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Abstract. The free energy is perhaps one of the most important quantity required for
describing biomolecular systems at equilibrium. Unfortunately, accurate and reliable free
energies are notoriously difficult to calculate. To address this issue, we previously developed
the Adaptively Biased Molecular Dynamics (ABMD) method for accurate calculation of rugged
free energy surfaces (FES). Here, we briefly review the workings of the ABMD method with
an emphasis on recent software additions, along with a short summary of a selected ABMD
application based on the B-to-Z DNA transition. The ABMD method, along with current
extensions, is currently implemented in the AMBER (ver.10-14) software package.

Introduction
The central role of atomistic free energy calculations for basic chemical and biological research
is now well established. The free energy is one of the central quantities that determines the
behavior of a system at or near equilibrium. For instance, the free energy determines the
delicate three dimensional structure of biomolecules, their conformations, their binding, and
the reactions they catalyze. Unfortunately, the FES of most biomolecular systems is multi-
dimensional, often quite rough and complicated, so that very long time-scales are typically
needed in order to explore a FES with any reasonable accuracy. This is generally precluded in a
regular molecular dynamics (MD) simulation, even under present computer capabilities. Given
the central importance of this problem, considerable effort has been invested in developing and
refining new free energy methods, especially those tailored for complex FES when entropic
contributions cannot be neglected.

Over the past decade, methods targeting the computation of free energy using non-equilibrium
simulations have become popular. These methods all estimate the free energy as a function of a
set of “collective variables” from an evolving ensemble of realizations [1,2], and use that estimate
to bias the system dynamics and thereby flatten the effective free energy surface. Perhaps the
first method to implement this idea was the Local Elevation Method [3]. More recent approaches
include the adaptive force bias method [4], the Wang-Landau approach [5], the metadynamics
method [6], and the Adaptively Biased Molecular Dynamics (ABMD) method [7] which was
developed by our group. Collectively, these methods may be considered to be umbrella sampling
methods. In ABMD it is the biasing potential that eventually reproduces the negative of the
unknown FES in the long time limit.
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This short paper briefly reviews the current state of the ABMD method. The focus will be on
a review of the method, as well as on the recent additions based on the idea of coupled multiple
walkers [8] and the multi-dimensional string method [9]. An application of the ABMD method
to the B-Z DNA transition [10] will also be considered. Currently, the ABMD method is part
of the AMBER software package [11], with the implementation of the newer methodological
additions pending.

1. ABMD theory
To investigate the equilibrium properties of a complex multi-atomic system, it typically is
customary to identify a suitable set of collective variables σ(r1, ..., rN ) which maps the atomic
positions r1, ..., rN onto a manifold, and then to study its equilibrium probability density:

p(ξ) = 〈δ[ξ − σ(r1, ..., rN )]〉,

with the angular brackets indicating an ensemble average. This probability density p(ξ) provides
useful information as to the relative stability of the states corresponding to different values of
ξ. In practice, the Landau free energy

f(ξ) = −kBT log[p(ξ)],

(with kB representing the Boltzmann constant and T the temperature) is typically preferred.
Typically, one thinks of p(ξ) or f(ξ) as providing for a reduced dimensionality description of the
system in terms of the chosen collective variables only: the other degrees of freedom have all
been effectively integrated out. It is therefore important that the collective variables investigated
are chosen in as judicious of a manner as possible, thereby bringing out the underlying physics
in the most transparent manner possible. Often, the collective variable is associated with the
slowest degrees of freedom, although this is not a formal requirement.

The idea behind the ABMD method [7] is the following. Consider an unknown FES of a
system as a function of a suitable set of collective variables. Typically, free energy barriers for
biomolecular systems are quite large, and so its difficult for the system to escape the different
minima and explore other regions of phase space. To facilitate this, the system dynamics is
determined by an effective free energy, which is given by the sum of the unknown free energy of
the system and a time-dependent biasing potential. Initially, the effective free energy coincides
with the unknown free energy of the system. However, with time a biasing potential is built up,
which penalizes the locations that the system has visited. The net effect of this is to force the
system out of any given minimum and to explore other regions. Ultimately, for very long times,
the effective free energy is flattened and the biasing potential gives the negative of the unknown
free energy.

The ABMD method is formulated in terms of the following equations:

ma
d2ra
dt2

= Fa −
∂

∂ra
U
[
t|σ (r1, . . . , rN )

]
,

∂U(t|ξ)
∂t

=
kBT

τF
G
[
ξ − σ (r1, . . . , rN )

]
,

where the first one contains the Newton’s equations that govern ordinary MD (temperature
and pressure regulation terms not shown), augmented with an additional force coming from the
time-dependent biasing potential U(t|ξ) (with U(t = 0|ξ) = 0), whose time evolution is given
by the second equation. We refer to τF as flooding timescale and to G(ξ) as the kernel (in
analogy to the kernel density estimator widely used in statistics. The kernel should be positive
definite (G(ξ) > 0) and symmetric (G(−ξ) = G(ξ)). It may be viewed as a smoothed Dirac
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delta function. For large enough τF and small enough kernel width, the biasing potential U(t|ξ)
converges towards −f(ξ) as t→∞.

Our numerical implementation of the ABMD method [7] involves the use of cubic B-splines
(or products of thereof) to discretize U(t|ξ). We use the biweight kernel for G(ξ), and an Euler-
like discretization scheme for the time evolution of the biasing potential, a very simple scheme
that satisfies the goal of flattening U(t|ξ) + f(ξ) in the long time limit. Note that the numerical
cost of evaluating the time-dependent potential is constant over time, and so ABMD scales
trivially as O(t). Storage requirements are also relatively mild, especially since sparse arrays
may be used because only the nonzero elements of Um need to be stored explicitly. In addition,
ABMD is characterized by only two control parameters: the flooding timescale τF and the kernel
width 4∆ξ.

We have also implemented two important extensions to ABMD. The first is identical in spirit
to the multiple walkers metadynamics [1,12]. It amounts to carrying out several different MD
simulations biased by the same U(t|ξ), which evolves via:

∂U(t|ξ)
∂t

=
kBT

τF

∑
α

G
[
ξ − σ (rα1 , . . . , r

α
N )
]
,

where α labels different MD trajectories. A second extension is to gather several different
MD trajectories, each bearing its own biasing potential and, if desired, its own distinct
collective variable, into a generalized ensemble for “replica exchange” with modified “exchange”
rules [13,14,15]. Both extensions are advantageous and lead to a more uniform flattening of
U(t|ξ) + f(ξ). This enhanced convergence to f(ξ) is due to the improved sampling of the
“evolving” canonical distribution.

We have implemented the ABMD method in the AMBER simulation package (ver.10-
14) [11], with support for both replica exchange and multiple-walkers. In pure “parallel
tempering” replica exchange (same collective variable for all replicas), Nr replicas are simulated
at different temperatures Tn, n = 1, . . . , Nr. Each replica has its own biasing potential Un(t|ξ),
n = 1, . . . , Nr, that evolves according to its own dynamical equation. Exchanges between
neighboring replicas are attempted at a prescribed rate, with an exchange probability given
by [13]:

w(m|n) =

{
1, ∆ ≤ 0,
exp(−∆), ∆ > 0,

∆ =

(
1

kBTn
− 1

kBTm

)(
Emp − Enp

)
+

1

kBTm

[
Um(ξn)− Um(ξm)

]
− 1

kBTn

[
Un(ξn)− Un(ξm)

]
,

where Ep denotes the atomic potential energy. The biasing potentials are temperature-bound
and converge in the t→∞ limit to the free energies at their respective temperatures.

In a general replica exchange scheme, we allow different replicas to have different collective
variables and/or temperatures. We also allow for either an evolving or a static biasing potential
(the latter obviously includes the case of Un(t|ξ) = 0) on a per-replica basis (when all
biasing potentials are static, the method reduces to a peculiar variant of the “Hamiltonian
Replica Exchange” described in Ref.[13]). Exchanges between random pairs of replicas are then
attempted at a prescribed rate. To illustrate the point, consider the in vacuo folding of the
hydrophobic peptide Ace− (Gly)2 − Pro− (Gly)3 −Nme, which has a stable β-hairpin in the
1999 version of the Cornell et al [16] force field. First, accurate ABMD free energy calculations at
eight different temperatures as a function of the radius of gyration Rg as the collective variable
were carried out (see the inset in Fig.1). The global minimum corresponding to the smaller
value of Rg is associated with a coil structure, while the metastable minimum associated with
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the larger value corresponds to a β-hairpin structure. The relative depth of these wells changes,
as expected, in the presence of explicit solvent environments [7,17]. However, there is more
information that can be gleaned from these simulations. For instance, if one wants additional
information with regards to the number of hydrogen bonds formed along the peptide backbone
NOH , it is possible to carry out an ABMD simulation with the modified replica exchange in
such a way that one reuses the previously computed free energies for Rg in order to obtain the
two-dimensional free energy landscape in the (NOH , Rg) space. Here, the initial simulations
play a double role in serving as a “sampling enhancement device” for different replicas, thereby
greatly speeding up the calculation. The resulting two-dimensional free energy landscape shown
in Fig.1 now conveys additional information not contained in the one-dimensional plots. In
particular, the “coil minimum” associated with the one-dimensional plot is degenerate, and
actually corresponds to two different minima for which the globular structures have a different
number of hydrogen bonds. This example illustrates not only the type of information that may
be obtained with ABMD, but also shows, that as one learns more about a given biomolecular
system, one can “dynamically” change the questions asked. Previous calculations may often be
readily reused, in order to speed up the new simulations.

Figure 1. Two-dimensional free energy
landscape for in vacuo Ace-(Gly)2-Pro-(Gly)3-
Nme peptide at T=300 K as a function of
collective variables Rg and N0H . Inset shows
the corresponding one-dimensional free energy
as a function of only Rg for eight different
temperatures ranging from T=300 (bottom) to
T=600 K (top). See Ref.[7].

Finally, we note two important points. First,
if one uses the ABMD method alone, one needs
follow-up equilibrium umbrella sampling runs to
improve the accuracy of the results, according to
the recipe that we provided in the context of the
metadynamics method [18]. Second, if in addition
to the free energy map, one desires equilibrium,
unbiased properties of the system, it is possible
to set up a generalized REMD scheme. In this
scheme, the choice of the Hamiltonians determines
the performance of the method. If the exchange rate
between the replicas is sufficiently high to guarantee
a random walk between the replicas, then one needs
only to consider the details of the so-called “hot”
replica whose purpose is to facilitate barrier crossing
(or, more formally, to decrease the ergodic time
scale). One possibility for this is to run the hot
replica at high temperature. Another possibility
[19] is to construct the hot replica by adding a
biasing potential to the original Hamiltonian that

acts on some collective variable that describes one of the slow modes of the system that needs
“acceleration”. ABMD is therefore first used to generate potentials for these “hot” replicas. A
combination of such Hamiltonian and Temperature based replica exchange molecular dynamics
(HT-REMD) [18,19,20] provides for a practical way to reduce the computational costs associated
with sampling, since it facilitates the sampling in the “hottest” replica by both means, and
therefore also allows for a better “tuning” of the entire setup. These procedures ultimately can
yield high accuracy free energy curves and equilibrium properties, and have already been applied
to a variety of different biomolecular systems including small peptides [7,18,19], sugar puckering
[19], polyproline systems [19,20,21], guest-host systems [22,23], polyglutamine systems [24], and
the B-to Z DNA transition [10].

In addition, we have implemented Steered Molecular Dynamics (SMD) simulations to examine
transition pathways and mechanisms, as well as to estimate free energy differences [20]. The
SMD method is based on the following ideas. Consider a thermodynamic process that changes
a system by means of a control parameter ξ, which runs from ξ0 to ξt over a time interval t. The
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second law of thermodynamics states that the work W done on the system cannot be smaller
than the free energy difference: ∆F = f(ξt)− f(ξ0) ≤W . Thus, a non-equilibrium process can
only provide us with an upper bound for the free energy difference. However, the remarkable
Jarzynski [25] identity (JE) is an exact equality that holds even when the transformation is
irreversible:

exp(−∆F/kBT ) = 〈exp(−W/kBT )〉

(the angular brackets denote the average over all possible realizations of the process connecting
the states ξ0 and ξt). Thus, in principle ∆F can be estimated using a number of finite-time
non-equilibrium simulations. Unfortunately, because the average of the exponential function is
dominated by rare realizations, convergence is often poor unless a very large number of runs is
used. It is, however, possible to improve the free energy estimates by using modifications based
on the maximum likelihood estimator (MLE) and Bennet’s acceptance ratio (BAR) method,
which are considered to be equivalent [26,27,28]. These methods make use of both forward (F)
and reverse (R) non-equilibrium pulling processes, in order to move the system between an initial
and final state. Typically, the system is moved along a specific pathway in its configurational
space, which is readily accomplished through the addition of a harmonic restraining potential
to the Hamiltonian in the stiff-spring limit [20]. This approximation ensures that the calculated
potential of mean force is well represented by the free energy of the system with the harmonic
restraint. In our system, we carried out a number of non-equilibrium “pushing” and “pulling”
simulations by changing the value of the collective variable ξ at a constant velocity over a
prescribed pathway. The numerical values of the work for the forward (WF ) and reverse (WR)
pullings are then collected and ∆F is estimated from the transcendental equation [26,27,28]:

nF∑
i=1

1

1 + nF/nR exp
(
WF
i −∆F

) − nR∑
i=1

1

1 + nR/nF exp
(
WR
i + ∆F

) = 0,

with nF,R denoting the numbers of forward and reverse simulations, respectively. As may
be expected, we find that ∆F calculated with this two-sided method displays an improved
convergence over estimates obtained with the straightforward one-sided application of the
Jarzynski equality [20]. To date, we have extensively tested SMD on proline and DNA-based
systems. We have been able to use SMD to steer the system between different states over
the ABMD FES, thereby being able to probe different transition mechanisms, their associated
barriers, and to estimate free energy differences. It comes as no surprise that the modified
formula based on the BAR method shows the fastest convergence and gives the best results [20].

2. New Methodological Developments

Recently, we have augmented our implementation of the ABMD method in a number of
significant ways, including the addition of a multiple-walker selection mechanism [8], the well-
tempered ABMD [29], driven ABMD [30], and a version of the string method [9]. These methods,
which are currently being built into the latest release of AMBER, are briefly described in this
section.

2.1. ABMD with Selection Algorithm
The multiple-walker ABMD method is based on a set of non-interacting walkers or replicas, all of
which persist for the same duration. However, this can lead to problems because not all walkers
are equally effective in sampling the configuration space. Often, these end up being clustered
together, and kept near local metastable regions because of hidden barriers resulting from degrees
of freedom orthogonal to the reaction coordinate. Thus, for maximum efficiency, one would like
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to “encourage” walkers that are wandering in the under-explored regions, and penalize walkers
in the oversampled regions, and achieve this on-the-fly. This requires a dynamic monitoring of
the walkers, and their updating according to suitable, preselected fitness functions. A typical
algorithm of this kind starts [8] by assigning the same weights to every walker, and lets them
run for a preselected period of time. The “fitness” of each walker is then tested, which is a de
facto measure of overlap of the explored phase space of each walker. Walkers who are wandering
in under-sampled regions are then given a stronger weight and replicated a number of times,
while walkers found to be exploring oversampled regions are correspondingly killed. This kind
of procedure is then repeated periodically, thereby accelerating the convergence to a uniform
distribution of walkers in the reaction coordinate space. This “selection” algorithm is thus a
bootstrapping-based resampling of conformations in so far that the walkers are bootstrapped
periodically to flatten the free energy landscape more efficiently. We note that a variation of
selection algorithm similar to the one implemented here has previously been implemented in the
NAMD [8] software package.

We have implemented an ABMD multiple-walker selection algorithm as follows. At
fixed simulation time intervals τ , a weight wi is assigned to walker i proportional to
exp(

∫ nτ
(n−1)τ S(ζit) dt) in which ζit is the instantaneous value of reaction coordinate vector.

Furthermore, we use S(ζ) = c∇
2ρ(ζ)
ρ(ζ) , with ρ(ζ) representing the density of ζ, c is a constant,

and index n denotes the time interval. This update is performed either for the duration of the
simulation, or until some stopping criterion is satisfied. The stopping criterion is based on the
entropy of weights H =

∑
iwilog(wi). The selection algorithm will stop if Ew = H − log( 1

N )

falls below ε log( 1
N ) in which N is the total number of walkers and 0 ≤ ε ≤ 1 is a constant. Note

that log( 1
N ) represents the entropy of the uniform weights.

Comparing to the original method [8], our implementation also incorporates the following
technical features: (i) We use the biasing potential instead of a histogram to approximate the
density; (ii) We use a generalized Laplacian instead of a simple second order derivative for
multidimensional cases for added stability; and (iii) Since ABMD uses B-splines, we build up
analytic functions for the biasing potential and therefore can calculate the needed derivatives
analytically for additional stability and speedup. Tests indicate that our current implementation
of the described selection mechanism for multiple walkers leads to a speed-up in the convergence
by a factor ranging from 2 to 5 over a corresponding system with noninteracting multiple walkers.

2.2. The well-tempered ABMD
In its original implementation, ABMD uses a history-dependent biasing potential that is updated
at a fixed rate:

Ua(ζ, t) = U0(ζ) +

∫ t

0
dt′ ωK(ζ − ζt′), (1)

in which K is a kernel function, U0 is an arbitrary function (e.g., this typically represents the
initial guess for the biasing potential and is typically assumed to be flat; ω represents the contant,
unbiased rate). It has been shown [45] that once converged,

〈
Ua(ζ, t → ∞)

〉
a
≈ U sa(ζ) + u(t)

(here u(t) is an additive constant at each t) in which U sa(ζ) (i.e., converged biasing potential)
equals −F (ζ).

It turns out that using the same rate of updating the biasing potential throughout the
simulation often leads to poor convergence to the free energy. Instead, rather than converging
smoothly to the desired result, the biasing potential ends up fluctuating around −F (ζ) (with
an amplitude which depends on ω). A solution to this problem has been proposed [29] via the
use of a “well-tempered” ω:

Ua(ζ, t) = U0(ζ) +

∫ t

0
dt′ ω(ζt

′
, t′)K(ζ − ζt′), (2)
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in which ω(ζ, t) is a time-dependent, non-uniform rate ω0e
−β′Ua(ζ,t) (1/β′ = kBT

′ and T ′ is
a pseudo-temperature) that reduces to a constant ω0 in the β′ → 0 limit (i.e., conventional
ABMD). It has been shown [29] that

〈
Ua(ζ, t → ∞)

〉
a
≈ U sa(ζ) + u(t), and so U sa(ζ) and F (ζ)

are related via U sa(ζ) = −(1 + β′

β )−1F (ζ) or F (ζ) = −(1 + T
T ′ )U sa(ζ). This way of updating leads

to smoother convergence of the biasing potential to the desired free energy.

2.3. Driven ABMD
Both ABMD and SMD schemes are both powerful nonequilibrium free energy methods. However,
each method has its own practical limitations associated with it. For instance, SMD is often
associated with a very slow convergence when used to calculate free energies. However, it is
very useful for the qualitative exploration of transition paths. ABMD, on the other hand, is
very useful in mapping out free energy landscapes, even though this may take a considerable
computational effort depending on the complexity of the FES. It turns out, however, that ABMD
and SMD may be combined and integrated into a new driven adaptively biased method [30].
Such a driven ABMD (D-ABMD) takes advantage of both methods for faster convergence. D-
ABMD has an advantage over conventional (or well-tempered) ABMD in that it ensures the
exploration of the transition pathway (from one end to the other) in the early stages of the
simulation and gradually improves the estimate of the free energies almost uniformly along the
reaction coordinate. D-ABMD has also an advantage over the conventional SMD in that the
effective free energy surface gradually becomes smooth and flat such that the system can move
along the reaction coordinate with progressively less amount of work. The D-ABMD method
implemented is a straighforward generalization of the so-called driven metadynamics method
[30].

To combine the two schemes, we have developed a driven adaptive-bias scheme that adds an
adaptive (Ua(ζ, t)) and a driving (Ud(ζ, t)) potential to the Hamiltonian. We use an iterative
approach in which an independent simulation is performed from time t = 0 to t = T in the nth

iteration (n = 1, 2, . . .), biased by the potential Ud(ζ, t)+Una (ζ, t) in which Ud(ζ, t) = k
2 (ζ−η(t))2

for all n (η(t) is the moving center of the SMD harmonic potential in ζ space), and:

Una (ζ, t) = Un−1(ζ) +

∫ t

0
dt′ ω(ζt

′
, t′)K(ζ − ζt′) e−βw

t′
, (3)

in which wt represents either the accumulated work or the transferred work. The accumulated
and transferred works are defined as wtac =

∫ t
0 dt

′ ∂
∂t′Ud(ζ

t′ , t′) and wttr = wtac−Ud(ζt, t) (note that

this is actually the transferred work shifted by −Ud(ζ0, 0)). Theoretically the e−βw
t′
tr factor or

“constant weight” is more accurate but for practical reasons the e−βw
t′
ac factor or “pulling weight”

is preferred. For a discussion on these weight functions used for the free energy estimation from
conventional pulling experiments, please see Ref.[31]. Particularly, in our algorithm, the constant

weight e−βw
t′
tr = e−βw

t′
aceβUd(ζ

t,t) may become unstable for large biasing potentials. To avoid this
instability a cutoff for wt is used. This method also provides for faster convergence and greater
stability to the desired free energy.

2.4. The string method
The swarms-of-trajectories string method (STSM) [9] is a path-finding algorithm that refines
a putative transition pathway (or a string of conformations) iteratively until the pathway is
converged. The string is defined by a number of nodes or images parameterized in a high-
dimensional space of collective variables, whose position is updated in each iteration. The drift
applied to each image is estimated by averaging over the drifts of a swarm of short unbiased
trajectories all starting at the current position of the image. The parallel variation of the
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method – which is considerably more efficient than the original variation – requires hundreds to
thousands of replicas of the system to run simultaneously [32].

For a string of N nodes, each consisting of M copies, N ×M replicas will be required. Each
unbiased drifting iteration is followed by a biased equilibration stage to move the replicas to
their updated position. Unlike the ABMD simulations, STSM simulations can easily employ
many collective variables since the sampling always stays along a 1D curve. Therefore one may
use all collective variables that are somewhat relevant to the transition of interest, particularly
those associated with slow dynamics. The method therefore enables the mapping out of Least
Free Energy Pathways (LFEP) in a multi dimensional phase space. The number of images used
is important for the accuracy of the pathway and the number of copies used is important in
determining the convergence behavior.

Figure 2. Free energy landscape of (CG)6
DNA as a function of the radius of gyration Rg

and handedness H. Ribbon diagrams associated
with the four minima shown in blue (B-DNA),
red (Z-DNA) and grey (transition structures).
Two different Least Free Energy Paths (LFEPs)
are identified with a solid line (stretch-collapse
mechanism) and with a dashed line (zipper-like
mechanism. See Ref.[10] for details.

Our parallel implementation of STSM method
is based on iterative unbiased and restrained MD
simulations followed with reparametrization of the
restraint centers defined in the multidimensional
collective variable space of ζ. At iteration s, M
copies of image i restrained around old center ηs−1i
equilibrate for τE steps (t = 0, . . . , τE) such that ζti,l
for each copy l of image i is expected to be close to
ηs−1i at t = τE assuming the restraint is stiff enough.
The restraint is then released to allow drifting for
τR steps. The drifted center ηsi for image i is first
determined by averaging over all drifted copies ζti,l
at t = τE + τR. The resulting string of images is
smoothed using the protocol proposed in Ref.[33].
The smoothing parameter 0 ≤ ε ≤ 1 determines
the smoothness of the curve and is recommended
to be on the order of 1/(N − 1). The last step
is the reparametrization which again follows the
same protocol proposed [33] to generate a set of
N sequentially equidistant centers along the same

string formed by the smoothed centers.

3. An Application: The B-Z DNA transition
As already noted, the ABMD method has been extensively applied to a number of biomolecular
systems. Here, we briefly discuss a single application, namely that of the B-Z DNA transition
[10]. In 1979 the publication of the crystal structure of a d(CGCGCG)2 duplex revealed a
left-handed double-helix DNA with two antiparallel chains joined by Watson-Crick (WC) base
pairs [33]. This conformation was called Z-DNA because the sugar-phosphate backbone had a
characteristic zig-zag pattern. Left-handed Z-DNA is characterized by a dinucleotide repeat,
and occurs in sequences that alternate a purine-pyrimidine repeat, mainly CG (or GC). The
anti-syn alternation of base pairs that underlies the zig-zag pattern is due to the rotation of
the guanine residue around its glycosidic bond, resulting in its syn conformation. The paired
cysteine remains in its anti conformation, but it rotates 180◦ jointly with its attached sugar. As
a result, the base pairs in Z-DNA, as compared to B-DNA where all the bases are in the anti
conformation, are stacked on opposite sides of the line connecting the two phosphate groups
across the helix [34,35], and there is a different stacking pattern of the GpC and CpG sequences
involving a series of two base steps along each of the two strands [36].

Since its discovery, Z-DNA has evolved from an in vitro curiosity to a challenging entity
with important biological roles. The first observation of a complete inversion of the ultraviolet
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circular dichroism spectrum of poly(CG) DNA in the presence of a high concentration of salt
took place in 1972 [36]. After the revelation of the Z-DNA structure in 1979, further evidence
of the B-Z DNA transition was obtained [37]. Yet, the experimental evidence for the in vivo
existence of Z-DNA has been slow to gather. It is now known that Z-DNA is highly immunogenic,
and there are antibodies against it that have been further used to map regions favorable to Z-
DNA conformations [38]. There is a high density of base sequences favoring Z-DNA, i.e., bases
with suitably alternating purines-pyrimidines, near transcription start sites. The formation of
Z-DNA is also induced by Z-DNA binding proteins near the promoter region which boosts the
transcription of the downstream genes. All in all, it is now thought that Z-DNA formation is
closely related to gene expression, regulation, and recombination [39].

Figure 3. Alternative B-Z DNA transition
pathways. Snapshots of a Z- to B-transition
for the dodecamer (CG)6 obtained from SMD
simulations through the LFEP trajectories. Top:
stretch collapse mechanism; Bottom: base
extrusion mechanism. Colors in the ribbon
representation are: red (Z-DNA); blue (B-DNA);
grey (intermediate structures). In addition, the C
and G nucleotides are colored in green and cream,
respectively. See Ref.[10] for details.

Despite all the investigations about the biologi-
cal role of left-handed Z-DNA, the microscopics be-
hind the B-Z DNA transition have remained con-
troversial, with several different mechanisms pro-
posed in the literature [40]. Generally speaking,
the models for the B-Z transition are classified into
mechanisms that involve either base-pair opening
or base-pair rotation without WC base-pair break-
ing. Each of these mechanisms may or may not
have an intermediate structure. Among the mod-
els without intermediate structure, the most popu-
lar base-pair opening mechanism is the Wang model
[33]. It proposes that base-pair opening occurs be-
fore base-pair plane and phosphate backbone angle
rotation within the core of the helix. The Harvey
model [41], on the other hand, proposes that the B-Z
transition happens through the successive flipping of
base-pair planes, without any disruption of the WC
pairs. This process is supposed to be facilitated by
breathing modes. Experimental evidence, however,
seems to favor models with intermediate structures
[42,43,44]. The Saenger-Heinemann model postu-

lates that the transition takes place through two A-DNA-like intermediates (the second one
with a dinucleotide unit), without breaking of the base pairs [45,46]. More recently, the extru-
sion of bases was observed in the crystal structure of a B-Z junction [47]. These extrusions and
their propagation followed by the reformation of the base pairs in a new order also represents
an alternative mechanism for the transition [47] (similarly to the Wang’s model, except that the
bases rotate outside the double-helix core).

We have recently reexamined the problem of the B-Z DNA transition [10] using the ABMD
and SMD methods. This has the advantage of allowing for a unified description of the transition,
incorporating a variety of mechanisms. A sample two-dimensional free energy for the B-Z
transition is shown in Fig.2, as a function of the radius of gyration (Rg) and handedness
(H). The most prominent minima are associated with B- and Z-DNA structures, respectively.
Connecting these minima are two LFEPs associated with a stretch-collapse mechanism and
a zipper mechanism (see Fig.3). The stretch collapse mechanism involves relatively little
disruption of the base pairs. Instead, the DNA stretches and unwinds, forming two almost
parallel strands that preserve their WC base pairs, and assuming an S-DNA type conformation.
The conformation then rewinds to form a double helix of the opposite handedness. We note
that such a mechanism has also been previously identified in other simulation studies [10].
Alternatively, the so-called zipper-like mechanism involves almost no change in Rg. However,

XXVI IUPAP Conference on Computational Physics (CCP2014) IOP Publishing
Journal of Physics: Conference Series 640 (2015) 012020 doi:10.1088/1742-6596/640/1/012020

9



there are large changes in handedness within the structure, and the intermediates involve at least
one B-Z junction with extruded base pairs. It is interesting that very similar free energy barriers
are associated with both of these transition mechanisms [10], indicating that the transition is
best described in terms of a reaction path ensemble.

Figure 4. Free energy landscapes of an AT base in
different conformation for (CG)3(AT )(CG)3 double
helix DNA in terms of the collective variable d(OT

4 −
NA

g ) (i.e., the distance between the OT
4 and NA

6 of the

thymine and adenine bases) and d(NT
3 − NA

1 ) (i.e.,
the NT

3 and NA
1 of the thymine and adenine bases)

with the rest of the structure having a conformation
corresponding to (a) B-NDA; (b) Z-Z junction; and
(c) a B-Z junction. For (a) the free energy minima
correspond to structures with the correct WC pairing,
while in (b) the minima are associated with reverse
and single WC pairing. See Ref.[10] for more details.

The crystal structure of a B-Z junction [47]
has revealed the full extrusion from the helix of
the two junctional bases. The formation of a B-
Z junction requires little structural disruption,
because it preserves the integrity of both the B-
and Z-DNA helices as well as the base stacking
between the two helices. While a B-Z junction
is formed at the interface between B- and Z-
DNA, a Z-Z junction is also commonly formed
in sequences where the dinucleotide repeat is
interrupted by single base-pair insertions, or
deletions, that bring neighboring helices out
of phase. The three-dimensional structure of
a Z-Z junction has been recently described
experimentally [48]. The Z-Z junction studied
by de Rosa et al is stabilized by Zα, the Z-
DNA binding domain of the RNA editing enzyme
ADAR1, and consists of a single base pair AT in
the middle of a CG sequence, with the resulting
duplex sequence 5′ − (CG)3 − A − (CG)3 − 3′.
The AT pair leads to a partial disruption of the
helical stacking. While Z-DNA is resistant to
intercalating agents, these can insert themselves
into the junction region. In contrast to a B-Z
junction, the basis of this structure are not fully
extruded, and the stacking between the two left-
handed helices is not continuous.

As part of our study of the B-Z transition, we
have also investigated both the free energies of
pure B-Z junctions as well as junctions with an
A-T insertion. Sample free energy results for the
latter are shown in Fig.4. Here the top panel
(a) shows the results for a B-B junction. The
free energy landscape is characterized by three
minima, with the global minima corresponding
– as expected – to a junction with the correct
WC pairing. In (b), the free energy of a Z-Z
junction and shows that the minima have shifted
considerably. In this case the Z-Z junction may
be conformations involving correct WC pairing,
single WC pairing, and reverse WC pairing.
The global minimum involves the latter, and
characteristic structure is in good correspondence
with the experimental results [48]. Finally, (c)
shows results for a B-Z junction with minima
corresponding to non-WC pairings. For these
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and further details on the B-Z DNA transition,
we refer the reader to Ref.[10].

4. Summary
In summary, we have briefly reviewed the workings of the ABMD method, along with recent
extensions that are currently being worked into the AMBER simulation package. To illustrate
the workings of the method, a single application involving the B-Z DNA transition is briefly
summarized.
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