs.

Proof. The proof of Theorem 2 shows that when neither type is confident and D ≤ (1+CB)(1+CA)
1−CACB

,

neither type puts forth effort in the second period conditional on their type losing in the first period.

It also shows that there exists γA,1 and γB,1 that induces both types to put forth effort in both periods.

Suppose that the conditions of the proposition hold, and that γA,1 and γB,1 satisfy (IC-1),

(BC-A), and (BC-B). Then the payoffs to the designer in the second period are

λ(1 + 1)+(1− λ)[µ2 + µ(1− µ)(1− pA,1) + µ(1− µ)(1− pB,1)]

= 2λ+ (1− λ)[µ2 + µ(1− µ)(2− pA,1 − pB,1)]

while the payoffs in the first period are

2λ+(1− λ)[µ2 + µ(1− µ)[(1− pB,1)γA,1 + pB,1(1− γB,1)] + µ(1− µ)[(1− pA,1)γB,1 + pA,1(1− γA,1)]]

= 2λ+ (1− λ)[µ2 + µ(1− µ)[(γA,1 + γB,1)(1− pA,1 − pB,1) + pA,1 + pB,1]].

Notice that these first period payoffs are strictly decreasing in γA,1 + γB,1. This sum is maximized by
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choosing γA,1 and γB,1 which satisfy (BC-A), and (BC-B) with equality, so

γA,1 =
1 + CA

1− CACB

γB,1 =
1 + CB

1− CACB

and the payoffs from the first period are

2λ+ (1− λ)

[
µ2 + µ(1− µ)

[(
2 + CA + CB

1− CACB

)
(1− pA,1 − pB,1) + pA,1 + pB,1

]]

If instead the designer is setting γA,1 = γB,1 = 1, then she receives λ + (1 − λ)µ in the second

period and 2λ+ (1− λ)[µ2 + µ(1− µ)(2− pi,1 − pj,1)] in the first period.

Thus, setting γA,1 and γB,1 to satisfy (IC-1), (BC-A), and (BC-B) is optimal only if

2λ+ (1− λ)

[
µ2 + µ(1− µ)

[(
2 + CA + CB

1− CACB

)
(1− pA,1 − pB,1) + pA,1 + pB,1

]]
+ δ

[
2λ+ (1− λ)[µ2 + µ(1− µ)(2− pA,1 − pB,1)]

]
≥2λ+ (1− λ)[µ2 + µ(1− µ)(2− pA,1 − pB,1)]

+ δ[λ+ (1− λ)µ]

which can be rewritten as

δ
[
λ+ (1− λ)(µ2 + µ(1− µ)(2− pA,1 − pB,1)− µ)]

]
≥ (1− λ)(1− µ)µ(1− pA,1 − pB,1)

(
CA + CB + 2CACB

CACB − 1

)
.

Thus, we know that committing to overturn the judge gives higher payoffs than always respecting the

judge’s ranking if

δ ≥
(1− λ)(1− µ)µ(1− pA,1 − pB,1)(2CACB + CA + CB)

[λ+ (1− λ)(µ2 + µ(1− µ)(2− pA,1 − pB,1)− µ)](CACB − 1)

which is the condition provided in the proposition.

Corollary 1 Suppose that neither type is confident, λ = 0, and D ≤ (1+CB)(1+CA)
1−CACB

. Then there exists

a δ∗ ∈ (0, 1) such that if δ > δ∗, committing to occasionally overturn the judge increases the designer’s

payoffs.
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Proof. Notice that if we have λ = 0, then the condition from Proposition 3 simplifies to

δ ≥ (1− µ)µ(1− pi,1 − pj,1)(2CACB + CA + CB)

[(µ2 + µ(1− µ)(2− pi,1 − pj,1)− µ)](CACB − 1)

=
(1− µ)(1− pi,1 − pj,1)(2CACB + CA + CB)

[(µ+ (1− µ)(2− pi,1 − pj,1)− 1)](CACB − 1)

=
(1− pi,1 − pj,1)(2CACB + CA + CB)

[((2− pi,1 − pj,1)− 1)](CACB − 1)

=
2CACB + CA + CB

CACB − 1

=
(1 + CA)(1 + CB)

CACB − 1
+ 1.

Because −1 < CB ≤ CA < 0 when neither type is confident and D ≤ (1+CB)(1+CA)
1−CACB

, we know that

−1 < (1+CA)(1+CB)
CACB−1 < 0. Thus, if δ is close enough to one, the inequality from Proposition 3 will be

satisfied.
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