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Chapter 9. Biased Regression

9:1 Dealing with collinearity.

Collinearity in the predictors weakens the analysis by increasing the variance of the estimated
parameters and by restricting the predictive power of the model to the reduced set of combinations
of values for the predictor variables. Although no statistical methods will remove the collinearity from
the data, there are techniques to reduce the impact of collinearity.

Variable selection, Ridge regression, and Principal components regression are techniques to reduce
the impacts of collinearity in MLR.

9:2 Variable selection.

Variable selection, as performed by using the Cp criterion, is a useful means of eliminating
excessive collinearity by leaving redundant variables out of the final model. Selection of variables must
balance a reduction of collinearity versus an excessive biasing of the model achieved by removing
variables. Keep in mind that the fact that a variable be a good candidate for removal from a model
does not mean that the variable is not a part of the true model. The probability of making this type of
error is not known, but should increase as more variables are deleted.

9:3 Biased regression.

Biased regression is a method to deal with multicollinearity that stabilizes partial regression
coefficients by introducing bias. The bias is associated with a reduction in the variance of the
estimated coefficients, so there is a gain that more than compensates for the increase in bias.

9:3.1 Concepts.
9:3.1.1 Mean squared error.

A measure of the average closeness of an estimator b of a parameter B is the Mean squared error
(MSE) of the estimate. The key distinction here is that the MSE is measured as the expectation of
deviations of b from B, whereas the variance of the estimator is measured as deviations from the
expectation of the estimator E{b}. The difference between B and E{b} is the bias of the estimator b.
OLS usually yield unbiased estimators, but modifications or other means of calculating the estimates
may yield biased estimators. Of course, biased estimators have the disadvantage that they are biased;
but they may have much lower variance and thus yield better confidence intervals for the true value
of the parameter. Biased regression methods, such as RR and PCR use this advantage.
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The total error in the estimate of a parameter can be expressed as the sum of the error due to the
variance, plus the error due to the bias of the estimate:
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If the estimator is not biased (as obtained by LS) then mean squared error = ol {B} meaning

that the sample-based variance of the estimated parameter around its estimated value is also an
estimate of the variance around the true parameter value.

However, a biased estimator of p can have a much smaller variance than an unbiased one.

Figure 1 illustrates the scope of biased regression, where the biased estimator is expected to have

a much smaller variance, and thus greater probability of being close to the true parameter, than the
unbiased LS estimator.

A simple example of the difference between a biased and an unbiased estimator can be found in
any basic statistics textbook where the rationale for using a divisor equal to (n-1) instead of n for the

estimated variance is explained. In that case, however, the biased estimator is not superior to the
unbiased one.

6 &0

Figure 9-1. Relationship between the variance of an unbiased and a biased estimated parameters.
Biased regression is based on the idea that the biased estimator will, on average be closer to the
true parameter, although its mean will not be equal to the true parameter.
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9:3.2 Biased estimated B’s

Biased estimated B’s can be obtained by using variables with the correlation transformation and
adding a bias component to the correlation matrix. This is the procedure followed by ridge regression.

1 (X-X
Correlation transformation: x' =
n—10 s

Note that the correlation transformation is equivalent to dividing the standardized variables by the
square root of n-1. When variables are thus transformed, the X’X matrix becomes the correlation
matrix and X’Y is the correlations of X’'s with Y.

rob =ry

The bias is introduced by a factor ¢ and the identity matrix |
(ro+cl)b?=r,
Where bR is the vector of biased standard partial regression coefficients.

bR = (r,+cl)'ry,

9:3.3 How to choose c?

There is no formal objective rule to select the level of bias to be accepted. It is not possible to
know the true optimum value of c. The best option is to look at the ridge trace and R? and select a
level of ¢ that produces acceptably stable coefficients without much loss of explanatory power. The
ridge trace is a plot of the standardized partial regression coefficients (and R?) as a function of bias.

As c increases from 0 to 1 the b®’s change at first rapidly and then slowly tend to zero. The goal is
to pick a c that is in the range of stable b¥’s but does not reduce R? excessively. One should consider
the fact that it may not be possible to find such a value of c.

9:3.4 How to use the biased estimates?

Predictions with ridge estimated B's are more precise than LS B’s when pattern of collinearity
remains constant in the new sample of x values (and sometimes, even if it does not).

Ridge regression traces (the plot of the estimated coefficients against the bias) can be used to
choose variables to drop from the final model:

1. drop X’s with unstable trace that rapidly approach zero.
2. drop X’s with stable but low trace.

3. drop X’s with very unstable trace even if it does not approach O.

9:3.5 Spartina example (SAS STAT, JMP does not do Ridge)

The use of ridge regression is illustrated with the Spartina data set. First, biomass is regressed
against all variables. A RIDGE option is specified in the PROC REG statement. This option indicates that
biases from 0 to 1 should be introduced in steps of 0.05. The OUTEST=s00.ridge indicates that the
parameter values for each level of bias should be stored in file sO0.ridge. | printed this file and
transferred the data to Excel to standardize the coefficients and make the ridge plot. Because the
ridge file has many variables and | wanted to print a complete observation in each line, | change my
PAGESIZE option to about 240 columns.
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proc reg data=s00.spartina ridge=0 to 1 by 0.05 outest=s00.ridge;
model bmss=h2s sal eh7 ph acid p k ca mg na mn zn cu nh4 / vif;

run;
quit;

proc print data=s00.ridge;

var _ridge _rmse_ h2s sal eh7 ph acid p k ca mg na mn zn cu nh4 ;

run;

The contents of the file sO0.ridge can be explored by opening the library and directory windows in
SAS. This can be helpful in understanding the meaning of the variables. It is important to understand
that the values listed under each variable name are the estimated regression coefficients for that
variable for the different levels of bias.

Libref: SHH

Ootoset: RIOGEZ

Yariable Length

Label

— _NODEL—
— _TYPE_
— _DEFVAR_
— _RIDGE_
— _PCOMIT-
— _RNsE_
— IHTERCEP
— HZS

— 5AL

— EHY

— PH

— RCID

- P

- K

— CA

— NG

— HA

— W

|

- Cu

— HH%

— [BnNss

o
o
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Label of model

Type of statistics

Dependent wariable

Ridge regression control walue

Humber of principal components dropped
Root mean squared erraor

Intercept

Figure 9-2. Contents of the file created by the outest option when the ridge option is used in

proc reg.

The interpretation of the ridge plot suggests which variables to remove from the model and how
much bias to introduce. Once the level ob bias is selected, the OUTEST file can be inspected to get
the values of the biased estimators. Further details about the biased estimators, and the final VIF’s

are not immediately available, but can be calculated with a bit of matrix algebra.

Revised: 5/16/06
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Figure 9-3. Ridge trace showing the changes in the values of estimated standardized partial
regression coefficients as the bias is increased. The vertical red line indicated a good choice of
bias to be selected for the final model. Alternatively, variables Cu, Eh7, K, and P could be
eliminated from the model.

9:4 Principal Components Regression.

9:4.1 Purpose.

Principal components regression (PCR) is a method for obtaining estimates of the parameters of a
MLR with small mean squared error in the presence of collinearity. PCR is similar to Ridge regression
(RR) in that it introduces a bias in the estimated parameters for the sake of reducing their variance.
Whereas RR does this by introducing a bias c in the correlation matrix of the X variables, PCR achieves
the same goal by performing a MLR of Y on a subset of the principal components of X. The results of
RR and PCR are not numerically the same, but the address the same problem and should be similar.

A brief overview of PCR helps to understand the big picture before going into the details. PCR
regresses Y on the PC's of the X's, so the total amount of explanatory power when all PC's are
included is the same as with all the original X's. Then, the PC's that reflect the greatest amount of
collinearity, as identified by their low eigenvalues and their high condition number (or index), and that
are not significant in the regression, are dropped from the equation and new parameters are obtained
for Y as a function of the remaining PC's. Because each PC is a linear combination of all the original
variables, they can be expressed in terms of the original variables by using the eigenvectors. By
substitution, the regression equation of Y on a subset of PC's is finally expressed as a function of all
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of the original variables. The procedure focuses on determining how many of the least important PC's
to eliminate.

From a matrix algebra conceptual standpoint, PCR amounts to partitioning all of the explanatory
power in the X matrix into orthogonal, uncorrelated components. Then, only those components that
explain a large amount of variation in Y are kept in the model. By reconstructing the original variables
based only on a subset of the components, the corresponding partial regression coefficients become
biased to respond to the “relevant” and less correlated part of each X.

The partition of an X matrix into additive components is called Singular Value Decomposition of a
matrix, which is explained in pp. 60-68 in Rawlings et al., (1998). The matrix X is the sum of p
matrices, each of rank 1. When the component matrices are ordered in decreasing order of
eigenvalue, then the sum of the first k component matrices is the best (in the least squares sense)
approximation of X of rank p. This concept is mentioned here because it is central to several methods
for ordination of ecological community and ecosystem information. Note that p=number of variables
in this context.

9:4.2 Model.

In the following, Z is the matrix of standardized observations for the X variables (it does not
include a column of 1's), W is the matrix of principal components scores for all variables and all
observations, L is a diagonal matrix that contains the eigenvalues in the corresponding ii locations in
the main diagonal and O's everywhere else, and V is the matrix of eigenvectors. This organization of
names and matrices is the same that is shown in the matrix worksheet of xmpl_PCR.xls. The matrix
algebra involved here is very, very simple (addition and multiplication) and it makes the equations
much easier to see. For a numerical example with all details, refer to xmpl_PCR.xls.

Recall that
w=zV
Where W is the matrix of PC scores (always based on correlation matrix R unless otherwise
specified), Z is the matrix of standardized variables, and V is the matrix of eigenvectors.
gLl %
Sj Sj Sj
where {} indicates a matrix, i refers to rows of the original data matrix and j refers to the columns
that are the original variables. For example, in the Body Fat data X;, is triceps skin fold value for the
first row of the data table (see file bodyfatPCR.jmp).

Vz{vjk},

where j refers to the original variables or columns of X, and k refers to the principal component.
Thus, in the Body Fat example, v,, =0.0501056 is the coefficient for triceps skin fold in the second
principal component. For this data set, i=1, ..., 20 (n=20); j=1, ..., 3 (p=3, number of variables); and
k=1, ..., 3 (p=3, number of principal components).

Thus, the score for observation i in principal component k is:
X, %

p p
w., = E ..V, = E — V.
ik ij 7 jk Jjk
j=1 S, 8

J=1 J J

As indicated in the chapter about PCA, all of the “explanatory power” of the X-matrix (matrix of
predictors) is contained in the matrix W. Thus, a regression of Y (% body fat) on W is just a
reparameterization of the regression on X.
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k=1

Thus, each estimated Y can be expressed as a linear function of the original variables or as a linear
function of the principal component scores. Because the principal component scores are themselves
linear combinations of the original variables, it is possible to find equations for the relationship
between the B‘s and the y’s. Based on the equality above, and setting p=3 as in the body fat example,

P P p (P Xij )_(j
Y, :ﬁ0+2XUﬂj ZYO""ZWikYk :7/0+Z Z S - < Vi |V =
= k=1 =1\ 9 :

k=1 j

PP Xij ; PP YiVic p.p YiVi =
:?’o"‘ZZVk o o zk_70+22 XU—ZZ X;=
k=1 j=I S, Sj k=1 j=1 S_,' k=1 j=1 S,

)4 /}/ V.
ZXU 2 g = + ’J/O Z,J/k ?k j
Jj=1 k=1 j k=1 j=1 9

The last expression is compared to the one based on the original variables to determine that the
original B‘s are linear combinations of the ¥’s:

S Y Vi C Vi
ﬁjZZS— and ﬁozj/o_zyk S_Xj
k=1 9 k=1 j=1 9
In the body fat example, the set of linear combinations or customs tests necessary to recover the
original partial regression coefficients (just to verify that we are applying the coefficients correctly)

are given by the following table:

Predictor-coeff B, B B, B,
nt. ¥, 1 0 0 0
A TS ST ST BT B TR
S, S, S, S, S, S,
PC2 7, Yogpleg Vg | M2 Yy Vs
S, S, S, S, S, S,
PG B | dag ey ey | o | Mmoo | Yw
S, S, S, S, S, S,

The biased coefficients are obtained by dropping the rows of the table that correspond to non-
significant principal components, after regressing body fat only on the significant ones. The custom
tests will yield estimates of the coefficients AND of their variance, so we can assess the significance
of, and construct confidence intervals for the biased coefficients.
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The assumptions for biased regression are the same as for MLR, and should be checked

accordingly.

9:4.4 Procedure in JMP

There are three main steps to do PCR in JMP. First, obtain the Principal Components and save all
the scores for all components. Use the PC’s based on the correlations. Second, regress the response
variable (body fat %) on all PC’s and determine which PC’s will be dropped. Finally, regress the
response variable on the PC’s that were not dropped and obtain the estimated parameters for the
original variables by using the Custom Tests.

Step 1

eo6 Multivariate and Correlations
Pairwise and higher relationships among a number of columns
Select Columns Cast Selected Columns into Roles Action
& X1-TriSkinfold s ~ .\ |[EeX1-TriSkinfold oK |
sX2-Thighcire (1] (LY. Columns ) ThighCirc —
e X3-ArmCirc ! & X3-ArmCirc ﬁ
521 , ptional Nurme \_ance
cZ3 I [ Weight )
:c Yi%Fat ! [ Remove
il &&=
(=3 I
& Prin3z " By ) (Recal
i Pred Formula Y-? ‘ " Help
[€ Prinlx il
€ Prin2x
A Drin v
e 06 bodyfatPCR.jmp: Multivariate
Vv HMAMultivariata
, v Correlations Multivariate
Inverse CorreIaFlons k3-ArmCirc
Partial Correlations 0.4578
Pairwise Correlations 0.0847
Nonparametric Correlations > 1.0000
, ¥ Scatterplot Matrix
Outlier Analysis : -
Principal Components > on Correlations
Item Reliability > on Covariances
Covariance Matrix on Unscaled
Parallel Coord Plot None b
Script 'S */
e 06 bodyfatPCR.jmp: Multivariate
¥ [~/ Multivariate
v [IPrincipal Components / Factor Analysis
¥ Principal Components: on Correlations
Eigenvalue 2.0665 0.9328 0.0007
Percent 68.8824 31.0934 0.0242
Cum Percent 68.8824 99.9758 100.0000
Eigenvectors
X1-TriSkinfold 0.69470 -0.05011 -0.71756
X2-ThighCirc 0.62943 -0.44051 0.64013
X3-ArmCirc 0.34816 0.89635 0.27448

First, perform a PCA using the
three predictors.

We use the principal
components based on the
correlation matrix.

Keep in mind that we are using
the body fat example because
of simplicity and because we
are familiar with it. However,
this is not a case where we
would normally want to get
biased parameter estimates,
because the main goal of the
real analysis is to make
predictions.

There is a very high degree of
collinearity in the predictors, as
indicated by the very small
value for the third eigenvalue.

This output was copied on an
Excel spreadsheet and
transposed to facilitate the
calculations of the coefficients
for the custom tests.

This is the V matrix:

Vi1 Vi2 Vi3
V21 V22 V23
V31 V32 V33
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e 06 bodyfatPCR.jmp: Multivariate

¥ [*]Multivariate

V B Drincinal Camnanante | Caﬂt)r Analysis ] ]
, Factor Rotation Save all (3) principal

rrelations
Spin Principal Components  _ : components. That adds

— 328 0.0007
Save Principal Components  $9 0.0242 columns and rows to the

Save Rotated Components 758  100.0000 data table. It adds the
- Elgenvectors T matriX W to the data
X1-TriSkinfold 0.69470 -0.05011 -0.71756

X2-ThighCirc  0.62943 -0.44051  0.64013 table.
X3-ArmCirc 0.34816  0.89635  0.27448

§ JMP File Edit RECEH Rows C
.‘) -— Use the Table->Summary command
0?2 5] . to obtain the averages and
Subset standard deviations of the
PO6O Sort ‘ predictors. These were added to
IbodyfatPCR_jmp Sta;k the sprgadsheet whfere the
JRecover betas [ Split | calculations to obtain the elements
IBiased betas | Transpose of the L-vectors are performed.
B Concatenate :
|| Join :
|| Update |
Y.
Summary
X1-TriSkinfold
X3-ArmCirc
Z1
22
23
Prinlz
Prin2
pringz :
Pred Formula Y-%Fat 2
Prinlx v | statistics
N

" Include marginal statistics

Std Dev
Min

25 Max
statistics column name format Range

% of Total
N Missing

@ Sum ( Cancel ) €50k

Sum Wgt
T T PT———
Std Err
Ccv

Median
™ Quantiles T

For quantile statistics, enter value (%)

" stat(column) [

=
. |
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e 06 ™ bodyfatPCA.xls

< e B C D E F G H 1 J K

1 Custom test Coefficients

2 Label Eigenvalue % Cum % X1-TriSkinfo X2-ThighCirc X3-ArmCirc Betal Beta2 Beta3 BetaO

3 PC1 2.06647 ©68.882 68.88 0.6946957 0.6294279 0.3481645 0.1382958 0.1202435 0.0954621 -12.2891
4 PC2 0.9328 31.093 99.98 -0.050106 -0.440509 0.8963488 -0.009975 -0.084153 0.2457671 -2.22956
5 PC3 0.00073 0.0242 100 -0.717557 0.6401347 0.2744818 -0.142847 0.1222889 0.0752593 -4.72144
6

7 | stdev 5.0232591 5.2346115 3.6471474 %fat

8 means 25.305 51.17 27.62 20.195

Use the spreadsheet to implement the calculations based on the formulas given above. The file
bodyfatPCA.xls is available for you to double check the calculation. That file uses named ranges
to facilitate the writing and reading of equations. The columns labeled Betal, BetaZ2, etc.,
contain the elements of the L-vectors that will be applied in Custom tests to eventually obtain
the biased betas.

¥ [-IResponse Y-%Fat

¥ Summary of Fit First, regress the response
RSquare 0.801359 variable on all the predictors to
RSquare Adj 0.764113 get the unbiased betas and their
Root Mean Square Error 2.479981 standard deviations.
Mean of Response 20.195
Observations (or Sum Wgts) 20 T | ilb d first t
v Analysis of Variance ese values will be used first to
. make sure we apply the L-vectors
Source DF Sum of Squares Mean Square F Ratio I d th
Model 3 396.98461 132.328 21.5157 | | correctly, and then, to compare
Error 16 98.40489 6.150 Prob> F | them with the corresponding
C. Total 19 495.38950 <.0001 biased partial regression
¥ Parameter Estimates coefficients.
Term Estimate Std Error tRatio Prob>|t|
Intercept 117.08469 99.7824 1.17 0.2578
X1-TriSkinfold 4.334092 3.015511 1.44 0.1699
X2-ThighCirc -2.856848 2.582015 -1.11 0.2849
X3-ArmCirc -2.18606 1.595499 -1.37 0.1896

> Effect Tests
> Effect Details

Step 2

In step 2 we regress the response variable on all PC’s and determine which ones are significant and
which ones will not be included in the model. By removing PC’s, we remove collinearity without
eliminating any of the original variables.

10
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v [-IResponse Y-%Fat
¥ Summary of Fit

RSquare 0.8013
RSquare Adj 0.7641
Root Mean Square Error 2.4799

Mean of Response 20.1
Observations (or Sum Wgts)

¥ Analysis of Variance

AGR206Ch09PCR.doc

59
13
81
95
20
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Prob > F
<.0001
0.0128

Now, regress the response
variable on all the principal
components saved in one of the
steps above.

Note that the R-square and the
RMSE are the same as above.

The values listed in the
Parameter estimates table are
the gamma’s. Note that
gammaoO is always equal to the
mean of the response when you
use the PC’s based on the
correlation matrix.

The custom tests show the
location of the coefficients to
recover the original betas.

0.2129

The tests show that the
gamma for PC3 is not
significant, so PC3 will be
dropped to obtain the biased
betas.

Source DF Sum of Squares Mean Square F Ratio
Model 3 396.98461 132.328 21.5157
Error 16 98.40489 6.150 Prob>F
C. Total 19 495.38950 <.0001

¥ Parameter Estimates
Term Estimate Std Error tRatio Prob>|t|
Intercept 20.195 0.554541 36.42 <.0001
Prinlz 2.935758 0.395783 7.42 <.0001
Prin2z -1.649761 0.589084 -2.80 0.0128
Prin3z -27.38341 21.10659 -1.30 0.2129

v Effect Tests
Source Nparm DF Sum of Squares F Ratio
Prinlz 1 1 338.39487 55.0208
Prin2z 1 1 48.23747 7.8431
Prin3z 1 1 10.35227 1.6832

> Effect Details

V¥ [-ICustom Test
Parameter
Intercept 0 0 0
Prinlz 0.13829581 0.12024347 0.09546213
Prin2z -0.0099747 -0.0841531 0.2457671
Prin3z -0.1428468 0.12228886 0.07525932
= 0 0 0
Value 4.3340920076 -2.856847936 -2.186060262
Std Error |3.0155113636 2.58201527 1.5954990064
t Ratio 1.4372660172 -1.106441147 -1.370142039

Prob> |t|
SS 12.70489277

Sum of Squares 396.98461183
Numerator DF 3
F Ratio 21.515712304
Prob > F 0.0000073433

¥ [ICustom Test

Parameter

Intercept 1
Prinlz -12.289098
Prin2z -2.2295604
Prin3z -4.7214447
= 0
Value 117.08469453
Std Error | 99.782402994
t Ratio 1.1734002291

Prob>|t|] 0.2578077977
SS 8.4681594477

0.1699110654 0.2848943702 0.1895628469
7.529277877 11.545902155

These values are the same as in
the Parameter Estimates table
of the previous analysis, which
confirms that we calculated and
applied the coefficients
correctly.

11
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rIResponse Y-%Fat

" Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

" Analysis of Variance

Sum of Squares
Numerator DF
F Ratio

Prob > F

"[*ICustom Test

AGR206Ch09PCR.doc

0.780461
0.754633
2.529324
20.195
20

Source DF Sum of Squares Mean Square F Ratio
Model 2 386.63234 193.316 30.2175
Error 17 108.75716 6.397 Prob>F
C. Total 19 495.38950 <.0001
" Parameter Estimates
Term Estimate Std Error tRatio Prob>|t|
Intercept 20.195 0.565574 35.71 <.0001
Prinlz 2.935758 0.403657 7.27 <.0001
Prin2z -1.649761 0.600805 -2.75 0.0138
" Effect Tests
Source Nparm DF Sum of Squares F Ratio
Prinlz 1 1 338.39487 52.8950
Prin2z 1 1 48.23747 7.5401
- Effect Details
"[~ICustom Test
b b
Parameter B 2 B }
Intercept 0 0
Prinlz 0.12024347 0.09546213
Prin2z -0.0841531 0.2457671
Value 0.4918383028 -0.125203254
Std Error 0.0700865774 0.1526032534
t Ratio 7.0175819842 -0.820449441
Prob>|t] 0.0000020705 0.4233155919
SS 315.05322727 4.3063823797

386.63233857

2

30.217549212
0.0000025284

Prob > F
<.0001
0.0138
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Step 3

Note that the R? has declined slightly.
Because the PC’s are orthogonal, their
partial regression coefficients and SS do
not change when PC’s are dropped.

The biased coefficients are very different
from the original ones, and they have
much lower variances. When there is a
large change in the partial regression
coefficients like here, it is necessary to
compare the coefficient of variation. For
example, the CV for B°; is
0.05614/0.42246=0.133, whereas for
B, it is 3.0155/4.3341=0.696

The coefficient for X; is not significant. In
this specific example, X; is almost
perfectly collinear with the other two.
Thus, it is likely that the elimination of
X3 will work better than PCR. As an
exercise, compare the results of PCR
with those of eliminating X;.

b b
Parameter B 0 B '
Intercept 1 0
Prinlz -12.289098 0.13829581
Prin2z -2.2295604 -0.0099747
= 0 0
Value -12.20457574 0.4224589352
Std Error 5.1692951733 0.0561448688
t Ratio -2.36097482 7.5244442534
Prob>|t] 0.0304307475 8.32146e-7
SS 35.66084692 362.20780174
Sum of Squares 1322.3018981
Numerator DF 2
F Ratio 103.34552673
Prob > F 3.0676e-10

12
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9:4.5 How to eliminate PC’s.
Eliminate PC's that:

1. Have small eigenvalues and thus are causing variance inflation on the
parameter estimates.

2. Do not have a significant effect on the response variable (regression
coefficient is not significantly different from O at «=0.10).
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