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Chapter 9. Biased Regression 

9:1 Dealing with collinearity. 

Collinearity in the predictors weakens the analysis by increasing the variance of the estimated 
parameters and by restricting the predictive power of the model to the reduced set of combinations 
of values for the predictor variables. Although no statistical methods will remove the collinearity from 
the data, there are techniques to reduce the impact of collinearity. 

Variable selection, Ridge regression, and Principal components regression are techniques to reduce 
the impacts of collinearity in MLR.  

9:2 Variable selection. 

Variable selection, as performed by using the Cp criterion, is a useful means of eliminating 
excessive collinearity by leaving redundant variables out of the final model. Selection of variables must 
balance a reduction of collinearity versus an excessive biasing of the model achieved by removing 
variables. Keep in mind that the fact that a variable be a good candidate for removal from a model 
does not mean that the variable is not a part of the true model. The probability of making this type of 
error is not known, but should increase as more variables are deleted. 

9:3 Biased regression. 

Biased regression is a method to deal with multicollinearity that stabilizes partial regression 
coefficients by introducing bias. The bias is associated with a reduction in the variance of the 
estimated coefficients, so there is a gain that more than compensates for the increase in bias. 

9:3.1 Concepts. 
9:3.1.1 Mean squared error. 

A measure of the average closeness of an estimator b of a parameter β is the Mean squared error 
(MSE) of the estimate. The key distinction here is that the MSE is measured as the expectation of 
deviations of b from β, whereas the variance of the estimator is measured as deviations from the 
expectation of the estimator E{b}. The difference between β and E{b} is the bias of the estimator b. 
OLS usually yield unbiased estimators, but modifications or other means of calculating the estimates 
may yield biased estimators. Of course, biased estimators have the disadvantage that they are biased; 
but they may have much lower variance and thus yield better confidence intervals for the true value 
of the parameter. Biased regression methods, such as RR and PCR use this advantage. 
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The total error in the estimate of a parameter can be expressed as the sum of the error due to the 
variance, plus the error due to the bias of the estimate: 

Mean sq. error:  
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If the estimator is not biased (as obtained by LS) then mean squared error = ! "2 {!} meaning 
that the sample-based variance of the estimated parameter around its estimated value is also an 
estimate of the variance around the true parameter value. 

However, a biased estimator of β can have a much smaller variance than an unbiased one. 

Figure 1 illustrates the scope of biased regression, where the biased estimator is expected to have 
a much smaller variance, and thus greater probability of being close to the true parameter, than the 
unbiased LS estimator. 

A simple example of the difference between a biased and an unbiased estimator can be found in 
any basic statistics textbook where the rationale for using a divisor equal to (n-1) instead of n for the 
estimated variance is explained. In that case, however, the biased estimator is not superior to the 
unbiased one. 

 
Figure 9-1. Relationship between the variance of an unbiased and a biased estimated parameters. 
Biased regression is based on the idea that the biased estimator will, on average be closer to the 
true parameter, although its mean will not be equal to the true parameter. 
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9:3.2 Biased estimated β’s 
Biased estimated β’s can be obtained by using variables with the correlation transformation and 

adding a bias component to the correlation matrix. This is the procedure followed by ridge regression. 

Correlation transformation: 
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Note that the correlation transformation is equivalent to dividing the standardized variables by the 
square root of n-1. When variables are thus transformed, the X’X matrix becomes the correlation 
matrix and X’Y is the correlations of X’s with Y. 

rxx b = rxy 
The bias is introduced by a factor c and the identity matrix I 

(rxx + cI) bR = rxy 
Where bR is the vector of biased standard partial regression coefficients. 

bR = (rxx + cI)-1 rxy 

 

9:3.3 How to choose c? 
There is no formal objective rule to select the level of bias to be accepted. It is not possible to 

know the true optimum value of c. The best option is to look at the ridge trace and R2 and select a 
level of c that produces acceptably stable coefficients without much loss of explanatory power. The 
ridge trace is a plot of the standardized partial regression coefficients (and R2) as a function of bias. 

As c increases from 0 to 1 the bR’s change at first rapidly and then slowly tend to zero. The goal is 
to pick a c that is in the range of stable bR’s but does not reduce R2 excessively. One should consider 
the fact that it may not be possible to find such a value of c. 

9:3.4 How to use the biased estimates? 
Predictions with ridge estimated β's are more precise than LS β’s when pattern of collinearity 

remains constant in the new sample of x values (and sometimes, even if it does not). 

Ridge regression traces (the plot of the estimated coefficients against the bias) can be used to 
choose variables to drop from the final model: 

1.  drop X’s with unstable trace that rapidly  approach zero. 

2.  drop X’s with stable but low trace. 

3.  drop X’s with very unstable trace even if it does not approach 0. 

9:3.5 Spartina example (SAS STAT, JMP does not do Ridge) 
The use of ridge regression is illustrated with the Spartina data set. First, biomass is regressed 

against all variables. A RIDGE option is specified in the PROC REG statement. This option indicates that 
biases from 0 to 1 should be introduced in steps of 0.05. The OUTEST=s00.ridge indicates that the 
parameter values for each level of bias should be stored in file s00.ridge. I printed this file and 
transferred the data to Excel to standardize the coefficients and make the ridge plot. Because the 
ridge file has many variables and I wanted to print a complete observation in each line, I change my 
PAGESIZE option to about 240 columns. 
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proc reg data=s00.spartina ridge=0 to 1 by 0.05 outest=s00.ridge; 
model bmss=h2s sal eh7 ph acid p k ca mg na mn zn cu nh4 / vif; 
run; 
quit; 
 
proc print data=s00.ridge; 
var  _ridge_ _rmse_ h2s sal eh7 ph acid p k ca mg na mn zn cu nh4 ; 
run; 

 

The contents of the file s00.ridge can be explored by opening the library and directory windows in 
SAS. This can be helpful in understanding the meaning of the variables. It is important to understand 
that the values listed under each variable name are the estimated regression coefficients for that 
variable for the different levels of bias. 

 

 
Figure 9-2. Contents of the file created by the outest option when the ridge option is used in 
proc reg. 

 

The interpretation of the ridge plot suggests which variables to remove from the model and how 
much bias to introduce. Once the level ob bias is selected, the OUTEST file can be inspected to get 
the values of the biased estimators. Further details about the biased estimators, and the final VIF’s 
are not immediately available, but can be calculated with a bit of matrix algebra. 
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Figure 9-3. Ridge trace showing the changes in the values of estimated standardized partial 
regression coefficients as the bias is increased. The vertical red line indicated a good choice of 
bias to be selected for the final model. Alternatively, variables  Cu, Eh7, K, and P could be 
eliminated from the model. 

9:4 Principal Components Regression. 

9:4.1 Purpose. 
Principal components regression (PCR) is a method for obtaining estimates of the parameters of a 

MLR with small mean squared error in the presence of collinearity. PCR is similar to Ridge regression 
(RR) in that it introduces a bias in the estimated parameters for the sake of reducing their variance. 
Whereas RR does this by introducing a bias c in the correlation matrix of the X variables, PCR achieves 
the same goal by performing a MLR of Y on a subset of the principal components of X. The results of 
RR and PCR are not numerically the same, but the address the same problem and should be similar. 

A brief overview of PCR helps to understand the big picture before going into the details. PCR 
regresses Y on the PC's of the X's, so the total amount of explanatory power when all PC's are 
included is the same as with all the original X's. Then, the PC's that reflect the greatest amount of 
collinearity, as identified by their low eigenvalues and their high condition number (or index), and that 
are not significant in the regression, are dropped from the equation and new parameters are obtained 
for Y as a function of the remaining PC's. Because each PC is a linear combination of all the original 
variables, they can be expressed in terms of the original variables by using the eigenvectors. By 
substitution, the regression equation of Y on a subset of PC's is finally expressed as a function of all 
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of the original variables. The procedure focuses on determining how many of the least important PC's 
to eliminate. 

From a matrix algebra conceptual standpoint, PCR amounts to partitioning all of the explanatory 
power in the X matrix into orthogonal, uncorrelated components. Then, only those components that 
explain a large amount of variation in Y are kept in the model. By reconstructing the original variables 
based only on a subset of the components, the corresponding partial regression coefficients become 
biased to respond to the “relevant” and less correlated part of each X. 

The partition of an X matrix into additive components is called Singular Value Decomposition of a 
matrix, which is explained in pp. 60-68 in Rawlings et al., (1998). The matrix X is the sum of p 
matrices, each of rank 1. When the component matrices are ordered in decreasing order of 
eigenvalue, then the sum of the first k component matrices is the best (in the least squares sense) 
approximation of X of rank p. This concept is mentioned here because it is central to several methods 
for ordination of ecological community and ecosystem information. Note that p=number of variables 
in this context. 

9:4.2 Model. 
In the following, Z is the matrix of standardized observations for the X variables (it does not 

include a column of 1's), W is the matrix of principal components scores for all variables and all 
observations, L is a diagonal matrix that contains the eigenvalues in the corresponding ii locations in 
the main diagonal and 0's everywhere else, and V is the matrix of eigenvectors. This organization of 
names and matrices is the same that is shown in the matrix worksheet of xmpl_PCR.xls. The matrix 
algebra involved here is very, very simple (addition and multiplication) and it makes the equations 
much easier to see. For a numerical example with all details, refer to xmpl_PCR.xls. 

Recall that 

W=ZV 

Where W is the matrix of PC scores (always based on correlation matrix R unless otherwise 
specified), Z is the matrix of standardized variables, and V is the matrix of eigenvectors. 
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where {} indicates a matrix, i refers to rows of the original data matrix and j refers to the columns 
that are the original variables. For example, in the Body Fat data X11 is triceps skin fold value for the 
first row of the data table (see file bodyfatPCR.jmp). 

V = vjk{ } , 

where j refers to the original variables or columns of X, and k refers to the principal component. 
Thus, in the Body Fat example, v12 =0.0501056 is the coefficient for triceps skin fold in the second 
principal component. For this data set, i=1, …, 20 (n=20); j=1, …, 3 (p=3, number of variables); and 
k=1, …, 3 (p=3, number of principal components). 

Thus, the score for observation i in principal component k is: 
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As indicated in the chapter about PCA, all of the “explanatory power” of the X-matrix (matrix of 
predictors) is contained in the matrix W. Thus, a regression of Y (% body fat) on W is just a 
reparameterization of the regression on X. 
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Thus, each estimated Y can be expressed as a linear function of the original variables or as a linear 
function of the principal component scores. Because the principal component scores are themselves 
linear combinations of the original variables, it is possible to find equations for the relationship 
between the β‘s and the γ’s. Based on the equality above, and setting p=3 as in the body fat example, 
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The last expression is compared to the one based on the original variables to determine that the 
original β‘s are linear combinations of the γ’s: 
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In the body fat example, the set of linear combinations or customs tests necessary to recover the 
original partial regression coefficients (just to verify that we are applying the coefficients correctly) 
are given by the following table: 
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The biased coefficients are obtained by dropping the rows of the table that correspond to non-
significant principal components, after regressing body fat only on the significant ones. The custom 
tests will yield estimates of the coefficients AND of their variance, so we can assess the significance 
of, and construct confidence intervals for the biased coefficients. 
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9:4.3 Assumptions. 
The assumptions for biased regression are the same as for MLR, and should be checked 

accordingly. 

9:4.4 Procedure in JMP 
There are three main steps to do PCR in JMP. First, obtain the Principal Components and save all 

the scores for all components. Use the PC’s based on the correlations. Second, regress the response 
variable (body fat %) on all PC’s and determine which PC’s will be dropped. Finally, regress the 
response variable on the PC’s that were not dropped and obtain the estimated parameters for the 
original variables by using the Custom Tests. 

Step 1 

 
 

 
 

 

First, perform a PCA using the 
three predictors. 
 
We use the principal 
components based on the 
correlation matrix. 
 
Keep in mind that we are using 
the body fat example because 
of simplicity and because we 
are familiar with it. However, 
this is not a case where we 
would normally want to get 
biased parameter estimates, 
because the main goal of the 
real analysis is to make 
predictions.  

There is a very high degree of 
collinearity in the predictors, as 
indicated by the very small 
value for the third eigenvalue. 
 
This output was copied on an 
Excel spreadsheet and 
transposed to facilitate the 
calculations of the coefficients 
for the custom tests. 

This is the V matrix: 
v11 v12 v13 
v21 v22 v23 
v31 v32 v33 
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Save all (3) principal 
components. That adds 
columns and rows to the 
data table. It adds the 
matrix W to the data 
table. 

Use the Table->Summary command 
to obtain the averages and 
standard deviations of the 
predictors. These were added to 
the spreadsheet where the 
calculations to obtain the elements 
of the L-vectors are performed. 
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Use the spreadsheet to implement the calculations based on the formulas given above. The file 
bodyfatPCA.xls is available for you to double check the calculation. That file uses named ranges 
to facilitate the writing and reading of equations. The columns labeled Beta1, Beta2, etc., 
contain the elements of the L-vectors that will be applied in Custom tests to eventually obtain 
the biased betas. 
 
 

 
 

Step 2 
In step 2 we regress the response variable on all PC’s and determine which ones are significant and 

which ones will not be included in the model. By removing PC’s, we remove collinearity without 
eliminating any of the original variables. 

First, regress the response 
variable on all the predictors to 
get the unbiased betas and their 
standard deviations. 
 
These values will be used first to 
make sure we apply the L-vectors 
correctly, and then, to compare 
them with the corresponding 
biased partial regression 
coefficients. 
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Now, regress the response 
variable on all the principal 
components saved in one of the 
steps above. 
 
Note that the R-square and the 
RMSE are the same as above. 
 
The values listed in the 
Parameter estimates table are 
the gamma’s. Note that 
gamma0 is always equal to the 
mean of the response when you 
use the PC’s based on the 
correlation matrix. 
 
The custom tests show the 
location of the coefficients to 
recover the original betas.  

These values are the same as in 
the Parameter Estimates table 
of the previous analysis, which 
confirms that we calculated and 
applied the coefficients 
correctly. 

The tests show that the 
gamma for PC3 is not 
significant, so PC3 will be 
dropped to obtain the biased 
betas. 
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Step 3 
 
Note that the R2 has declined slightly. 
Because the PC’s are orthogonal, their 
partial regression coefficients and SS do 
not change when PC’s are dropped. 

βb
2 βb

3 

βb
0 βb

1 

The biased coefficients are very different 
from the original ones, and they have 
much lower variances. When there is a 
large change in the partial regression 
coefficients like here, it is necessary to 
compare the coefficient of variation. For 
example, the CV for βb

1 is 
0.05614/0.42246=0.133, whereas for 
β1 it is 3.0155/4.3341=0.696 

The coefficient for X3 is not significant. In 
this specific example, X3 is almost 
perfectly collinear with the other two. 
Thus, it is likely that the elimination of 
X3 will work better than PCR. As an 
exercise, compare the results of PCR 
with those of eliminating X3. 
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9:4.5 How to eliminate PC’s. 
Eliminate PC's that: 

1.  Have small eigenvalues and thus are causing variance inflation on the 
parameter estimates. 

2.  Do not have a significant effect on the response variable (regression 
coefficient is not significantly different from 0 at α=0.10). 

 


