
1

Biased Randomization of Heuristics using Skewed Probability
Distributions: applications to routing and other problems

Abstract:

Randomized heuristics are widely used to solve large scale combinatorial optimization
problems. Among the plethora of randomized heuristics, this paper reviews those that
contain biased-randomized procedures (BRPs). A BRP is a procedure to select the next
constructive ‘movement’ from a list of candidates in which their elements have different
probabilities based on some criteria (e.g., ranking, priority rule, heuristic value, etc.).
The main idea behind biased randomization is the introduction of a slight modification
in the greedy constructive behavior that provides a certain degree of randomness while
maintaining the logic behind the heuristic. BRPs can be categorized into two main
groups according to how choice probabilities are computed: (i) BRPs using an empirical
bias function; and (ii) BRPs using a skewed theoretical probability distribution. This
paper analyzes the second group and illustrates, throughout a series of numerical
experiments, how these BRPs can benefit from parallel computing in order to
significantly outperform heuristics and even simple metaheuristic approaches, thus
providing reasonably good solutions in ‘real time’ to different problems in the areas of
transportation, logistics, and scheduling.

Keywords: Heuristics, Biased Randomization, Real-time Decision Making,
Combinatorial Optimization, Logistics, Transportation, Production.

1. Introduction

A number of complex decision-making processes in real-life transportation, logistics,
and production systems can be modeled as combinatorial optimization problems (Faulin
et al, 2012). Among many others, some typical examples include: vehicle routing
problems (VRP) (Toth and Vigo, 2014), arc routing problems (Corberán and Laporte,
2014), facility location problems (Chan, 2011), or scheduling problems (Pinedo, 2012).
All these problems are NP-hard in nature, meaning that the space of potential solutions
grows very fast (exponential explosion) as the instance size increases. Therefore, using
exact methods is not always the most efficient strategy, especially when the size of the
problem instance is large and reasonably good decisions are needed in negligible
computing times. Under these circumstances, heuristic-based approaches constitute an
excellent alternative to exact methods (Talbi, 2009). Accordingly, a large number of
heuristic and metaheuristic algorithms have been developed during the last decades to
solve large scale combinatorial optimization problems and, eventually, support

Helena
Text Box
Grasas A, Juan AA, Faulin J, de Armas J, Ramalhinho H. Biased randomization of heuristics using skewed probability distributions: a survey and some applications. Comput Ind Eng. 2017 Jun 10;110:216-28.

2

intelligent decision-making processes in a myriad of fields, including transportation,
logistics, production, finance, telecommunication, Internet computing, health care, etc.

A constructive heuristic is a computational method that employs an iterative process to
generate a feasible solution of reasonable quality. At each iteration of the solution-
building process, the next ‘movement’ is selected from a list of potential candidates that
has been sorted according to some criteria. Pure greedy heuristics always select the next
‘most promising’ movement. As a result, these heuristics are expected to generate a
reasonably good solution once the entire list is traversed. Notice, however, that this is a
somewhat myopic behavior, since the heuristic selects the next movement without
considering how the current selection will affect subsequent decisions as the list is
processed downwards. Even worse, this property results in a deterministic procedure,
i.e., the same solution is obtained every time the algorithm is run. Examples of such
methods are the nearest neighbor for traveling salesman problems (Lawler et al, 1985),
the shortest processing time dispatching rule for scheduling problems (Pinedo and
Chao, 1999), or the savings algorithm for VRPs (Clarke and Wright, 1964). Although
these methods are easy to implement and can be run almost instantaneously, the real-
time solutions they provide are usually far from being optimal. To improve the quality
of these heuristic solutions –and as far as more time is available–, different types of
local search methods can be used to explore the solution neighborhood (Aarts and
Lenstra, 1997). Typically, the neighbor selection is based on a certain logic that tries to
take advantage of the specific characteristics of the optimization problem being
considered. This usually leads to local optimal solutions. As in the construction phase, if
the neighbor chosen is always the next ‘most promising’ movement according to some
criteria, the resulting searching process will be deterministic too.

Randomization techniques are frequently used to escape from this local optimality trap
and improve the overall quality of the solution. These techniques can be incorporated
either in the construction phase and/or the local search. Randomization allows exploring
alternative solutions by selecting an element other than the ‘most promising option on
the short run’. This leads to different outputs each time the entire procedure is executed.
Since running a heuristic might take only a few seconds –or even less in a modern
computer if the heuristic is correctly implemented and the instance size is not extremely
large–, one can execute it several times, either in sequential mode or in parallel mode by
using different threads, and then select the best of the stochastic outputs. Countless
metaheuristic algorithms include uniform randomization in their procedures. However,
a uniform randomization of the list of candidate elements destroys the logic behind the
heuristic greedy behavior. In order to maintain this logic, the randomization can be
biased (i.e., oriented) so that higher probabilities are given to the most promising
candidates. Thus, the main idea behind biased randomization is the introduction of a
slight modification in the greedy constructive behavior that provides a certain degree of
randomness while maintaining the main logic behind the heuristic. In a seminal paper
on the Monte Carlo method, King (1953) already emphasized the enormous
improvement of biasing probabilities on sampling efficiency. Different methods to bias
the randomization have been used in multiple contexts thereafter (Figure 1). Among
them, this paper pays special attention to the ones that use skewed (non-symmetric)
theoretical probability distributions in order to introduce an appropriate bias in the
process of selecting elements from the list during the constructive and/or local search
stages. Some skewed theoretical distributions, such as the geometric or the decreasing
triangular ones, offer at least two advantages over using empirical distributions: (i) they
contain at most one simple parameter, which can be easily set; and (ii) they can be

3

sampled using well-known analytical expressions, which from a computational
perspective is typically faster than other sampling techniques involving the use of loops.

Biased Randomized
Procedures (BRPs)

Empirical Bias Functions

Skewed Probability Distributions (geometric, decreasing triangular, etc.)

Biased Random Sampling (BRS)

Parameterized BRS

Probabilistic Tabu Search

Ant Colony Systems

Heuristic Biased Stochastic Sampling (HBSS)

Value Biased Stochastic Sampling (VBSS)

Figure 1: A classification of Biased Randomized Procedures.

In particular, the main contributions of this paper are: (i) to provide a review of the most
relevant biased randomized procedures (BRPs) used in the literature to solve
combinatorial optimization problems; (ii) to provide a general framework for BRPs that
use a skewed theoretical probability distribution to bias the selection of the next
movement during the constructive and/or local search processes; and (iii) to illustrate,
throughout a series of numerical experiments, how these BRPs can significantly
outperform heuristics, and even simple metaheuristic approaches, thus providing
reasonably good solutions in ‘real time’ (e.g., one or two seconds) to different
transportation, logistics, and scheduling problems.

The remainder of this paper is structured as follows: Section 2 introduces the concept of
randomized algorithms; Section 3 presents different BRPs that use empirical bias
functions; Section 4 provides a general framework for BRPs with a skewed theoretical
probability distribution, and discusses the advantages of this approach over the one
based on empirical bias functions; Section 5 analyzes different applications of BRPs to
the fields of logistics, transportation, and scheduling; Section 6 describes a series of
computational experiments that contribute to illustrate and quantify the potential of
BRPs; finally, Section 7 summarizes the main contributions of the paper.

2. Randomized Algorithms

There is an enormous body of literature that study probabilistic or randomized
algorithms and a review of that is far beyond the scope of this paper. The reader is
referred to Collet and Rennard (2006) for a review, and to Clerc (2015) for a vast
discussion about the stochastic aspects of optimization. The focus of this paper is in the
subset of randomized algorithms that include some type of bias in any of their random
processes. A randomized algorithm uses random bits to make random choices during its
execution. Unlike deterministic algorithms, different solutions are obtained every time
the procedure is executed. The most successful approaches to solve large combinatorial
problems take advantage of this feature to perform several iterations and collect the best

4

overall output. These approaches are commonly known as multi-start methods (Martí et
al, 2013). In general terms, they all contain two differentiated phases: a construction
process and a local or neighborhood search. The former diversifies the search for
solutions while the latter intensifies this search. These two phases are repeated until a
stopping criterion is satisfied. Note that the randomized procedure can be applied at
either phase because there is always a discrete choice that has to be made.

Many randomized procedures found in the literature rely on uniform randomization, that
is, they use the uniform probability distribution when selecting an element, neighbor, or
solution. These could be categorized as uniformly-randomized algorithms. The main
drawback of such approaches is that they do not benefit from the heuristic ‘common
sense’: if candidate elements are ranked according to their ‘goodness’ on a given
criterion, choosing one via a uniform random process fades away the advantages of the
sorting. This is partially overcome by partially-randomized algorithms, that use uniform
randomization but on a subset of candidates. The greedy randomized adaptive search
procedure (GRASP) is the most representative and commonly used algorithm of this
type. It was initially proposed by Feo and Resende (1995) and extensively used in
multiple applications (Resende and Ribeiro, 2010). As a multi-start method, each
GRASP iteration is composed of a construction phase and a local search. In the
construction phase, all candidate elements are sorted according to a greedy evaluation
function. The ‘best next’ elements, i.e., those whose addition represents the highest
improvement on the objective function, are added to a restricted candidate list (RCL).
The next element is chosen randomly (using a uniform distribution) from this RCL and
added to the partial solution. This is performed iteratively until there are no more
candidates. A local search is then applied until a local optimal is reached. Since only the
elements in the RCL can be included in the partial solution, this method can be seen as a
multi-start method with a partially random construction heuristic. A similar idea is the
window random sampling by Valls et al (2003), used in a resource-constrained project
scheduling problem. A window parameter is defined as the maximum difference
allowed between the order of the candidate and the minimal order. In the field of genetic
algorithms, there also exists heuristics with randomization partially guided according to
some criteria. This is the case, for instance, of the biased random key genetic algorithm
(Gonçalves and Resende, 2011). In this genetic algorithm, the population is partitioned
into two groups: elite and non-elite individuals. When this population is evolved to
obtain the next generation, some of the children are obtained by the process of mating
two randomly selected individuals, one from the elite group and one from the non-elite
group. Mating is done using parameterized uniform crossover, that is, the genes from
the elite parents have larger probability of being selected. This way, the randomization
is partially biased to favor elite parent’s characteristics over the non-elite parent’s ones.

3. BRPs using Empirical Bias Functions

A biased (oriented) randomized procedure aims at selecting the next element while
capturing the best of two realms: exploitation and exploration. On the one hand, the
procedure favors the most promising candidates to exploit the solution space; on the
other hand, it introduces a weighted randomness degree to explore this solution space.
To determine the balance between either one, a BRP may use a bias function. A bias
function, , is a function that assigns a non-negative weight to all elements in the
candidate list. These weights are then normalized to obtain an empirical probability

5

distribution that will define the set of probabilities. Note that two extreme cases can be
constructed by giving the same weight to all elements (uniform distribution), or by
giving a positive weight to the top element and zero weight to the rest (greedy). All
other weight allocations provide intermediate bias configurations. This section presents
different BRPs that include some sort of bias function to build the empirical probability
distribution. The bias function is therefore an algorithm input that must be designed
considering both the problem characteristics as well as the responsiveness of the chosen
heuristic –in terms of performance– to different types of bias.

3.1 Biased Random Sampling

Biased random sampling (BRS) was one of the earliest BRPs employed in the literature.
In these early heuristics, some specified criteria were used to bias the choice of
randomly generated solutions. To the best of our knowledge, the first heuristics that
incorporated BRS were used to solve assembly line balance problems (Arcus, 1965;
Tonge, 1965), production scheduling problems (Giffler et al, 1963; Heller and
Logeman, 1962), location problems (Mabert and Whybark, 1977; Nugent et al, 1968),
and an inventory management problem (Berry et al, 1977).

3.2 Parameterized Biased Random Sampling

Parameterized BRS is a randomized method in which the probability values to select the
next candidates are biased according to priority rules. Numerous priority rule-based
heuristics have been designed to tackle resource-constrained project scheduling
problems. For this vastly studied problem, Cooper (1976) presented the first BRS
scheme that used nine different priority rules as weighting factor to bias the probability
of choosing an activity. This probability was calculated by dividing the activity priority
value by the sum of the priority values of all activities in the candidate list. Later, Drexl
(1991) introduced regret based biased random sampling. This sampling technique uses
the priority values indirectly via regret values. The regret of a job is the difference
between its priority value and the lowest overall priority value. Probabilities are then
calculated using a parameter that controls the bias degree. Schirmer and Riesenberg
(1997) proposed BRS variants, dubbed the normalized BRS and the modified regret
based BRS, to cope with some of the drawbacks of the existing sampling approaches.
The authors stated that, in general, they always outperformed uniform random sampling
approaches. In a similar line of research, Valls et al (2003) developed the β-BRS
method. The β parameter establishes the probability of choosing the activity on top of
the priority-rule based list. Lastly, Coelho and Tavares (2003) designed the global BRS
method. Unlike previous sampling schemes, this one perturbs the priority values by
adding a random value between 0 and 1. Activities are then scheduled in the order
defined by the modified priority list. The reader is referred to Kolisch and Hartmann
(1999) for a summary of some of these sampling techniques in the resource-constrained
project scheduling problem.

3.3 Probabilistic Tabu Search

For search heuristics, Glover (1989) introduced the first big family of metaheuristics,
the probabilistic tabu search (PTS), which incorporated a BRP –usually in the move
acceptance function. Tabu search (Glover, 1990) is a “higher level heuristic designed to
guide other methods to escape the trap of local optimality”. PTS is an extension of tabu
search that includes a skewed probabilistic element within the search. Biasing is a way
to control the diversity in the search, and can be achieved by considering: (i) move

6

attractiveness (i.e., the change in the objective function); (ii) tabu status (i.e., tenure on a
tabu list); and/or (iii) aspiration level (i.e., the objective function value in relation to a
historical standard). The probabilistic nature of the approach can be a substitute for
memory when it is unclear how memory can be used to enhance the result. Some years
later, Løkketangen and Glover (1996) adapted PTS to zero-one mixed integer
programming problems with probabilistic measures that were both effective and easy to
implement.

3.4 Ant Systems and Ant Colony Systems

Another family of probabilistic algorithms that uses a BRP is the ant system (Dorigo et
al, 1996) and its subsequent variant, the ant colony system (Dorigo and Gambardella,
1997). Inspired by the behavior of real ants, these algorithms mimic the pheromone
trails that insects use to establish the shortest paths. The ant system was first applied to
the traveling salesman problem. To complete a tour, the cities visited are chosen
probabilistically via Monte Carlo sampling. The probabilities in the state transition are
biased using the so-called random-proportional rule to favor shorter edges with a
greater amount of pheromone. The ant colony system includes three main variants, one
of which is in the state transition. The modified transition follows the pseudo-random-
proportional rule. This rule adds a previous step: it randomly selects a number
uniformly distributed between 0 and 1; if it is below a given threshold the best edge is
selected, otherwise an edge is selected according to the random-proportional rule. By
calibrating the threshold, the algorithm determines the relative importance of
exploitation (best next edge) versus exploration (biased random edge).

3.5 Reactive GRASP

In the previous section, GRASP was introduced as one of the most well-known
partially-randomized algorithms. A variant of GRASP that includes a BRP is the so-
called reactive GRASP, first proposed by Prais and Ribeiro (2000). Unlike the original
GRASP, the size of the restricted candidate list in a reactive GRASP is not fixed but
self-adjusted according to the quality of the solutions found during the search. A BRP is
used when selecting the restrictiveness, or size, of the candidate list (i.e., the parameter
D). The algorithm starts with a discrete set of predetermined list sizes, Di. The
probability of choosing a given Di from this set is drawn initially from a uniform
distribution. As the algorithm advances, these probabilities are biased using information
collected during the search. One possible biasing strategy is to use the average values of
the solutions obtained to recompute the probabilities of the different D’s. The values
that lead to better solutions will be more frequently used in the construction phase of the
GRASP procedure.

3.6 Heuristic-Biased Stochastic Sampling

Bresina (1996) devised a BRP called heuristic-biased stochastic sampling (HBSS) to
solve scheduling problems and other constrained optimization problems. The
motivating idea again was to bias the probability of choosing the next partial solution.
To avoid a complete random exploration, HBSS uses the search heuristic to guide this
exploration. The guidance degree is determined by a given bias function. In the search,
the elements of the candidate list are ranked according to the heuristic, and the bias
function assigns a weight to each element. These weights are then normalized to be

7

transformed into probabilities. Thus, if denotes the rank of the element , the
probability of choosing is given by:

Usually, when the heuristic accuracy is high a stronger bias (weight) is set to increase
the probabilities of selecting better solutions. On the contrary, when the heuristic
accuracy is lower a weaker bias is set to widen the exploration of the solution space.
Bresina et al (1994) experimented with the following bias functions in the telescope
observation scheduling problem:

x Logarithmic:
x Linear:
x Polynomial (n = 2, 3, 4):
x Exponential:
x Uniform:

The best performing bias functions for the particular problem the authors analyzed were
the exponential and the second degree polynomial, which were the two functions in the
middle in terms of bias strength. The HBSS approach encompasses a family of search
algorithms that can be modulated via a bias function ranging from a greedy search to a
uniform random search.

3.7 Value-Biased Stochastic Sampling

Following a similar reasoning as in the HBSS, Cicirello and Smith (2005) proposed the
value-biased stochastic sampling (VBSS) as a search heuristic. In HBSS, the bias
function gives weight to the candidates solely based on their rank, ignoring completely
their heuristic values. Alternatively, VBSS not only considers rank but it also
incorporates the “discriminatory power inherent in the heuristic”. Thus, according to the
VBSS approach, the probability of choosing element is given by:

The resulting probabilities from both BRPs (VBSS and HBSS), may differ considerably
when the choices of the candidate list have very different heuristic values. Cicirello and
Smith (2005) provided an illustration of such a case. The authors also tested their
approach in the weighted tardiness scheduling problem with sequence-dependent
setups. In their experiments, the VBSS approach was able to outperform the HBSS
approach.

4. BRPs with Skewed Theoretical Probability Distributions

This section presents a general framework for BRPs that use a skewed theoretical
probability distribution to bias the probabilities of the candidate elements. The BRPs

8

considered in the previous section share a common feature: they all rely on some kind
of bias function to define the choice probabilities. Using a bias function, each element
in the list was assigned a different weight based on some criteria (e.g., ranking, priority
rule, heuristic value), and then an empirical probability distribution was built. A random
number drawn from this distribution determined the choice of the next element.
Alternatively, instead of using an empirically-constructed probability distribution, one
could resort directly to a theoretical probability distribution that is already skewed or
non-symmetric by definition. Examples of such distributions are the geometric or the
decreasing triangular. In particular, in most of our previous work we have used the
geometric distribution, since it only has one parameter which determines its specific
shape. Also, this parameter varies between 0 and 1, thus facilitating its setting in most
practical applications. As values of this parameter get closer to 0, the more uniform-
randomized the selection process will be. On the contrary, as these values get closer to
1, the more greedy the selection will be (Juan et al, 2010). This type of distributions
provides a natural bias for the candidate elements in the list. For instance, Figure 2
compares the probabilities of selecting each of the twenty-five elements of a given
sorted list using: a geometric distribution with parameter 0.2 (left part), and a
discretized decreasing triangular distribution (right part).

Figure 2: Use of skewed distributions to introduce randomness.

Most heuristics iteratively perform a construction phase followed by a neighborhood
search. As discussed above, BRPs can be employed in any of the two stages. Regardless
of the stage, there is always a discrete choice that has to be made from a list of potential
candidates. Potential candidates could be neighbor solutions, edges in traveling
salesman problems and VRPs, jobs or machines in scheduling problems, or tasks or
resources in resource-constrained project scheduling problems, for example. The list of
candidates is sorted according to a problem-specific criterion, and probabilities are
assigned to each element according to a skewed probability distribution. Figure 3
displays a general pseudo-code for a BRP with a skewed distribution. The procedure
requires the following inputs: (i) the list L of potential candidates, which is sorted

9

according to the criteria provided by the heuristic; (ii) the seed s for the (uniform)
pseudo-random number generator; (iii) the skewed probability distribution PD; and (iv)
the parametric values p of this distribution. The procedure returns the selected element
l from the sorted list.

Procedure BRP(L, s, PD, p)
01 μ Å using seed s, generate pseudo-random number in [0,1)
02 ρ Å using μ, generate random variate from distribution PD(p)
03 l Å select the ρ-th element of the sorted list L
04 return l
End

Figure 3: Pseudocode to select the next element using a skewed distribution.

To the best of our knowledge, the first heuristic algorithms including BRPs with a
skewed theoretical probability distribution were introduced in Juan et al (2010, 2011) in
order to solve the VRP. The authors developed a hybrid algorithm that combined the
classical savings heuristic (Clarke and Wright, 1964) with Monte Carlo simulation. At
each step of the solution-construction process, eligible edges were sorted in a non-
increasing savings list. Edges enjoyed (quasi-) exponentially diminishing probabilities
that were variable and based upon a geometric distribution. Consequently, the next
element was selected by a guided random sampling. The procedure continued until there
were no more edges to be selected.

Even for large-size instances, heuristics with this type of BRPs can generate a large
number of promising solutions in a few seconds, with some of these solutions
outperforming the one provided by the original heuristic (Figure 4). Moreover, just by
employing different threads the computation can be trivially parallelized by assigning a
different seed to each thread, i.e., the BRP allows to generate solutions in real-time that
outperform the one provided by the original heuristic. Notice that this might be
especially interesting in online optimization problems, where only one or two seconds
are allowed before taking a decision –which invalidates the use of time-consuming local
search processes. This is the case, for instance, of the mobile cloud computing
application analyzed in Mazza et al (2016), where mobile users require immediate
assignment but, at the same time, some intelligence must be incorporated into the
assignment process to optimize the use of shared telecommunication and computing
resources. Also, in De Armas et al (2016), the authors propose the use of BRPs for fast
generation of crew rostering plans in airline companies under realistic conditions. As
discussed in Juan et al (2014b), another interesting application of these BRPs is the
quick generation of a diversified population of starting ‘promising’ solutions for
metaheuristics.

10

Figure 4: Using skewed distributions to generate alternative solutions.

From a computational perspective, the generation of random variates coming from
probability distributions other than the uniform is always more time-consuming than the
generation of pseudo-random numbers. Fortunately, there exist analytical expressions
that allow fast generation of random observations from most theoretical distributions.
Figure 5 shows an example of Java code that makes use of these analytical expressions
to efficiently generate random positions in a sorted list, with these random positions
following either a geometric probability distribution or a triangular distribution. Since a
large number of such random positions is usually required during the BRP execution,
not using such analytical expressions might significantly increase the computational
time required by the algorithm. This is, in our opinion, one of the main advantages of
using skewed theoretical probability distributions over empirical bias functions, since
the latter typically requires more computational time and also more parameter fine-
tuning processes than the former.

private static int getRandomPosGeom(double beta, Random rng, int n)
{ // Returns random position between 0 and n-1 based on Geometric(beta)
 int index = (int) (Math.log(rng.nextDouble()) / Math.log(1 - beta));
 pos = pos % n;
 return pos;
}

private static int getRandomPosTriang(Random rng, int n)
{ // Returns random position between 0 and n-1 based on decreasing Triangular
 pos = (int) (n * (1 - Math.sqrt(rng.nextDouble())));
 return pos;
}

Figure 5: Efficient generation of random positions using skewed distributions.

11

5. Areas of Application

This section illustrates the use of BRPs with skewed theoretical probability distributions
through some examples of applications to different combinatorial optimization
problems.

5.1 Vehicle Routing Problem

In a VRP, a set of customers’ demands must be satisfied by a fleet of capacitated
vehicles that typically depart from a central depot. Moving vehicles between any two
nodes (customers or depots) in the map has a distance-based cost. The goal is to find the
set of vehicle routes that minimizes the delivery cost while serving all demands and
taking into consideration the vehicle capacity constraints. One popular procedure for
solving this problem is the aforementioned savings heuristic. In the savings heuristic, an
initial dummy solution is constructed by sending a virtual vehicle from the depot to
each customer. Then, the list of edges connecting each pair of nodes is considered. This
list is sorted according to the ‘savings’ criterion that would be obtained by using the
corresponding edge to merge two routes in the dummy solution. Thus, merging edges
associated with higher savings are located at the top of the list, while edges with lower
savings are located at its bottom. At this point, the sorted list of edges is traversed from
the top to the bottom, and new route merges are carried out whenever the corresponding
edge can be used to merge the two routes it connects without violating any constraint.

The diversification of the savings heuristic is rather old, reaching many variants very
soon (Toth and Vigo, 2014). As far as we know, the first randomization of the savings
heuristic was done by Buxey (1979), who made a random selection of one shortlist of
savings according to a probability distribution built taking the savings themselves as
weights. Afterwards, Fernández de Córdoba et al (1998, 2000) developed two
procedures using randomization to solve a real version of the Capacitated VRP and the
Rural Postman Problem. Subsequently, the ALGACEA-1 method for the Capacitated
VRP included the control of the randomization using an entropy function (Faulin and
Juan, 2008).

Nevertheless, as stated above, the first implementations of a BRP with a skewed
theoretical distribution was carried out by Juan et al (2010). Later, Juan et al (2011)
improved the algorithm by incorporating some splitting and cache (memory-based)
techniques. This conceptual idea was generalized in Juan et al (2013a) to the multi-start
biased randomization of classical heuristics with adaptive local search (MIRHA). This
solution approach was able to handle, in an efficient way, realistic vehicle routing
problems under more complex scenarios dominated by non-smooth/non-convex
objective functions and non-convex regions.

BRPs of this type were also used in some VRP extensions, namely, the heterogeneous
fleet VRP (Juan et al, 2014c), the heterogeneous fleet VRP with multi-trips (Caceres-
Cruz et al, 2014; Grasas et al, 2013), the VRP with asymmetric costs and heterogeneous
fleets (Herrero et al, 2014), the VRP with multiple driving ranges –i.e., heterogeneous
fleet with respect to maximum route lengths– (Juan et al, 2014d), the multi-depot VRP
with a limited number of identical vehicles per depot (Juan et al, 2015b), and the two-
dimensional loading capacitated VRP with homogeneous fleet (Dominguez et al, 2014),
with heterogeneous fleet (Dominguez et al, 2016b), with heterogeneous fleet and
sequential loading and items rotation (Dominguez et al, 2016c), and with backhauls
(Dominguez et al, 2016a).

12

A similar ‘savings-based’ heuristic, called SHARP, was developed by González et al
(2012) for solving the arc routing problem. The arc routing problem is similar to the
previously described VRP, but it differs in several details: first, demands are not located
on the nodes, but on the edges connecting these nodes; second, only some nodes are
directly connected among them (i.e., the underlying graph or network connecting the
nodes in the problem is not complete). Again, the SHARP heuristic makes use of a
dummy initial solution and a sorted list of connecting edges to merge those routes that
provide the highest possible savings at each step without violating any problem
constraint (e.g., vehicle capacity). The edges are selected with biased probabilities
according to a geometric distribution with a parameter randomly selected between 0.10
and 0.25.

5.2 Scheduling Problem

Another well-known optimization problem is the permutation flow-shop problem
(PFSP). This is a problem frequently encountered in production processes, where a
sequence of jobs or tasks has to be processed in a set of machines. Each job requires a
given time to be processed by each machine, and the goal here is to find the permutation
of jobs that minimizes the makespan, i.e., the total time necessary to complete the
processing of all the jobs in all the machines. The NEH heuristic (Nawaz et al, 1983) is
probably the best well-known heuristic for solving this problem. In the NEH heuristic,
the list of jobs is sorted according to the total time each job would require to be
processed by all the machines if it were the only job in the set. Then, the sorted list of
jobs is traversed from top to bottom, and a new emerging solution (permutation of jobs)
is constructed by locating each new job extracted from the list in the position that
minimizes the makespan of the jobs considered so far. Juan et al (2014e) employed a
BRP with a discretized version of the decreasing triangular distribution during the
solution–construction process to select the jobs. This way, eligible jobs were assigned
linearly diminishing probabilities according to their corresponding total processing
time. In Juan et al (2014a), the former BRP was combined with simulation in order to
deal with the PFSP with stochastic processing times.

5.3 Facility Location Problem

The facility location problem (FLP), sometimes referred to as the location-allocation
problem, consists of deciding the location of facilities and allocating demand points to
one or multiple facilities (Reese, 2006). The objectives can be manifold: minimizing the
cost of serving all customers (p-median problem), minimizing the longest distance
between any customer and its assigned facility (p-center problem), minimizing the sum
of fixed setup costs and variable costs of serving the customers (uncapacitated facility
location problem), minimizing a total cost that is a function of the distance and flow
between the facilities plus the fixed cost of placing a facility (quadratic assignment
problem), among others.

Cabrera et al (2014) modeled a telecommunications problem as an uncapacitated
facility location problem, in which web-servers (facilities) needed to be placed in a
distributed network to provide some service to a given set of customers. The authors
developed a probabilistic algorithm that combined an iterated local search framework
with a BRP with a geometric distribution. The use of a biased distribution led to shorter
convergence times than those of a uniform distribution.

13

Similarly, De Armas et al (2017) propose a new heuristic for the uncapacitated FLP,
and then extend this heuristic to a BRP. They show the efficiency of this approach in
solving very large-scale instances in low computing times and, then, they extend the
BRP into a simheuristic (Juan et al 2015a) able to deal with the stochastic version of the
problem.

6. Computational Experiments

In order to provide some empirical evidences on the use of BRP techniques to enhance
classical heuristics and quantify the gains obtained, a series of experiments have been
developed for five well-known combinatorial optimization problems. The problems,
heuristics, and benchmarks selected, as well as the results achieved, are described and
analyzed in the next subsections.

6.1 Selected Problems and Heuristics

Five well-known optimization problems have been chosen to illustrate the
improvements that can be reached by the introduction of BRPs in constructive
heuristics: the VRP, the ARP, the PFSP, the uncapacitated FLP (UFLP), and the 2D
strip packing problem (2DSPP).

For the first three problems the following heuristics have been selected: the savings
heuristic (Clarke and Wright, 1964) for the VRP, the SHARP heuristic (González et al,
2012) for the ARP, and the NEH heuristic (Nawaz et al, 1983) for the PFSP. These
three heuristics make use of a sorted list that is traversed from the top to the bottom.
Thus, at each iteration the next element in the list is chosen without knowing how this
selection will condition future decisions during the solution building process. To avoid
this greedy behavior, we use a skewed probability distribution to select the next element
from the list.

Regarding the UFLP, this is a location problem which involves locating an
undetermined number of facilities to minimize the sum of the setup costs of these
facilities and the costs of serving the customers from these facilities. It is assumed that
there is no limit on the number of customers that can be served from each single facility.
In order to solve this problem, we have used the constructive heuristic proposed in De
Armas et al (2017). This heuristic works as follows: for a given instance, a scenario
with all facilities open is considered; then, the marginal savings or loses obtained when
each facility is closed in this “all-open” scenario are computed. This way, we obtain a
list of possible closures that can be sorted by the savings value. Afterwards, starting
from the “all-open” scenario, the savings list is traversed from the beginning, and the
next closure is performed as far as it reduces the total cost. After each closure, the
savings/losses associated with closing each open facility are updated to take into
account the new scenario, and the list is re-sorted accordingly. Obviously, since this
heuristic also uses a dynamically-sorted saving list, a BRP technique can be introduced
using a skewed probability distribution.

Finally, the 2DSPP –also referred to as the Open Dimension Problem (Wäscher et al,
2007)– involves packing items into a single bin or strip of fixed width and infinite
height, with the objective of minimizing the total height of the packing within the strip.
For this problem we have selected the ‘best-fit decreasing height decreasing width’
heuristic (Mumford–Valenzuela et al, 2001; Ntene and Vuuren, 2009). This heuristic is
a variation of the ‘first fit decreasing height’ heuristic (Coffman et al, 1980). Initially,

14

all rectangles to be packed are sorted by decreasing height (or decreasing width in case
of rectangles with equivalent height). Again, a BRP can be applied regarding this sorted
list of rectangles to be processed.

6.2 A First Experiment Regarding Parallelization and Computing Times

We have implemented in Java 8 the previously described heuristics and their
corresponding multi-start biased-randomized versions for each of the five optimization
problems. For all experiments we have used a geometric distribution with a beta
parameter adapted to each problem. A series of classical benchmarks were then run on a
desktop computer (Intel Core i5 CPU @2.7GHz with 8GB on OS X). Each instance was
run 100 times with different seeds as parallel agents, so that each agent is running a
certain time. Different time steps have been taken as references to compare the quality
of the solutions. In order to compare the heuristic value, h, and the best value obtained
with the biased-randomized version, rh, the percentage gap between both solutions,
computed as gap = (rh – h) / h, has been used.

More specifically, the benchmark used for the VRP was the classical Kelly instances
(Golden et al, 1998). This benchmark, available at http://neo.lcc.uma.es/vrp/vrp-
instances/capacitated-vrp-instances/, is composed of 20 large-scale instances, using
from 200 customers to 480. Some instances have restrictions on the maximum length of
every route. The benchmark used for the ARP was the classical Egl instances (Li and
Eglese, 1996). This set of instances, available at http://logistik.bwl.uni-
mainz.de/benchmarks.php, was constructed using as underlying graph regions of the
road network of the county of Lancashire, UK. Costs and demands are proportional to
the length of the edges, except for non-required edges that have zero demand. The
Taillard benchmark is the most used benchmark in the literature for the PFSP (Taillard,
1993). This set of instances, which is available at http://mistic.heig-
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html, is composed of
120 different instances ranging from 20 jobs and 5 machines to 500 jobs and 20
machines. For the UFLP we have selected the Fpp17 benchmark, available at
http://www.math.nsc.ru/LBRT/k5/Kochetov/bench.html. It is a set of medium-sized
instances introduced by Kochetov and Ivanenko (2003). It consists of 30 instances with
307 customers and 307 facilities. Finally, the Zdf benchmark (Leung and Zhang, 2011;
Zhang et al, 2013) has been used for the 2DSPP. This benchmark, available at
http://paginas.fe.up.pt/~esicup/datasets, is composed of large instances that were
generated by combining zero-waste and non-zero waste instances.

Figures 6 to 10 show the gaps for selected instances belonging to each of the
benchmarks. The points identify the gaps between the heuristic solution (the highest
point) and the different solutions obtained using the randomized version of the heuristic
–without any local search added– as the number of parallel agents (executions) and the
computing time increases. The lower the point the better the solution and the larger the
gap with respect to the original solution provided by the heuristic. For each problem, the
graphs clearly show that the quality of the results increases (i.e., the negative gap
increases in size) as the number of parallel executions and the total time spent for each
of them increase. Therefore, in general, the most promising area of the surfaces
corresponds to the corner with the highest number of agents and highest time spent for
each agent. Note that the maximum time spent is just a few seconds and there are many
cases in which the improvement regarding the original heuristic is between 5% and
10%, so that a big leap in quality is obtained really fast. Being probabilistic algorithms

15

driven by pseudo-random numbers, these biased-randomized algorithms could be easily
run in parallel using multiple threads or computers, each of these employing a different
seed for the generation of the random variates associated with the different skewed
probability distributions. Consequently, investing the same time that the original
constructive heuristic (i.e., real-time) it is possible to obtain much better solutions by
simply combining BRPs with parallelization and multi-agent strategies, as shown in
Juan et al (2013b) and Martin et al (2016), respectively. Of course, if more time (in the
range of seconds) is permitted the quality of the solution improves even further.

Figure 6: Gap evolution for a VRP instance (Kelly03).

Figure 7: Gap evolution for an ARP instance (egl-s2-B).

16

Figure 8: Gap evolution for a PFSP instance (tai110_200_20).

Figure 9: Gap evolution for an UFLP instance (20Fpp17).

Figure 10: Gap evolution for a 2DSPP instance (zdf3).

17

6.3 A Second Experiment Comparing BRPs with GRASP-like Approaches

The previous subsection illustrates how biased-randomized and parallelized versions of
different heuristics clearly outperform the heuristics themselves in a real-time
optimization environment. Here, we compare the performance, also in a real-time
optimization environment, of BRPs versus the traditional GRASP randomization
process described in Section 2. Thus, for each of the five instances selected (one for
each optimization problem considered), both the BRP and the GRASP strategies have
been executed using four different parameters (i.e., four different values of the
geometric-distribution beta in the case of BRP and four different sizes of the RCL in the
case of GRASP). Each of these executions consisted of ten runs (using a different seed
for the random number generator at each run), allowing a maximum time of two
seconds per run. For each problem, the best value obtained using each approach is
shown in Table 1. This table also contains the original value provided by the heuristic as
well as the best value obtained after running forty times a uniformly-randomized
process (i.e., similar to a GRASP but without restricting the candidate list). The
associated gaps of BRP, GRASP, and pure-uniform with respect to the heuristic value
are also included (the more negative the gap, the higher the improvement).

Table 1: Comparison of BRPs vs. GRASP randomization in real-time optimization.

Problem Heuristic
(a)

BRP
(b)

GRASP
(c)

Uniform
(d)

Gap
(a) - (b)

Gap
(a) - (c)

Gap
(a) - (d)

VRP (kelly03) 12,594 11,718 11,860 91,181 -6.96% -5.83% 624.00%

ARP (egl-S2-B) 14,124 13,476 13,692 33,118 -4.59% -3.06% 134.48%

PFSP (tai110_200_20) 11,869 11,644 11,737 11,784 -1.90% -1.11% -0.72%

UFLP (20FPP17) 123,245 114,327 114,330 123,349 -7.24% -7.23% 0.08%

2DSPP (zdf3) 213 197 197 219 -7.51% -7.51% 2.82%

Averages -- -- -- -- -5.64% -4.95% 152.13%

The first thing to be noticed is that, even in real-time, both BRP and GRASP strategies
are able to clearly improve the value provided by the original heuristic approach, with
negative gaps ranging from -1.11% in the PFSP to the -7.51% in the 2DSPP. The
relatively low improvement in the case of the PFSP is probably due to the fact that the
NEH heuristic used in this problem employs a simple but efficient local search
mechanism. This local search might compensate from ‘bad’ decisions in the order in
which jobs are selected -from the list of potential candidates- during the constructive
process. Another interesting observation is related to the extremely poor performance of
the uniformly-randomization process. As expected, applying a pure-uniform selection
process will completely destroy the logic behind the heuristic, thus leading to
suboptimal solutions -frequently of lower quality than the one provided by the original
heuristic itself-, even for large computational times. Finally, observe that BRP seems to
have a superior performance than GRASP, both in average values (-5.64% vs. -4.95%)
as well as in the number of significant differences. As shown in Figure 11, BRP clearly
outperforms GRASP in three out-of five experiments, while showing a similar behavior

18

in the remaining two (the more external the curve the lower the improvement gap with
respect to the solution provided by the associated heuristic).

Figure 11: Visual comparison between BRP and GRASP.

7. Conclusions

This work reviews biased randomized procedures (BRPs), their different
implementations, and some of their main applications in logistics, transportation, and
production. The paper focuses on an emergent family of BRPs that rely on the use of
skewed theoretical probability distributions, such as the geometric and the decreasing
triangular distributions. These BRPs have two main advantages over more traditional
BRPs based on empirical bias functions: (i) they are computationally faster, since they
benefit from analytical expressions to generate random variates from theoretical
probability distributions; and (ii) they use at most one parameter that does not require
complex and time-consuming setting processes.

By combining skewed probability distributions with random sampling, the logic behind
the heuristic can be slightly randomized without losing its good properties. This strategy
allows transforming deterministic heuristic procedures into probabilistic algorithms that
can be run several times (either sequentially or in parallel) to obtain different promising
solutions to the original problem, thus increasing the probability of obtaining better and
diversified solutions. As the computational experiments show, the use of BRPs based on
skewed probability distributions can easily and noticeably improve the performance of
already existing or new heuristics.

Due to their relative simplicity, their fast execution times, and their ability to be
parallelized, BRPs constitute an excellent alternative to the use of simple heuristics
without incurring in the computational, implementation, and fine-tuning efforts required
by most metaheuristics. This is especially the case in online optimization or whenever
decisions must be made in real-time even for large-size instances, something that is

19

becoming more frequent due to the growing dynamism, complexity, and responsiveness
requirements of most real-life systems in areas such as logistics, transportation,
production, telecommunication, finance, Internet computing, health care, etc.

Acknowledgements

TO BE COMPLETED AFTER BLIND PEER-REVIEW PROCESS

References

Aarts E and Lenstra JK (1997). Local Search in Combinatorial Optimization. John
Wiley & Sons: New York.

Arcus AL (1965). A computer method of sequencing operations for assembly lines.
International Journal of Production Research, 4(4), 259–277.

Berry WL, Marcus M and Williams JG (1977). Inventory Investment Analysis Using
Biased Sampling Techniques. Management Science, 23(12), 1295–1306.

Bresina J, Drummond M, Swanson K and Edgington W (1994). Automated
Management and Scheduling of Remote Automatic Telescopes.In: Pyper DM and
Angione RJ (eds).Optical Astronomy from the Earth and Moon, ASP Conference
Series, Vol. 55.Astronomical Society of the Pacific: San Francisco, pp 216–233.

Bresina JL (1996). Heuristic-Biased Stochastic Sampling. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence- Volume 1. AAAI Press:
Portland, OR, pp 271–278.

Buxey GM (1979). The vehicle scheduling problem and Monte Carlo simulation.
Journal of the Operational Research Society, 30(6), 563–573.

Cabrera G, Gonzalez-Martin S, Juan AA, Marquès JM and Grasman SE (2014).
Combining Biased Random Sampling with Metaheuristics for the Facility Location
Problem in Distributed Computer Systems.In: Tolk A, Diallo SY, Ryzhov IO,
Yilmaz L, BuckleyS and Miller JA (eds). Proceedings of the 2014 Winter
Simulation Conference. IEEE Press: Savannah, GA, pp 3000–3011.

Cáceres-Cruz J, Grasas A, Ramalhinho H and Juan AA (2014). A savings-based
randomized heuristic for the heterogeneous fixed fleet vehicle routing problem
with multi-trips. Journal of Applied Operational Research, 6(2), 69–81.

Chan Y (2011). Location Theory and Decision Analysis: Analytics of Spatial
Information Technology (2nd ed.). Springer Berlin Heidelberg: Berlin.

Cicirello VA and Smith SF (2005). Enhancing Stochastic Search Performance by
Value-Biased Randomization of Heuristics. Journal of Heuristics, 11(1), 5–34.

Clarke G and Wright J (1964). Scheduling of vehicles from a central depot to a number
of delivering points. Operations Research, 12(4), 568–581.

Clerc M (2015). Guided Randomness in Optimization, Volume 1. Wiley-ISTE: London.
Coelho J and Tavares L (2003). Comparative analysis of metaheuristics for the resource

constrained project scheduling problem. Technical report, Department of Civil
Engineering, Instituto Superior Tecnico, Portugal.

Coffman EG, Garey DS and Tarjan RE (1980). Performance bounds for level oriented
two-dimensional packing algorithms. SIAM Journal on Computing, 9(4), 808–826.

Collet P and Rennard JP (2006). Stochastic Optimization Algorithms.In: Rennard JP
(ed).Handbook of Research on Nature Inspired Computing for Economics and
Management. Idea Group Inc.: Hershey, PA, pp 28–44.

20

Cooper DF (1976) Heuristics for Scheduling Resource-Constrained Projects: An
Experimental Investigation. Management Science, 22(11), 1186–1194.

Corberán A and Laporte G (2014). Arc Routing: Problems, Methods, and Applications.
SIAM: Philadelphia, PA.

De Armas J, Cadarso, L, Juan AA and Faulin J (2016). A multi-start randomized
heuristic for real-life crew rostering problems in airlines with work-balancing
goals. Annals of Operations Research, doi:10.1007/s10479-016-2260-y.

De Armas J, Juan AA, Marques JM and Pedroso J (2017). Solving the Deterministic
and Stochastic Uncapacitated Facility Location Problem: from a heuristic to a
simheuristic. Journal of the Operational Research Society, doi: 10.1057/s41274-
016-0155-6.

Dominguez O, Guimarans D, Juan AA and Nuez I (2016a). A Biased-Randomised
Large Neighbourhood Search for the Two-Dimensional Vehicle Routing Problem
with Backhauls. European Journal of Operational Research, doi:
doi:10.1016/j.ejor.2016.05.002.

Dominguez O, Juan AA, Barrios B, Faulin J and Agustin A (2016b). Using biased
randomization for solving the two-dimensional loading vehicle routing problem
with heterogeneous fleet. Annals of Operations Research, 236(2), 383–404.

Dominguez O, Juan AA, and Faulin J (2014). A biased-randomized algorithm for the
two-dimensional vehicle routing problem with and without item rotations.
International Transactions in Operational Research, 21(3), 375–398.

Dominguez O, Juan AA, Nuez I De, and Ouelhadj D (2016c). An ILS-Biased
Randomization algorithm for the Two-dimensional Loading HFVRP with
Sequential Loading and Items Rotation. Journal of the Operational Research
Society, 67(1), 37–53.

Dorigo M and Gambardella LM (1997). Ant Colony System: A Cooperative Learning
Approach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation, 1(1), 53–66.

Dorigo M, Maniezzo V and Colorni A (1996). The ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics--Part
B, 26(1), 29–41.

Drexl A (1991). Scheduling of project networks by job assignment. Management
Science, 37(12), 1590– 1602.

Faulin J and Juan AA (2008). The ALGACEA-1 method for the capacitated vehicle
routing problem. International Transactions in Operational Research, 15(5), 599–
621.

Faulin J, Juan AA, Grasman SE and Fry MJ (2012). Decision Making in Service
Industries: A Practical Approach. CRC Press: Boca Raton, FL.

Feo T and Resende M (1995). Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, 6(2), 109–133.

 ern nde de rdoba P, arc a Raffi LM and Sanchis JM (1998). A heuristic
algorithm based on Monte Carlo methods for the Rural Postman Problem.
Computers & Operations Research, 25(12), 1097–1106.

Fernández de Córdoba P, García-Raffi LM, Mayado A and Sanchis JM (2000). A real
delivery problem dealt with Monte Carlo Techniques. Top, 8(1), 57–71.

Giffler B, Thompson GL and Van Ness V (1963). Numerical experience with the linear
and Monte Carlo algorithm for solving production scheduling problems. In: Muth
JF and Thompson GL (eds). Industrial Scheduling. Prentice-Hall, Inc: Englewood
Cliffs, NJ.

Glover F (1989). Tabu Search - Part I. ORSA Journal on Computing, 1(3), 190–206.

21

Glover F (1990). Tabu Search: A Tutorial. Interfaces, 20(4), 74–94.
Golden B, Wasil E, Kelly J and Chao I. (1998). The impact of metaheuristics on solving

the vehicle routing problem: algorithms, problem sets, and computational results.
In: Crainic TG and Laporte G (eds). Fleet management and logistics. Springer:
New York, pp. 33–56

Gonçalves JF and Resende MGC (2011). Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, 17(5), 487–525.

González S, Juan AA, Riera D, Castellà Q, Muñoz R and Pérez A (2012). Development
and Assessment of the SHARP and RandSHARP algorithms for the Arc Routing
Problem. AI Communications, 25(2), 173–189.

Grasas A, Caceres-Cruz J, Lourenço HR, Juan AA and Roca M (2013). Vehicle routing
in a Spanish distribution company: Saving using a savings-based heuristic. OR
Insight, 26(3), 191–202.

Heller J and Logemann G (1962). An Algorithm for the Construction and Evaluation of
Feasible Schedules. Management Science, 8(2), 168–183.

Herrero R, Rodríguez A, Cáceres-Cruz J and Juan AA (2014). Solving vehicle routing
problems with asymmetric costs and heterogeneous fleets. International Journal of
Advanced Operations Management, 6(1), 58–80.

Juan AA, Barrios B, Vallada E, Riera D and Jorba J (2014a). SIM-ESP: A simheuristic
algorithm for solving the permutation flow-shop problem with stochastic
processing times. Simulation Modelling Practice and Theory, 46: 101–117.

Juan AA, Cáceres-Cruz J, González-Martín S, Riera D and Barrios BB (2014b). Biased
Randomization of Classical Heuristics. In: Wang J (ed). Encyclopedia of Business
Analytics and Optimization, Vol. 1. IGI Global Books: Hershey, PA, pp. 314–324.

Juan AA, Faulin J, Caceres-Cruz J, Barrios BB and Martinez E (2014c). A successive
approximations method for the heterogeneous vehicle routing problem: analysing
different fleet configurations. European J. Industrial Engineering, 8(6), 762–788.

Juan AA, Faulin J, Ferrer A, Lourenço HR and Barrios B (2013a). MIRHA: multi-start
biased randomization of heuristics with adaptive local search for solving non-
smooth routing problems. Top, 21(1), 109–132.

Juan AA, Faulin J, Grasman S, Rabe M and Figueira G (2015a). A review of
Simheuristics: extending metaheuristics to deal with stochastic optimization
problems. Operations Research Perspectives, 2: 62–72.

Juan AA, Faulin J, Jorba J, Caceres J and Marques J (2013b). Using Parallel &
Distributed Computing for Solving Real-time Vehicle Routing Problems with
Stochastic Demands. Annals of Operations Research, 207. 43–65

Juan AA, Faulin J, Jorba J, Riera D, Masip D and Barrios B (2011). On the use of
Monte Carlo simulation, cache and splitting techniques to improve the Clarke and
Wright savings heuristics. Journal of the Operational Research Society, 62(6),
1085–1097.

Juan AA, Faulin J, Ruiz R, Barrios B and Caballé S (2010). The SR-GCWS hybrid
algorithm for solving the capacitated vehicle routing problem. Applied Soft
Computing, 10(1), 215–224.

Juan AA, oent el J and Bektaş T (2014d). Routing fleets with multiple driving ranges:
Is it possible to use greener fleet configurations? Applied Soft Computing, 21, 84–
94.

Juan AA, Lourenço HR, Mateo M, Luo R and Castellà Q (2014e). Using iterated local
search for solving the flow-shop problem: Parallelization, parametrization, and
randomization issues. International Transactions in Operational Research, 21(1),
103–126.

22

Juan AA, Pascual I, Guimarans D and Barrios BB (2015b). Combining biased
randomization with iterated local search for solving the multidepot vehicle routing
problem. International Transactions in Operational Research, 22(4), 647–667.

King GW (1953). The Monte Carlo Method as a Natural Mode of Expression in
Operations Research. Operations Research, 1(2), 46–51.

Kochetov Y and Ivanenko D (2003). Computationally difficult instances for the
Uncapacitated Facility Location Problem. In: Proceedings of the 5th Metaheuristics
International Conference (MIC): 41:1 – 41:6.

Kolisch R and Hartmann S (1999). Heuristic Algorithms for the Resource-Constrained
Project Scheduling Problem: Classification and Computational Analysis.In:
Weglarz J (ed).Project Scheduling: Recent Models, Algorithms and Applications.
Kluwer Academic Publishers: Dordrecht, The Netherlands, pp 147–178.

Lawler EL, Lenstra JK, Rinnooy Kan AHG and Shmoys DB (1985). The Traveling
Salesman Problem. Wiley & Sons: Chichester.

Leung SCH and Zhang D (2011). A fast layer-based heuristic for non-guillotine strip
packing. Expert Systems with Applications, 38(10), 13032–13042.

Li LYO and Eglese RW (1996). An Interactive Algorithm for Vehicle Routeing for
Winter-Gritting. Journal of the Operational Research Society, 47(2), 217–228.

Løkketangen A and Glover F (1996). Probabilistic Move Selection in Tabu Search for
Zero-One Mixed Integer Programming Problems. In: Osman IH and Kelly JP
(eds). Meta-heuristics: Theory & Applications. Kluwer Academic Publishers:
Boston, MA, pp 467–487.

Mabert VA and Whybark DC (1977). Sampling as a solution methodology. Decision
Sciences, 8(1), 167–179.

Martí R, Resende MGC and Ribeiro CC (2013). Multi-start methods for combinatorial
optimization. European Journal of Operational Research, 226(1), 1–8.

Martin S, Ouelhadj D, Beullens P, Ozcan E, Juan AA and Burke E (2016). A Multi-
Agent Based Cooperative Approach to Scheduling and Routing. European Journal
of Operational Research, 254(1), 169–178

Mazza D, Pages A, Tarchi D, Juan AA and Corazza G (2016). Supporting Mobile
Cloud Computing in Smart Cities via Randomized Algorithms. IEEE Systems
Journal.

Mumford–Valenzuela C, Wang PY and Vick J (2001). Heuristic for large strip packing
problems with guillotine patterns: An empirical study. In: Proc. 4th Metaheuristics
Int. Conference, pp. 417–421.

Nawaz M, Enscore EE and Ham I (1983). A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega, 11(1), 91–95.

Ntene N and Vuuren JH van (2009). A survey and comparison of guillotine heuristics
for the 2D oriented offline strip packing problem, Discrete Optimization, 6(2).
174-188.

Nugent CE, Vollmann TE and Ruml J (1968). An Experimental Comparison of
Techniques for the Assignment of Facilities to Locations. Operations Research,
16(1), 150–173.

Pinedo M and Chao X (1999). Operations scheduling with applications in
manufacturing and services. Irwin/McGraw-Hill: Boston, MA.

Pinedo ML (2012). Scheduling: Theory, Algorithms, and Systems (4th ed.). Springer
Science & Business Media: New Jersey.

Prais M and Ribeiro CC (2000). Reactive GRASP: An application to a matrix
decomposition problem in TDMA traffic assignment. INFORMS Journal on
Computing, 12(3), 164–176.

23

Reese J (2006). Solution methods for the p-median problem: An annotated
bibliography. Networks, 48(3), 125–142.

Resende MGC and Ribeiro CC (2010). Greedy Randomized Adaptive Search
Procedures: Advances, Hybridizations, and Applications. In: Gendreau M and
Potvin JY (eds). Handbook of Metaheuristics. Springer US: New York, pp 283–
319.

Schirmer A and Riesenberg S (1997). Parameterized Heuristics for Project Scheduling -
Biased Random Sampling Methods. Technical Report 456, Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel.

Taillard E (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2), 278–285.

Talbi E-G (2009). Metaheuristics: From Design to Implementation. Wiley Publishing:
New Jersey.

Tonge FM (1965). Assembly Line Balancing Using Probabilistic Combinations of
Heuristics. Management Science, 11(7), 727–735.

Toth P and Vigo D (2014). Vehicle Routing: Problems, Methods, and Applications (2nd
ed.). SIAM: Philadelphia, PA.

Valls V, Quintanilla S and Ballest n (2003). Resource-constrained project scheduling:
A critical activity reordering heuristic. European Journal of Operational Research,
149(2), 282–301.

Wäscher G, Haußner H and Schumann H (2007). An improved typology of cutting and
packing problems. European Journal of Operational Research, 183(3), 1109–
1130.

Zhang D, Wei L, Leung SCH and Chen Q (2013). A Binary Search Algorithm base on
Randomized local Search for the Rectangular Strip Packing Problem. INFORMS
Journal on Computing, 25(2), 332–345.

