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Abstract

Recent work �nds that people's beliefs about in�ation are systematically upward

biased. Since in�ation expectations are central to the e�cacy of monetary policy, un-

derstanding these expectations, and their biases, is important for policy. While one

can always �nd preference-based explanations for bias, the fact that more informed

agents have less upward bias, suggests some connection to information, as opposed to

preferences. This paper proposes a rational Bayesian explanation for the bias: Agents

with parameter uncertainty over positively-skewed distributions have a positive bias in

their forecast. We use in�ation and survey data to show that this mechanism can quan-

titatively explain the magnitude of the bias. The model implies that communicating

about in�ation skewness may be an important dimension of forward guidance.

1 Introduction

In�ation expectations are a ubiquitous ingredient in the economic decisions of households

and �rms. Whether a household is choosing how much to save, or a �rm is deciding what

price to set, a sound forecast about future in�ation is essential for taking the optimal action.

Understanding in�ation expectations is particularly central to the e�cacy of monetary policy.

Monetary policy makers continuously refer to in�ation expectations as a major driver of

in�ation and craft policies to target these expectations.

At the same time, in�ation expectations are puzzling. Evidence from the U.S. and New

Zealand shows that average in�ation expectations of households and �rms are systematically

upward biased, by many percent. When asked to assign probabilities to di�erent in�ation

outcomes, these agents exhibit large degrees of uncertainty and skewness, towards high

in�ation outcomes. Moreover, those who are more uncertain about in�ation tend to have a

more biased in�ation forecast. The New Zealand case is particularly surprising because it has

successfully implemented in�ation targeting, for almost 3 decades. Kumar, Afrouzi, Coibion
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and Gorodnichenko (2015) show that while both the o�cial target of the Reserve Bank of

New Zealand as well as the average in�ation in New Zealand was 2% and the maximum

in any quarter, since in�ation targeting started, was 5%, about half of all �rms forecast

1-year-ahead in�ation to be 5% or higher (Figure V). Using evidence from Michigan Survey

of Consumers and New York Fed's Survey of Consumer Expectations, they also show the

same patterns are observed for households in the U.S. (Figure III). Evidence about �rms'

expectations in the U.S. is scarce, but in Bryan, Meyer and Parker (2015), U.S. �rms exhibit

similar upward bias when asked about the change in the overall prices in the economy: the

average �rm in their sample believed that yearly in�ation was going to be 4.4% in September

of 2015, when in reality in�ation turned out to be less than 1%, far below the 2% target of

the Federal Reserve. While forecasts always have error, an unbiased forecaster with decades

of data should not make such large systematic errors.

Our contribution is to o�er a belief-based explanation for this bias that can also explain

its heterogeneity in the cross-section and over forecast horizons. We argue that forecast bias

arises from rational Bayesian beliefs when the forecaster is uncertain about the parameters of

the distribution from which in�ation is drawn, but correctly believes that distribution to be

positively skewed. Our two key assumptions � perceived skewness and subjective uncertainty

about in�ation probabilities � are both clearly re�ected in the survey data. In the survey

data from New Zealand, �rms are asked to assign probabilities to di�erent in�ation outcomes

which allows us to measure higher moments of their subjective beliefs. Figure (VI) plots the

distribution of the standard deviation of these beliefs across �rms. The average �rm is highly

uncertain about in�ation, much more than the empirical distribution of in�ation would seem

to support. Figure (IV) shows the average probabilities that �rms assign to each outcome.

The distribution is skewed and �rms assign large probabilities to high in�ation outcomes.

There are some existing preference-based theories of forecast bias. These theories rely on

asymmetries in preferences (Capistrán and Timmermann, 2009), robust control (Bhandari

et al., 2017) or ambiguity aversion (Baqaee, 2016). To distinguish between preference and

belief-based explanations, we o�er additional evidence about forecast bias. One additional

piece of evidence is that professional forecasters and households/�rms systematically have

very di�erent levels of bias. Of course, one can assume that their preferences di�er in

just the right way so as to explain this cross sectional di�erence. But our theory delivers

these di�erences endogenously when professional forecasters observe more macro data and

�rms observe more marginal cost data. We show that the incentives of each type of agent to

acquire information support this explanation. Second, we document that forecast bias at one-

year and �ve-year horizons �ips signs. This �nding is particularly challenging to preference

explanations. To explain it, the same agent, at the same moment in time, would have to have
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a di�erent objective or di�erent concern for model misspeci�cation at di�erent horizons. For

the belief-based explanation, this outcome is simply a result of di�erent skewness at di�erent

frequencies, a feature observed in the data. Because policy makes in�ation mean-reverting,

the extreme positive in�ation outcomes observed at one year horizons are not such outliers

when averages with the surrounding 5 years of data. When the positive skewness in 5-year

in�ation data disappears, so does the agents' forecast bias.

But this simple Bayesian explanation raises further questions. First and foremost, if

�rms believe in�ation is high, shouldn't they raise prices accordingly, which, in turn, would

rationalize the high in�ation belief? Our framework connects with the model in Afrouzi

(2017) which explains this disconnect by showing that �rms always prefer information about

sector-speci�c prices, without paying separate attention to aggregates versus idiosyncratic

shocks. We depart from this paper by focusing on how parameter uncertainty causes biased

expectations, but use the �ndings of that paper to rationalize why prices of �rms do not

inherit the biases in their expectations: acquiring information about sector-speci�c prices

reduces the �rms parameter uncertainty and reduces their forecast bias for prices, in their

sector. Because �rms' forecasts of prices in their sector are unbiased, the prices they set

to compete in their sector do not re�ect their high aggregate in�ation expectations. This

is in contrast to Ma¢kowiak and Wiederholt (2009) where �rms see separate signals about

in�ation and sector-speci�c shocks. In that setting since �rms have to form their expectations

about each shock separately, the bias in in�ation expectations would pass-through to price

one-to-one.

Afrouzi (2017) also documents that �rms are far less uncertain about their own industry

prices than they are about aggregate in�ation; moreover, they are much less biased about

their own industry prices than they are about aggregate in�ation (Figure VIII). This is

consistent with the prediction of our model that higher uncertainty should translate to larger

biases.

Lastly, we draw several other testable predictions and verify then in the data: our model

predicts that bias in in�ation expectations should be countercyclical, where as disagreement

among agents should be procyclical, both of which are what we observe in the data for

expectations of households in the Michigan Survey of Consumers.1 Another puzzling obser-

vation in the Survey data is that households and �rms revise their forecasts by a lot in short

periods of time, an observation that is usually attributed to measurement error. After all,

rational Bayesian agents who follows a stable process like in�ation and know the parameters

of the model should not revise their forecasts by much � which is the case for professional

forecasters but not households or �rms. Our model, however, makes sense of this observation

1The robust control model of (Bhandari et al., 2017) also predicts a counter cyclical bias.
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by relying on parameter uncertainty. Households and �rms are far more uncertain about the

parameters of the in�ation process � because in our model they endogenously choose to see

noisier data about in�ation � which causes them to shift their estimates of tail event in light

of new data and revise their forecasts by a lot.

Our message is that understanding forecasts requires relaxing the full-information as-

sumptions of rational expectations econometrics. In such a full-information world, agents

are assumed to know what the true distribution of economic outcomes is. Their only uncer-

tainty is about what realization will be drawn from a known distribution. To model such a

full-information forecaster, it makes sense to estimate a model on as much data as possible,

take the parameters as given, and estimate the conditional expectations. But in reality, the

macroeconomy is not governed by a simple, known model and we surely do not know its

parameters. Instead, our forecast data suggests that forecasters estimate simple models to

approximate complex processes and constantly use new data to update beliefs. Forecasters

are not irrational. They simply do not know the economy's true data-generating process. In

such a setting, forecast means and sample means can behave quite di�erently. Our �ndings

teach us that one important determinant of in�ation expectations may be what is known

about the distribution of economic outcomes.

Related Literature We are motivated by a large body of empirical evidence on in�a-

tion expectations of �rms and households. It is well established that in�ation expecta-

tions of households in the Michigan Survey of Consumers are systematically upward biased

(Croushore, 1998; Carroll, 2003). Similar patterns have been documented in New York Fed's

Survey of Consumer Expectations (Kumar et al., 2015; Bhandari et al., 2017). The former is

also our source for data on �rms' subjective beliefs. Coibion et al. (2018) use a more devel-

oped version of this data to go deeper in investigating how �rms form their expectations and

how these expectations a�ect their actions. Instead, we focus on the relationship between

the bias and higher moments of �rms' beliefs, and use this data to provide evidence for our

mechanism.

Our approach is inspired by two preceding papers that both estimate Bayesian forecasting

models to describe agents' beliefs. Cogley and Sargent (2005) use such a model to understand

the behavior of monetary policy, while Johannes et al. (forthcoming) estimate a model of

consumption growth to capture properties of asset prices. While the concept is similar, our

use of a non-normal model, our measurement of uncertainty, and our study of the e�ects

of learning about skewness distinguish our work from its predecessors. This approach is

also motivated by Chen et al. (2013), which critiques models that give agents knowledge of

parameters that econometricians cannot identify and Hansen's Ely Lecture (Hansen, 2007)
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which advocates modeling agents who struggle with real-time model selection.

2 Bayesian Belief Formation

To build up intuition for how parameter learning creates forecast bias, we start with the

forecasting problem alone. Our forecasting model is one of the simplest forecasting models,

an Kalman �lter system, but with an exponential twist. The parameters of the exponential

twist regulate the conditional skewness of outcomes. Because skewness is hard to learn

in small samples, learning does not converge quickly. We prove the the combination of

parameter uncertainty and skewness generates forecast bias. That is the key mechanism

in the paper. The economic model that follows allows us to quantify the bias and answer

economic questions about its consequences.

Before we describe the belief updating models, we start by de�ning terms. A model,

denoted M, has a vector a parameters θ. Together, M and θ determine a probability

distribution over a sequence of outcomes πt. Let π
t ≡ {πτ}tτ=1 denote a series of data (in our

exercises, the in�ation rates) available to the forecaster at time t. In every model, agent i's

information set Ii,t will include the modelM and the history πt of observations up to and

including time t. The state St, innovations, and the parameters θ are never observed.

Speci�cally, at each date t, the agent conditions on his information set Ii,t and forms

beliefs about the distribution of πt+1. We call the expected value E (πt+1|Ii,t) an agent

i's forecast and the square root of the conditional variance V ar (πt+1|Ii,t) is what we call

subjective uncertainty. Forecasters' forecasts will di�er from the realized in�ation rate. This

di�erence is what we call a forecast error.

De�nition 1. An agent i's forecast error is the distance, in absolute value, between the

forecast and the realized in�ation rate: FEi,t+1 = |πt+1 − E[πt+1|Ii,t]|.

The average forecast error is then given by

F̄Et+1 ≡
∫ 1

0

FEi,t+1di. (1)

While we have only de�ned forecast errors and uncertainty for one-period-ahead forecasts,

they can be similarly de�ned for other horizons.

De�nition 2. Uncertainty is the standard deviation of the time-(t+1) in�ation, conditional

on an agent's time-t information: Uit =
√
E
[
(πt+1 − E[πt+1|Ii,t])2

∣∣ Ii,t].
It is useful to observe that using de�nition (1) one could write uncertainty as the squared

root of expected squared forecast error; Uit =
√
E[FE2

i,t+1|Ii,t].
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A Skewed Forecasting Model Figure (II) shows the distribution of in�ation over time

in New Zealand, and �gure (IV) shows the average subjective belief distribution across �rms.

The evident skewness of these distributions suggest a departure from normality as positive

skewness is a salient feature of in�ation data.

Updating non-normal variables is typically cumbersome. Combining this with parameter

uncertainty typically requires particle �ltering, which is possible, but slow. We make this

problem tractable by doing a change of measure. The Radon-Nikodym theorem tells us that,

for any measure g that is absolutely continuous with respect to a measure induced by a normal

distribution, we can �nd a change-of-measure function f such that g(x) =
∫
f(x)dΦ(x),

where Φ is a normal CDF. If we estimate such an f function, then we use f−1 to take data

from a skewed distribution and transform it into normal data, which simpli�es the updating

problem signi�cantly.

Of course, allowing a forecaster to explore the whole function space of possible f 's is not

viable. We focus the problem by considering a family of functions and allowing the forecaster

to consider parameter estimates that govern the properties of the distribution. The change

of measure function should have three desirable properties: 1) Its range is the real line; 2) it

is monotone; and 3) it can be either globally concave or globally convex, depending on the

estimated parameters. A class of transformations that satisfy this criteria is

f(X̃t) = c+ b exp(−X̃t) (2)

If we have estimates for b and c, we can do a change of variable: Use f−1(πt) to transform

in�ation into a variable X̃t = St + σεt, which is a normally-distributed continuous variable

with a persistent hidden state. Then we can write our skewed forecasting model as

πt = c+ b exp (−St − σεt)

St = ρSt−1 + σsεt

where both εt and εt are standard normals. This change-of-variable procedure allows our

forecaster to consider a family of non-normal distributions of in�ation and convert each

one into a linear-normal �ltering problem with unknown parameters that can be estimated

jointly using the same tools as in the previous section. The only additional complication is

that the parameters b and c also need to be estimated.

We start with priors (see Appendix) and use MCMC techniques to form beliefs about

the vector of parameters θ ≡ (ρ, σ, σs, c). For each parameter draw θi from the MCMC

algorithm, we compute E[πt+1|It, θi] and E[π2
t+1|It, θi]. We average these expectations over
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all parameter draws and compute uncertainty as

Ut =
√
E[π2

t+1|It]− (E[πt+1|It])2.

The key feature of this model is that it produces a skewed distribution of outcomes and

that the forecaster has to estimate parameters that govern the skewness. Skewness in this

model is most sensitive to the b and c parameters because they govern the curvature of the

transformation f of the normal variable. Any function with similar curvature, such as a

polynomial or sine function, would deliver a similar mechanism.

2.1 Why Skewness and Model Uncertainty Generate Upward Bias

in Forecasts?

In�ation forecasts are puzzling because it cannot be that over 70 years of post-war history,

forecasters have not �gured out that the sample mean is only half as high as their forecasts, on

average. Our next result shows that these high forecasts are entirely rational for a Bayesian

who believes that outcomes are positively skewed and faces parameter uncertainty.

Proposition 1. Suppose that π is a random variable with a probability density function f

that can be expressed as f(y|µ, σ) = φ((g−1(π)−µ)/σ) where φ is a standard normal density

and g is a convex function. Let the mean of π be π̄ ≡
∫
πf(π|µ, σ)dπ. A forecaster does

not know the true parameters µ and σ, but estimates probability densities h(µ) and k(σ),

with means µ and σ. The forecaster uses these parameter densities to construct a forecast:

π̂ ≡
∫ ∫ ∫

π f(π|µ′, σ′)h(µ′) k(σ′) dπ dµ′ dσ′. Then π̂ > π̄.

The logic of the result is the following: If in�ation is a convex transformation of a normal

underlying variable, Jensen's inequality tells us that expected values will be systematically

higher than the average realization. But by itself, Jensen's inequality does not explain the

forecast bias because the expected in�ation and the mean in�ation should both be raised by

the convex transformation (see �gure I, left panel).

It must be that there is some additional uncertainty in expectations, making the Jensen

inequality e�ect larger for forecasts than it is for the unconditional mean of the true dis-

tribution (see �gure I, right panel). This would explain why our results tell us that most

of the time the sample mean is less than the average forecast. If the agent knew the true

parameters, he would have less uncertainty about πt+1. Less uncertainty would make the

Jensen e�ect smaller and lower his estimate of πt+1, on average. Thus, it is the combination

of parameter uncertainty and a skewed distribution that can explain the forecast bias.

7



3 Pricing Model

Next, we embed this Bayesian learning mechanism is a standard attention-allocation model of

information choice and price setting. The purpose is to quantify the e�ect and to understand

how expectations can be biased, while the prices �rms set remain low.

There is a continuum of �rms in the economy, indexed by i ∈ [0, 1].

Pro�t function of �rms. We assume that �rms i's pro�t at time t is given by the following

pro�t function:

Πi,t = Π(Pi,t, Qt, Zi,t) (3)

where Pi,t is the �rm's own price, Qt ∈ ΘQ is the nominal aggregate demand (or money

supply) and Zi,t ∈ ΘZ is an idiosyncratic shock to �rm i's pro�t. The function Π(., ., .) is

at least twice di�erentiable in all its arguments, and for any realization of (Qt, Zi,t), it is

strictly concave and single peaked in its �rst argument. Moreover, the pro�t function is

homogeneous of degree one in its �rst two arguments.2

Linear-Quadratic approximation. For (Q,Z) ∈ ΘQ ×ΘZ , let

P ∗(Q,Z) ≡ arg max
P̂

Π(P̂ , Q, Z)

denote the price that maximizes the pro�t function. Let small letters denote log deviations of

the corresponding variables from an arbitrary point (P̄ , Q̄, Z̄). Then, Taylor approximations

around this point give:

p∗(q, z) = q + αz +O(‖q, z‖2), α ≡ P̄ ∂13Π̄

Z̄∂11Π̄
(4)

Π(P,Q,Z)− Π̄ = −B(p− p∗(q, z))2 +O(‖q, z‖3), B ≡ −P̄ 2∂11Π̄ > 0. (5)

Equation (4) simply shows that up to a �rst order approximation the elasticity of �rms'

optimal price with respect to money supply is one � implied by the homogeneity of the

pro�t function. Moreover, equation (5) shows that the �rm's loss from charging a price

P 6= P ∗(Q,Z) is proportional to the quadratic di�erence between the two.

2This is a standard pro�t function assumed in many macro models. For a microfoundation, see, for
instance, (Woodford, 2003).

8



Prices with imperfect information. Let us assume that at time t, �rm i's information

set is characterized by the set of all the signals that they have seen in the past:

Ii,t ≡ {si,τ : τ ≤ t}.

Given an information set at time t, the �rm minimizes the quadratic loss in Equation (5):

Li,t = Bmin
pi,t

E
[
(pi,t − qt − αzi,t)2|Ii,t

]
.

The solution implies:

pi,t = E [qt + αzi,t|Ii,t]

Li,t = var(qt + αzi,t|Ii,t)

Optimality of one signal. Suppose in addition to qt and zi,t, the �rms also learn about

some parameters that we refer to by θ. Suppose for a given information set Ii,t−1 at the

beginning of t, the �rm chooses a set of signals si,t to solve:

min
si,t

E [var(qt + αzi,t|Ii,t)|Ii,t−1] + φI(si,t; qt, zi,t, θ|Ii,t−1)

s.t. Ii,t = Ii,t−1 ∪ si,t

where I(.; .|.) is a conditional Shannon mutual information function � for instance Shannon

� and φ > 0 is the marginal cost of processing information.

Assumption 1. The function I(.; .|.) satis�es the following two properties:

1. if the two random variables X and Y are independent, then their mutual information

is zero:

X ⊥ Y ⇒ I(X, Y ) = 0.

2. (Data Processing Inequality) For any Markov chain X → Y → Z (X ⊥ Z|Y ) ,

I(X, Y ) ≥ I(X,Z).

Intuitively, the second condition means that if conditional on Y , Z reveals no information

about X, then Y contains at least the same amount of information about X as Z.
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Proposition 2. Suppose the cost of information satis�es Assumption (1). Then, �rms

always prefer to see one signal at any point in time.

Corollary 1. In the limit where the marginal cost of information converges to zero, the

optimal signal of �rm i at time t converges to si,t = qt + αzi,t almost everywhere on the

support of qt + αzi,t implied by Ii,t−1.

Equilibrium in�ation and forecasts. Henceforth, we assume that the economy is in the

limit where the marginal cost of processing information goes to zero, and all �rms observe

the optimal signal in this limit according to Corollary (1).

De�ne the aggregate price as the average price across �rms, pt :=
∫ 1

0
pi,t, and let πt :=

pt − pt−1 denote the rate of in�ation. Then in the limit:

pt =

∫ 1

0

E[qt + αzi,t|Ii,t]di = qt. (6)

The second part of the equality follows from Corollary (1) along with the fact that zi,t's

are i.i.d. across �rms. Hence, in�ation is simply given by the growth in nominal aggregate

demand (or money supply if velocity of money is constant):

πt = ∆qt.

Finally, let Ei,t[πt+h] denote the in�ation forecast of �rm i at time t for horizon h. Then,

this forecast is given by

Ei,t[πt+h] = E[∆qt+h|Ii,t], Ii,t = {qs + αzi,s}s≤t. (7)

3.1 How Can Expectations and Prices Be Disconnected?

There seems to be a disconnect between expectations and actions. In particular, if the

average �rm thinks that in�ation was 4%, why did they only change their price by 2%? The

results that follow rationalize this gap between expectations and actions.

Even though �rms know their own optimal prices perfectly in the limit when the marginal

cost of processing information goes to zero, they are still highly uncertain about the aggregate

in�ation:

var(∆qt|Ii,t) > var(∆qt + α∆zi,t|Ii,t) = 0.

Moreover, the inequality above implies that while qt and zi,t are independent, �rms'

10



optimal signal structure gives them a correlated posterior over these.

If the distribution of ∆qt (or alternatively zi,t) is skewed, then �rms' subjective distri-

butions will inherit this property. Moreover, since �rms choose their information structure

such that they are not well-informed about in�ation, their large uncertainty will translate

to biased expectations about πt = ∆qt.

3.2 How Should In�ation Bias Di�er Between Forecasters and Firms?

The following result show that forecasters have small bias because the abundant information

they observe about in�ation causes them to have little parameter uncertainty. In contrast,

�rms observe marginal cost information, which is a noisier source of in�ation data. Because

their data is noisier, it is less informative about the parameters of the in�ation distribution.

The substantial parameter uncertainty, combined with positive in�ation skewness, is what

explains �rms' positive bias in in�ation expectations.

3.3 In�ation Bias at Longer Horizons

The data show substantially less upward in�ation bias at long horizons. Here, we derive

results on how Bayesian forecast bias should vary by horizon. We show that if in�ation

is su�ciently mean-reverting, then longer horizon bias should be lower because the mean-

reversion makes multi-year average in�ation statistics less skewed.

4 Quantitative Results: How Much Bias Can In�ation

Skewness Explain?

Next, we use historical U.S. in�ation data to estimate the forecasting model and determine

how much bias it produces, in the aggregate, in the cross section, and across forecasting

horizons.

Model estimation procedure To compute forecasts, we use Bayesian updating. A fore-

cast is a conditional expectation of next-period in�ation, where the expectation is taken over

unknown parameters, states, and in�ation realizations. Using the law of iterated expecta-

tions, we can write this forecast as:

E
(
πt+1|πt

)
=

∫ ∫ ∫
πt+1p

(
πt+1|θ, St+1, π

t
)
p
(
St+1|θ, πt

)
p
(
θ|πt

)
dθdSt+1dπt+1 (8)
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The �rst probability density function, p (πt+1|θ, St+1, π
t), is the probability of t+ 1 in�ation,

given the state and the parameters.

The second probability density function, p (St+1|θ, πt), is the probability of a hidden

state in a Kalman �ltering system. This is a (conditional) normal density. To see this,

assume for a moment that the parameters are known. Then, if we have estimates for b

and c, we can do a change of variable: Use f−1(πt) to transform in�ation into a variable

Xt = St + σεt, which is a normally-distributed continuous variable with a persistent hidden

state. This change-of-variable procedure allows our forecaster to consider a family of non-

normal distributions of in�ation and convert each one into a linear-normal (Kalman) �ltering

problem with unknown parameters that can be estimated jointly using the standard Bayesian

estimation techniques. The following equations describe the conditional mean and variance

of the �rst two probability terms, jointly

E
[
πt+1|πt, θ,M

]
= c+ b exp

(
−E

[
St+1|πt, θ,M

]
+

1

2
V ar

[
St+1|πt, θ,M

]
+

1

2
σ2

)
where the following recursion characterizes the updating of state belief

E
[
St|πt, θ,M

]
= (1−Kt)E

[
St|πt−1, θ,M

]
+Ktln((πt − c)/b)

and where the termKt = V ar [ln((πt − c)/b)|πt−1, θ,M] (V ar [ln((πt − c)/b)|πt−1, θ,M] + σ2
s)
−1

is the Kalman gain. The conditional variance is given by

V ar
[
ln((πt − c)/b)|πt, θ,M

]
= ρ2

[
1

V ar [ln((πt − c)/b)|πt−1, θ,M]
+

1

σ2
s

]−1
+ σ2. (9)

Finally, the third probability density function is the probability of the parameter vector

θ, conditional on the t-history of observed data. To estimate the posterior parameters dis-

tribution, we employ Markov Chain Monte Carlo (MCMC) techniques. At each date t, the

MCMC algorithm produces a sample of parameter vectors,
{
θd
}D
d=1

, such that the probabil-

ity of any parameter vector θd being in the sample is equal to the posterior probability of

those parameters, p
(
θd|πt

)
. Therefore, we can compute an approximation to any integral

by averaging over sample draws:
∫
f(θ)p(θ|πt)dθ ≈ 1/D

∑
d f(θd).

To estimate uncertainty, we compute these probability density terms and integrate nu-

merically to get a forecast. In similar fashion, we also calculate E
(
π2
t+1|πt

)
. Applying the

variance formula V ar (πt+1|πt) = E
(
π2
t+1|πt

)
−E (πt+1|πt)2, and taking the square root yields

uncertainty: Ut =
√
V ar (πt+1|πt).

Our forecaster needs prior distributions over all the parameters to start the updating
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process. We start with a �at prior, estimate each parameter3 on in�ation data from 1947:Q2-

1968:Q3, and use the mean and variance of this estimate as the mean and variance of prior

beliefs. (See appendix for more details and prior estimation results.) Starting in quarter

4 of 1968, each period, the agent observes πt and revisions of previous quarters' data and

updates his beliefs about future in�ation using (8). We start the estimation of the model

in 1968:Q4 because this is the �rst quarter for which we have forecasts from the Survey of

Professional Forecasters.

Properties of Model Forecast Bias

5 Empirical Support:

We end by testing predictions of our hypothesis. The �rst prediction is that agents' per-

ceived uncertainty should predict the amount of bias in their forecast. Since bias comes

from parameter uncertainty and parameter uncertainty is one component of one's in�ation

uncertainty, these two should be positively related.

Figure (VII) shows the scatter plot of �rms' subjective uncertainty vs. their forecasts.

Firms that report higher uncertainty (blue dots higher on y-axis) have higher in�ation fore-

casts (further to the right), on average. Table (I) shows that the relationship is statistically

signi�cant. This e�ect is also economically large. An 8% in�ation expectation is associated

with double the uncertainty about the in�ation rate.

The second prediction is that �rms are more certain about their own industry price.

In our model, this result arises because �rms learn about �rm-speci�c, or industry-speci�c,

information because that is a more e�cient way to acquire the information needed to set an

optimal price.

Figure (VIII) shows the size of �rms' nowcast errors (E[πt|It]− πt) about both in�ation

and their industry prices. The two sets of forecast errors are strikingly di�erent. Firms have

highly accurate, nearly unbiased beliefs about their own industry. They have highly biased

and quite inaccurate beliefs about aggregate in�ation.

This prediction is a signi�cant one because it helps to distinguish information, which

likely di�ers between professional forecasters and �rms, from preferences, which might not

3In the results we present, we introduced one modi�cation. Notice that the b parameter governs the mean
of the Xt process. To see this, note that for b < 0, we can rewrite b exp(−Xt) = −exp(−Xt + ln(|b|)). To
streamline our code, we simply remove the time-t sample mean of the Xt and set b = −1. After estimating
the parameters of the mean-zero process, we add back in the sample mean. This approach is supported
by the fact that when we have estimated b in less complex settings, we come up with consistently negative
values and quantitatively similar estimates.
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vary across the population. Of course, one might say that agents with ambiguity about

the correct model could learn from more data. Then professional forecasters might consider

a smaller set of models and have lower errors. This explanation is hard to rule out, as

is any other explanation about how ambiguity might vary in the cross-section or across

environments or forecasts. In contrast, our e�ect is tightly disciplined by data. The amount

of skewness in the data governs the size of the bias.

Furthermore, if the ambiguity e�ect is disciplined by Bayesian uncertainty, we are back

to the question of why Bayesian uncertainty is associated with forecast bias. Ambiguity or

preference twists are possible, but not necessary to explain this. One just needs to incorporate

the empirically relevant amount of skewness in the data. Skewness is not an assumption, it

is a measurable feature of data.

Another prediction of the theory is that belief bias should di�er by forecast horizons, if

skewness di�ers by forecast horizon. Next, we plan to test that prediction in the quantitative

model and in the data.

6 Conclusions

Most approaches to understanding in�ation expectations ignore parameter estimation un-

certainty. Sometimes referred to as �rational expectations econometrics," the traditional

approach entails estimating a model on the full sample of data and then treating the esti-

mated parameters as truth to infer what the optimal forecast was in each period in the past.

In doing this, the econometrician is assuming that the uncertain agent knows the true distri-

bution of outcomes at every moment in time and is only uncertain about which outcome will

be chosen from this distribution. Assuming such precise knowledge of the economic model

rules out most uncertainty and ignores many sources of uncertainty shocks.

We explore the properties of forecasts when an agent is not endowed with knowledge of

the true economic model and needs to estimate it, just like an econometrician. When the

agent considers skewed distributions of outcomes, new data or real-time revisions to existing

data can change his beliefs about the skewness of the distribution, and thus the probability

of extreme events. Small changes in the estimated skewness can increase or decrease the

probability of these tail events many-fold. Because tail events are so far from the mean

outcome, changes in their probability have a large e�ect on forecasts. Thus, our message is

that beliefs about extreme events that are never observed, but whose probability is inferred

from a forecasting model, are responsible for much of forecast bias. For in�ation, the relevant

extreme events are positive, leading to positive in�ation bias.

Our mechanism could also help explain important economic phenomena such as debt

14



crises and in�ation risk premia. In a model where �rms have debt, changes in skewness

estimates would translate into changes in risk premia. The model would then tell us what

kinds of events trigger high default risk and debt crises.
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7 Figures
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Figure I: Explaining why average forecasts are higher than mean in�ation. The result has two key

ingredients: The forecaster faces more uncertainty than he would if he knew the true distribution

of outcomes, and a Jensen inequality e�ect from the convex change of measure.
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Figure II: The �gure shows the distribution of realized annual in�ation in New Zealand since

December of 1991. The distribution is positively skewed. Source: Quarterly CPI in�ation data

released by the Reserve Bank of New Zealand.
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Figure III: The �gure shows three di�erent measures of in�ation expectations. the blue line is the

average one year ahead in�ation expectation of households from the Michigan survey of consumers.

The black line shows the one year ahead in�ation expectation of professional forecasters, and the red

line is the imputed measure of in�ation expectations from asset prices. Households are consistently

biased upwards in their expectations. Source: Coibion and Gorodnichenko (2015).
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Figure IV: Average subjective distribution across �rms. The �gure shows the average probability

assigned by �rms to di�erent in�ation outcomes. In�ation has been anchored around 2% in New

Zealand for the last 27 years. Nevertheless, �rms assign high probabilities to large and unlikely

in�ation outcomes at the right tail. Source: Kumar, Afrouzi, Coibion and Gorodnichenko (2015).
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Figure V: The �gure shows the distribution of 1 year ahead in�ation forecasts across �rms. In

spite of low and stable in�ation in New Zealand, �rms disagree a lot about in�ation and the average

forecast is substantially higher than that of the Reserve Bank of New Zealand. Source: Kumar,

Afrouzi, Coibion and Gorodnichenko (2015).
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Figure VI: The �gure shows the cross sectional distribution of subjective uncertainty of �rms about
in�ation. Despite stable in�ation in New Zealand, �rms are highly uncertain about in�ation. Source:

Kumar, Afrouzi, Coibion and Gorodnichenko (2015).
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Figure VII: The �gure shows the relationship between �rms' in�ation expectations and their subjec-
tive uncertainty about in�ation, measured as the standard deviation of �rms' reported distributions.

More uncertain �rms forecast in�ation to be higher. Source: authors' analysis.
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Figure VIII: The �gure shows the average nowcast error of �rms about their own industry price

change versus aggregate in�ation in the prior 12 months leading to the survey. Firms are less biased

in recalling their own industry prices than aggregate in�ation. Source: Afrouzi (2017).
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8 Tables

Subjective Uncertainty

(1) (2)

Constant 0.752∗∗∗ 0.726∗∗∗

(0.044) (0.056)

In�ation Expectation (1 Year Ahead) 0.094∗∗∗ 0.092∗∗∗

(0.011) (0.012)

Industry FE No Yes

Observations 1032 903

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table I: The table shows the result of regressing �rms' subjective uncertainty � measured as the

standard deviation of their reported distribution about in�ation � on their in�ation forecasts. Firms

with higher uncertainty forecast in�ation to be higher.
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Appendix A Proofs

Proof of Proposition (2). We prove this result by showing that for any choice si,t, there is a
singleton choice that induces smaller losses to the �rm. To see this, for any arbitrary si,t, let

ŝi,t ≡ E[qt + αzi,t|Ii,t−1 ∪ si,t].

Notice that ŝi,t is a singleton independent of how many signals there are in si,t. Moreover,
notice that

E[var(qt + αzi,t|Ii,t−1 ∪ si,t)|Ii,t−1]
=E[E[(qt + αzi,t − ŝi,t)2|Ii,t−1 ∪ si,t]|Ii,t−1]
=E[E[(qt + αzi,t − ŝi,t)2|Ii,t−1 ∪ ŝi,t]|Ii,t−1]
=E[var(qt + αzi,t|Ii,t−1 ∪ ŝi,t)|Ii,t−1] (10)

Now, let xi,t := (qt, zi,t, θ) represent the vector of all things that �rm i learns about at time
t. Note that xi,t|Ii,t−1 → si,t|Ii,t−1 → ŝi,t|Ii,t−1. Then, by data processing inequality:

I(ŝi,t;xi,t|Ii,t−1) ≤ I(si,t;xi,t|Ii,t−1) (11)

Combine equations (10) and (11) to observe that the �rm prefers ŝi,t to si,t.

Proof of Corollary (1). At any time t, for a given initial information set Ii,t−1, and a sequence
φn → 0, let {sni,t}n∈N be the sequence of solutions to:

sni,t ≡ arg min
si,t

E
[
var(qt + αzi,t|Sti )|Ii,t−1

]
+ φnI(si,t; qt, zi,t, δi,t|Ii,t−1)

s.t. Ii,t = Ii,t−1 ∪ si,t

Note that any solution should have the property that

lim
n→∞

var(qt + αzi,t|Ii,t−1 ∪ sni,t) = 0. (12)

Otherwise, the loss of the �rm is bounded below by some l̄ > 0 even though that the cost
of information is going to zero. So we can construct another sequence of signals that are
strictly better than the solution � a contradiction. Therefore, Now, given this sequence of
solutions, let s̃ni,t ≡ E[qt + αzi,t|Ii,t−1 ∪ sni,t],∀n ∈ N. By the previous proposition we know
that for all n ∈ N the �rm prefers s̃ni,t to s

n
i,t. So, {s̃i,t}n∈N is also a solution to the sequence

of problems above. Finally, Equation (12) implies that almost everywhere

lim
n→∞

E[qt + αzi,t|Ii,t−1 ∪ sni,t] = qt + αzi,t (13)

Hence, s̃ni,t →a.e. qt + αzi,t
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