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Abstract

In games with a large number of players, it may be difficult for an agent to correctly assess

her opponents’ strategies. I propose an equilibrium concept, biased sampling equilibrium (BSE),

in which agents respond to a finite biased sample of opponent play. Statistical bias in the

sampling process leads to a novel equilibrium property: when the sampling process is homophilic,

equilibrium strategies may not be isotone in type, and may even be significantly antitone. I apply

BSE to a model of strategic voting, and find that extreme partisans may abstain from voting

more frequently than moderate agents. Nonmonotonicity of turnout in ideological strength

qualitatively matches behavior in recent British elections.

To be quite frank, I did not believe it would happen.

– R.S., regretful Leave supporter†

1 Introduction

In games with a large number of players, it may be difficult for agents to form correct beliefs

regarding opponent behavior. When it is not possible to obtain perfect information regarding

opponent strategies, realized actions will be consistent with the limited information the agent has.

When information is limited, the manner in which it is acquired becomes crucial to determining

agent beliefs, and is therefore an important piece of any equilibrium concept.

This paper contributes to the literature on misperception in games by explicitly modeling a

source of bias in the belief formation process. I define a biased sampling equilibrium (BSE) so that

agents are responding to finite and biased samples of opponent play. Agents observe a relatively

small number of samples of opponent play, and these samples are taken from a distribution that

does not match the underlying distribution of types. Agents respond as if their biased samples are a

precise estimate of population play. When the sampling process is homophilic, so that agents draw

∗University of North Carolina at Chapel Hill; kyle.woodward@unc.edu. I would like to thank a seminar audience
at UNC for helpful feedback.
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samples too frequently from those with similar types, equilibrium strategies can be nonmonotone

in type even when, holding fixed beliefs, best responses are monotone in type.

BSE builds on the sampling equilibrium defined in Osborne and Rubinstein (2003). In a sam-

pling equilibrium, agents respond to finite samples of population behavior. Because the sampling

process is identical for all agents, all agents respond to identical beliefs. When best responses are

monotone in type, this implies that equilibria are monotone in type (my Observation 1). BSE

extends the notion of sampling equilibrium to allow for heterogeneous sampling procedures. When

two types have different sampling processes they will in general have different beliefs, and responses

will depend not only type but also on the beliefs induced by that type’s sample.

One key question in classical equilibrium analysis is whether equilibria are monotone (c.f. Athey

(2001), McAdams (2003), Reny (2011), Woodward (2019)). Monotone Bayesian Nash equilibria

exist in many games of interest, but are far from universal. Monotonicity typically results from

single-crossing and quasisupermodularity of utility, but also implicitly requires that agents cannot

draw too much adverse inference from their own type realization (c.f. McAdams (2007)). In BSE,

adverse inference is not due to learning about opponent types, but follows from a restriction on

inference itself. It is perhaps not surprising that BSE may be nonmonotone. However, BSE may

be not only nonmonotone but also (nearly) globally antitone: with few exceptions, strategies are

monotonically decreasing in type.

Equilibrium nonmonotonicity may result when agents’ samples are insufficiently reflective of

population play, and beliefs regarding opponent play differ significantly between types. These

beliefs will differ when sampling processes differ significantly between types. An individual’s social

network is a natural pool from which to sample population play, in which case beliefs will depend

on who an agent knows. Social networks are not complete nor even particularly diverse, and

humans tend to exhibit homophilic preferences and associate with individuals similar to themselves

(McPherson et al., 2001). Homophilic preferences extend to traits which are not directly observable,

such as political preferences (Knoke (1990), Halberstam and Knight (2016)). While BSE places no

assumptions on the direction or scale of bias in the sampling process, in application I assume the

sampling process is homophilic. This induces a regular source of bias in action selection: agents

sample others with similar preferences, potentially irreflective of the population at large. In a

voting context, left-extremists confuse moderates for right-extremists, and right-extremists confuse

moderates for left-extremists.

In the context of strategic voting, homophilic sampling implies that individuals with relatively

partisan preferences are relatively unlikely to vote. An individual on one end of the left-right

spectrum is likely to query the voting behavior of similarly extreme individuals. These individuals

are unlikely to vote for the opposition candidate, and are therefore unlikely to suggest a that the

election is competitive. More moderate individuals are more likely sample from both sides of the

political divide. They are therefore more likely to believe that the election is competitive, and that

casting a ballot is worth the cost. Data from the British Election Study suggests recent British

elections exhibit similar nonmonotone turnout rates, and extreme partisans have turned out at
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relatively low rates.1

While motivated by application to voting models, this paper is most clearly related to the lit-

eratures on misperception and bounded rationality. As noted above, biased sampling equilibrium

generalizes the sampling equilibrium concept of Osborne and Rubinstein (2003). Salant and Cherry

(2019) also extend the sampling equilibrium concept, but focus on the method of drawing inference

from a finite sample. I hold fixed the inference concept, and vary the sampling procedure. My

framework is static, and hence my approach is distinct from the studies of learning from dynamic

sampling, such as Oyama et al. (2015) and Häfner (2018). The realization of the biased sampling

process defines a directed network between agents, hence there are natural ties to peer confirm-

ing equilibrium (Lipnowski and Sadler, 2019). A key distinction is that my sampling network is

random and directed, while in peer confirming equilibrium it is fixed and undirected. When the

information-sharing network is unknown, biased sampling equilibrium may serve as a reduced-form

approximation to peer confirming equilibrium. This is a useful direction for future study.

2 Model

The game is G = (Θ, F,A,R). The set of types Θ is a finite set with order ≺Θ, and the proportion

of players with type θ ∈ Θ is F (θ).2 Types θ and θ′ are adjacent if there is no θ′′ with θ ≺Θ θ′′ ≺Θ θ′

or θ′ ≺Θ θ′′ ≺Θ θ. Agents choose from a finite set of actions A with order ≺A. A strategy profile is

σ = (σθ)θ∈Θ, where σθ ∈ ∆A, and σθa gives the probability that an agent with type θ plays action

a.

The game is augmented by a sampling process S = (k,H). The sampling process specifies k, the

number of samples drawn, and H : Θ×Θ→ [0, 1], the distribution by which they are drawn. The

sampling distribution is unbiased if H(·; θ) = F (·), and is homophilic if H(·; θ)/F (·) is single-peaked

at θ and nonconstant. The sampling distribution is nontrivial if for any type θ and any adjacent

type θ′, H(θ′; θ) > 0. Given a sampling process S, the support of realized samples is contained in

K = {α ∈ N|A| :
∑

a αa = k}.
The agent’s reaction function is R : K × Θ → A, which gives his response to a distribution

over opponent play, conditional on his own type.3 Given a strategy profile σ, a sampling process

S, and a type θ, the distribution over realized samples α ∈ K is a multinomial distribution over

|A| outcomes, where the probability of outcome a is

π (a;S, θ) =
∑
θ′∈Θ

H
(
θ′; θ

)
σθ′a.

1The literature on voter turnout typically finds that turnout increases with ideological strength (c.f. Geys (2006)).
As illustrated in Figure 2, recent British elections have bucked this trend. See Larcinese (2009) for a model of voter
turnout which supports monotone turnout rates in older (1997) British elections.

2The ordering on Θ is inessential to the definition and existence of equilibrium, but necessary to empower some
discussion of monotonicity.

3I make no assumption on how the response function R relates to type and sampled play. In many cases it is
natural to assume that the agent has an underlying utility specification, and that R is a best response to some
inference drawn from the sampled distribution s(σ;S, θ).
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The realized sample distribution is used to define a biased sampling equilibrium.

Definition 1 (Biased sampling equilibrium). A strategy profile σ is a biased sampling equilibrium

(BSE) if for all types θ ∈ Θ and all actions a ∈ A, Pr(R(α; θ) = a|θ) = σθa.

In a BSE, the probability a type selects an action is consistent with the probability that this

type witnesses a distribution over opponent play that induces the selection of this action. The sets

of available types Θ and actions A are both finite. Then because only a finite number of samples

is taken, the set of potential distributions over samples is also finite.

Theorem 1 (Equilibrium existence). A biased sampling equilibrium exists.

Proof. This follows from finiteness and direct application of Kakutani’s fixed point theorem.

2.1 Equilibrium antitonicity

When the sampling distribution is unbiased, H(·; θ) = F (·), BSE is equivalent to the sampling

equilibrium of Osborne and Rubinstein (2003). My analysis of potential nonmonotonicity in BSE

proceeds from the following observation.

Observation 1 (Monotone sampling equilibrium). If the sampling process is unbiased and the

reaction function is monotone, so that θ < θ′ implies R(·; θ) �FOSD R(·; θ′), all sampling equilibria

are monotone. Because each type θ derives identical beliefs over opponent play, the reaction function

R is sufficient to guarantee monotonicity.

A consequence of Observation 1 is that nonmonotonicity in a BSE is necessarily due to bias in

the sampling process, and not to finite sampling error alone. While BSE may be nonmonotone,

under fairly general circumstances it cannot be globally antitone.

Lemma 1 (No antitone biased sampling equilibrium). Suppose that the sampling distribution is

increasing in type, and the response function is increasing and nonconstant in type (fixing distri-

bution), and decreasing in distribution. Then there is no antitone biased sampling equilibrium.

Proof. Suppose otherwise. Then the distribution over sampled play is decreasing in type, and a

high type’s sampled disitribution suggests a (first order) higher response than a low type’s sampled

distribution. Because R is decreasing in distribution, the high type would have a higher response

if he observed the low type’s sample. Since R is nonconstant in type, it follows that either the high

type’s or low type’s strategy does not satisfy the definition of BSE.

The assumption that the reaction function R is nonconstant in type is crucial to proving that

there is no antitone BSE. When R is derived from a utility maximization problem, R will be

nonconstant in type when two types have different best responses to the same distribution over

opponent play. Even when the sampling process is biased, resulting beliefs may not depend too

strongly on the agent’s type, and nonconstant responses may locally dominate any effect of shifting

belierfs. To evaluate equilibrium antitonicity on a reasonable footing, I identify types at which R

changes in order to eliminate them from consideration.
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Definition 2 (Inflection point). Let σ be a strategy profile. A type θ ∈ Θ is an inflection point if

there is an adjacent type θ′ and actions a and a′ such that

Pr (R (α; θ) = a|θ) 6= Pr
(
R
(
α; θ′

)
= a

∣∣θ) and Pr
(
R
(
α; θ′

)
= a′

∣∣θ) 6= Pr
(
R (α; θ) = a′

∣∣θ) .
Holding fixed a sampled distribution of equilibrium play, a type is an inflection point if a slightly

higher or lower type has a different response. Because the action space A is finite, the distribution

of realized samples α is discrete. When the response function R is derived from some best response

to beliefs generated by sampled play, it is frequently locally constant in type: playing a particular

action indicates that it generates greater utility than other actions, and utility is similar when types

are similar. Then holding fixed the sample distribution, the response function frequently changes

only at a handful of types θ.

I show below that even when response functions are isotone, BSE may not be isotone. This

nonisotonicity is limited, in the sense that equilibria may be monotonically decreasing at many

types, but will not typically be monotonically decreasing at inflection points. By definition, re-

sponses tend to be isotone near inflection points. This isotonicity is discrete, a jump from one

action to another, and it is difficult for sampling to be sufficiently limited to overpower this shift

in incentives. I therefore slightly restrict the notion of antitonicity to hold only at types that are

not inflection points.

Definition 3 (Antitonicity). A strategy profile σ is locally antitone at θ ∈ Θ if, for any θ, θ

adjacent to θ with θ < θ < θ, σθ �FOSD σθ �FOSD σθ. A strategy profile σ is nearly antitone if it

is locally antitone at all types θ ∈ Θ that are not inflection points.

A precise characterization of when nearly antitone equilibria exist depends in a complicated

way on the number of samples drawn, as well as the bias inherent in the sampling process. With

sufficiently many relatively unbiased samples, biased sampling information is close to full infor-

mation, and equilibrium will tend to be as monotone as the response function. With relatively

few, moderately biased samples, local selection effects can dominate. When agents sample only

opponents with identical types, equilibrium monotonicity may be regained.

Illustration: a congestion game

There are t + 1 types θ ∈ {0, 1/t, . . . , 1 − 1/t, 1}, each with equal proportion in the population.

Agents play a congestion game with actions a ∈ {E,N}. Playing N gives utility 0 and playing E

gives utility θ − µ(E), where µ(E) is the fraction of the population action E. Agents with lower

types are, ceteris paribus, less willing to play E, so I define N ≺A E.

Agents draw k samples, and respond as if their sample perfectly reflects the distribution of play

in the population. Given type θ, an agent will choose action E if less than θ of her sample has
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chosen E, and will choose N otherwise. That is,

R (α; θ) =

E if αE
k ≤ θ,

N otherwise.

Given type θ, let ᾱE(θ) denote the maximum number of action E in a sample that will result

in type θ playing E. By construction, ᾱE(θ) = bkθc. Provided the type space is sufficiently rich

(t is sufficiently large) ᾱE is constant on local intervals. The probability that type θ plays E is

Pr(αE ≤ ᾱE(θ)). Then because the sampling distribution is identical for all types, this probability

is constant on local intervals when ᾱE is constant. Then in sampling equilibrium the probability

of choosing action E is a step function which is monotone in type θ.

Lemma 2 (Inflection points in sampling equilibrium). In a sampling equilibrium, θ is an inflection

point if min{kθ − bkθc, dkθe − kθ} < kε.

Proof. Let θ, θ′ ∈ Θ, and assume θ < θ′. To be an inflection point, θ and θ′ must be adjacent,

therefore assume θ + 1/t = θ′. Fixing an realized sample α, the response function R will differ

between these two types if and only if there is αE such that kθ < αE ≤ kθ′ = kθ + kε. Then

0 < αE − kθ ≤ kε; equivalently, there is an integer n such that −kε ≤ kθ − n < 0. The left-hand

inequality is easiest to satisfy at n = dkθe, thus θ is an inflection point if dkθe − kθ ≤ kε. A

symmetric argument applies if we analyze θ′ instead, giving the desired result.

In the congestion game, inflection points are those types which, in order to respond with entry,

are willing to sample one less (or one more) entry than their adjacent neighbors. They are the types

on either side of the discontinuities in the left panel of Figure 1. The same basic logic applies to

BSE, but an equivalence is not guaranteed: the definition of inflection point depends on the strategy

profile analyzed. Holding fixed a distribution over realized samples, the set of inflection points does

not change between sampling equilibrium and BSE. However, the distribution of realized samples

is not fixed, thus it cannot be ruled out that the set of inflection points is distinct between the two

equilibrium concepts.

With a biased sampling procedure the sampling distribution is no longer constant in type.

When the type space is sufficiently rich (t is sufficiently large compared to k) this will result in

nonmonotone entry probabilities: agents with low types sample other agents with low types, who

are generally unwilling to enter. Although agents with higher types are ex ante more willing to

enter, they tend to draw from stronger distributions over realized samples, depressing their entry

probability.

Lemma 3 (No isotone biased sampling equilibrium). Suppose that the sampling distribution is ho-

mophilic, increasing in type, and nontrivial. If t > k, there is no isotone biased sampling equilibrium

in the congestion game.

Proof. Suppose otherwise. Since t > k, the pigeonhole principle implies that there are two adjacent

types θ and θ′ such that ᾱE(θ) = ᾱE(θ′), θ < θ′, and ᾱE(θ′) 6= ᾱE(θ′+1/t). Since H is homophilic,

6



0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

x
Sampling equilibrium (congestion)

k = 2
k = 3
k = 4

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

θ

x

Biased sampling equilibrium (congestion)

k = 2
k = 3
k = 4

Figure 1: In a standard sampling equilibrium, strategies are isotone in type (Observation 1). In
a biased sampling equilibirum, strategies are not isotone when the type space is rich (Lemma 3),
and may be nearly antitone.

increasing in type, and samples adjacent types, θ′ is an inflection point. Then is the case that

Pr(αE ≤ ᾱE(θ)|θ) > Pr(αE ≤ ᾱE(θ′)|θ′). Then type θ′ plays E with lower probability than type

θ < θ′, contradicting isotonicity.

The probability distribution over agent responses to realized samples depends on the probability

that an agent with type θ samples no more than ᾱE(θ) entries. Let πE(θ) be the probability that

a single sample of entry is drawn,

πE (θ) =
∑
θ′∈Θ

H
(
θ′; θ

)
σθ′E , and Pr (R (α; θ) = E|θ) =

αE(θ)∑
n=0

(
k

n

)
πE (θ)n (1− πE (θ))k−n .

The strategy profile σ is a BSE if

σθE =

αE(θ)∑
n=0

(
k

n

)[∑
θ′∈Θ

H
(
θ′; θ

)
σθ′E

]n(
1−

∑
θ′∈Θ

H
(
θ′; θ

)
σθ′E

)k−n
. (1)

The solution to (1) is shown in Figure 1. BSE may be nearly antitone, and away from inflection

points entry probabilities may be strictly decreasing in type. Concordant with the proof of Lemma 3,

inflection points in BSE are clearly visible as points at which equilibrium strategies are increasing.

Similarly, as k increases the number of inflection points also increases (in line with Lemma 2). As

the number of inflection points increases, equilibrium strategies appear increasingly isotone.
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3 A voting game

I now consider the implications of biased sampling on strategic voting. Reaction functions are

derived from a utility model in which voting is costly, and players have differential strength of

preference for one of two candidates. In a standard sampling equilibrium, partisans vote for their

preferred candidates while moderate voters refrain from voting. Under biased sampling, willingness

to vote is nonmonotone.4 I show that nonmonotone participation is robust to the introduction of

extreme candidates who appeal directly to agents who tend to abstain in a two-candidate system.

3.1 Two candidates

Agents’ types are drawn independently and uniformly from {−1,−1 + 1/t, . . . , 1 − 1/t, 1}, t ∈ N.

There are two candidates for office, p ∈ {−P,+P}, where P ∈ (0, 1). If candidate p is elected,

an agent with type θ’s utility is −|θ − p|. Agents choose an action a ∈ A = {−P, ∅,+P}, and let

−P ≺A ∅ ≺A +P . Candidates are elected by simple majority, with random tiebreaking. Agents

who choose to vote, a 6= ∅, incur positive cost c, 0 < c < P ;5 agents who abstain from voting,

a = ∅, incur no cost. If an agent with type θ takes action a and candidate p is elected, his ex post

utility is

u (a; θ, p) = − |θ − p| − 11 [a 6= ∅] c.

I consider a biased sampling procedure in which agents sample uniformly from types that are

similar to their own. Fix δ > 0, and let N(θ; δ) = #{θ′′ : |θ′′ − θ| < δ} be the number of types that

are within δ of type θ. Define the sampling distribution H by

H
(
θ′; θ, δ

)
=

 1
N(θ;δ) if |θ′ − θ| < δ,

0 if |θ′ − θ| ≥ δ.

Note that if δ > 2, then H(·; θ) = F (·), and the sample is unbiased.

The reaction function R is defined by utility maximization, subject to beliefs induced by the

realized sample α. After drawing a sample α, the agent believes that the proportion of his sample

voting for a particular candidate is equal to the proportion of the full population voting for that

candidate. Because voting is costly, the agent will vote only if he is pivotal. Since he believes his

sample is an accurate representation of population play, he will vote only if his sample consists of

uniform abstention, or an equal number of individuals voting for each candidate.

For computational simplicity I focus on the two-sample case, k = 2. With two samples, the

agent’s realized sample may be written as α = (ã1, ã2). When the agent believes he is pivotal, he

believes that if he abstains from voting the election will be randomly decided between his favored

4BSE strategies are nonmonotone in the order defined on the action space, which is distinct from monotonicity
in turnout. It is straightforward to show that any strategy that is isotone in the defined order also has turnout
monotonically increasing in ideological strength, and nonmonotonicity of turnout implies nonmonotonicity in the
order defined on the action space.

5The assumption that c < P ensures that agents with types |θ| > P will choose to vote in a sampling equilibrium.
If c > P there is no voting in any sampling equilibrium, biased or not.
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Figure 2: In a BSE with a large sampling window (δ = 1.0), the probability a type votes is inversely
related to strength of preference. When the sampling window is small (δ = 0.5), the relationship is
nonmonotone. With a large sampling window, biased sampling equilibrium qualitatively matches
the gull-wing shape of turnout in British elections. Simulation parameters: t = 5, c = 0.125; values
below 0.001 have been censored.

candidate p?(θ) and his disfavored candidate p×(θ). If he is pivotal he can sway the election to his

favored candidate, and he will vote if

− |θ − p? (θ)| − c ≥ 1

2

(
− |θ − p? (θ)| −

∣∣θ − p× (θ)
∣∣) .

I show in Appendix A.1 that this implies that the agent will vote if he is pivotal and |θ| ≥ c. Then

R ((ã1, ã2) ; θ) =


p? (θ) if ã1 = ã2 = ∅,

p? (θ) if {ã1, ã2} = {−P,+P} ,

∅ otherwise.

Note that it is never optimal for an agent to vote for his disfavored candidate, σθp×(θ) = 0 in

any BSE.6 Then to determine the probability with which an agent votes for a particular candidate,

it is sufficient to know his type θ and the probability σθ∅ that he abstains from voting.

Define πa(θ) =
∑

θ′∈ΘH(θ′; θ)σθ′a. Then in a BSE,

σθp?(θ) =

π∅ (θ)2 + 2πp?(θ) (θ)πp×(θ) (θ) if |θ| ≥ c,

0 otherwise;
σθp×(θ) = 0; and σθ∅ = 1− σθp?(θ). (2)

Finding a BSE amounts to finding a fixed point of the system implied by (2) and the probabilities

πa(·). Figure 2 illustrates equilibrium under two sampling distributions.

6This is particular to the two candidate case, and is discussed in the four candidate analysis in Section 3.2.
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It is natural to suspect that agents with stronger ideological preferences are more likely to vote

than agents with weaker ideological preferences. However, Figure 2 shows that this need not be the

case — neither in practice, nor in BSE. The intuition for nonmonotone turnout in BSE is especially

straightforward in the case of δ = 1. Consider the sample drawn by type θ = 1. This sample

contains only votes for +P and abstentions. The sample drawn by the adjacent type θ′ = 1− 1/t

also contains only votes for +P and abstentions, but these are observed from a different sample

window. The sample drawn by type θ′ includes (potentially) type θ̃ = 0, which abstains with

probability 1. Since neither θ nor θ′ ever samples an individual voting for candidate −P , they are

pivotal only when they observe two abstentions. Since type θ′ observes abstentions with higher

probability, he is more likely to vote in spite of being less partisan.

When the sampling window is relatively large, δ = 1.0, Figure 2 shows that BSE is not only

nonmonotone, but nearly antitone. Starting from left-partisan preferences, abstention decreases

and voting for −P increases. Strategies are monotone at the inflection points θ ∈ {−1/t, 0, 1/t},
where abstention first increases, then decreases in favor of voting for +P . To the right of the

inflection points, abstention increases and voting for +P decreases.

3.2 Four candidates

To assess the robustness of nonmonotone voter turnout, I consider a model with four candidates,

p ∈ {−X,−P,+P,+X}, 0 < P < X, and extend ≺A so that −X ≺A −P and +P ≺A +X. All

other assumptions are retained from the two candidate analysis. Relatively extreme candidates

appear attractive to relatively partisan individuals, and the possibility of electing a closely-aligned

candidate might return a monotone relationship between partisanship and turnout, and the intro-

duction of extreme candidates therefore serves as a robustness check on turnout nonmonotonicity.

Agents’ responses are determined by believed pivotality, where the agent believes he is pivotal

if and only if he samples two abstentions, or two votes for distinct candidates. Unlike the two

candidate case, the four candidate case admits the possibility of strategic voting and not only a

strategic decision of whether or not to vote. With two candidates, if an agent is pivotal he can swing

the election to his favored candidate. With four candidates, it is possible that neither of the two

sampled votes is for the agent’s favored candidate. Because the agent believes his sample represents

population play, he cannot vote for his favored candidate in hopes of generating a three-way tie,

and he can affect the election only by voting for one of the two candidates voted for in his sample.

Of the two candidates appearing in his sample, the agent should vote for the one he prefers,

or not vote at all. Whether or not the agent votes is no longer a question of pivotality alone, but

also a question of the benefit of determining the outcome of the election, which depends in turn

on the candidates appearing in his sample. As a clear example, if θ = (P + X)/2, the agent is

indifferent between the feasible candidates if {ã1, ã2} = {+P,+X}, but strictly prefers candidate
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Figure 3: With four candidates and a relatively small sample window (δ = 0.5), agents only ever
sample others who are voting for their most-preferred candidate, or one adjacent, or who abstain
from voting. Pivotal voting is truthful, and turnout is equal to the proportion of agents voting
for their most-preferred candidate. With a larger sample window (δ = 1.0), agents occasionally
sample others who are voting for a strongly dispreferred candidate, and will occasionally vote for
a less-favored candidate to win. Turnout is greater than the proportion of agents voting for their
most preferred candidate. Simulation parameters: t = 5, P = 0.5, X = 1.0, c = 0.125; values below
0.001 have been censored.

+X if {ã1, ã2} = {−X,+X}. The response function can then be represented as

R ((ã1, ã2) ; θ) =


p? (θ) if ã1 = ã2 = ∅ and |θ| ≥ τ (c) ,

p? (θ; ã1, ã2) if ∅ 6= ã1 6= ã2 6= ∅ and θ ∈ I (ã1, ã2; c) ,

∅ otherwise.

Here, τ(c) is the minimum type necessary to participate in the election when no one else participates,

and I(ã1, ã2; c) is the interval of types θ that both prefer candidate p?(θ; ã1, ã2), and find the

distinction between ã1 and ã2 to be worth the cost of participating in the election.7

BSE in the four candidate voting model is depicted in Figure 3, in the cases of uniform sampling

with windows δ = 0.5 and δ = 1.0. The results are qualitatively similar to the two candidate case,

but share some notable distinctions which illustrate the features of BSE. First, although turnout

is relatively low for partisans, it is higher when there are four candidates than when there are two.

When there are four candidates, even relatively partisan agents may believe they are pivotal not

because they sample only abstention, but because they sample other agents who are voting for a

more moderate candidate. The introduction of these new pivotal events increases turnout for most

types.

Second, not only does strategic voting occur in equilibrium, but equilibrium turnout for extreme

7Detailed calculations for the response function are given in Appendix A.2.
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candidates can increase as voters become less partisan. With a homophilic sampling process, a less

partisan voter is more likely to sample from agents on the other side of the political spectrum.

These voters occasionally believe that they are pivotal between an extreme candidate on their own

side and a moderate candidate on the other side. Provided their views are not too moderate, they

prefer the extreme candidate to the moderate candidate. Since less partisan voters are more likely

to believe they are pivotal in this way, they may show more support for the extreme candidate

than more partisan adjacent types. More moderate voters make the opposite calculation, that they

would rather support a moderate on the opposite side than an extreme candidate on their own,

and there is occasional voting across the political divide.

Third, the introduction of two extreme candidates depresses turnout for relatively moderate

voters. Because turnout in all cases is relatively low, the highest probability event in which the

agent is pivotal is when he samples two abstentions. For more partisan voters the introduction of

new events indicating pivotality increases turnout, reducing the probability that a moderate agent

samples two abstentions. The reduced probability of this event outweighs any effect of new events

indicating pivotality, and turnout decreases for moderate voters.

4 Conclusion

I have defined the concept of biased sampling equilibrium, in which agents’ strategies are consistent

with a biased finite sample of opponent play. Unlike standard equilibrium concepts, where a

isotone relationship between type and strategy is a focal target of analysis, games may admit no

isotone biased sampling equilibrium. This nonmonotonicity can be quite strong, and equilibrium

strategies can be strictly antitone away from well-defined inflection points. Applied to strategic

voting, homophilic sampling may provide a novel explanation for low turnout of strong partisans.

When agents are likely to obtain information from others like them, strong partisans are overly

certain that their preferred candidate is going to win and that their vote is not pivotal. This

induces a gull wing relationship between ideology and voter turnout, qualitatively matching data

from recent British elections. Biased sampling equilibrium is likely to be of use in other situations

where observed behaviors are not isotone with respect to a natural order on types.
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A Response functions for voting model

A.1 Two candidate case

Suppose that the agent’s type is θ, his favored candidate is p?(θ) = p?, and his disfavored candidate

is p×(θ) = p×. Denote the agent’s sample draws by (ã1, ã2). Consider the following cases:

• ã1 = ã2 = ∅. Then the voter believes no one is voting, and he is pivotal. He should vote

whenever

− |θ − p?| − c ≥ 1

2

(
− |θ − p?| −

∣∣θ − p×∣∣) ⇐⇒ −|θ − p?| − 2c ≥ −
∣∣θ − p×∣∣ .

• ã1 6= ã2 = ∅. Then the voter believes half the population is voting for candidate ã1, and half

is abstaining. He is not pivotal, and will not vote.
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• {ã1, ã2} = {−P, P}. Then the voter believes half the population is voting for each candidate,

and he is pivotal. As in the case of total abstention, he should vote whenever

− |θ − p?| − 2c ≥ −
∣∣θ − p×∣∣ .

• ã1 = ã2 6= ∅. Then the voter believes that the entire population is voting for the same

candidate. He is not pivotal, and will not vote.

From these, it follows that the voter will vote (for his preferred candidate p?) if and only if

ã1 = ã2 = ∅ or {ã1, ã2} = {−P, P} and −|θ − p?| − 2c ≥ −|θ − p×|. This defines the reaction

function R given in section 3.1.

For simulation, it is sufficient to identify a threshold θ? that determines when a voter will

abstain, regardless of her sampled actions. By symmetry, it is sufficient to assume that θ > 0,

p? = P , and p× = −P . Note that if a voter of type θ = P always prefers to abstain, then all types

prefer to abstain: lower θ > 0 are further from P and closer to −P , and are less likely to value

voting; higher θ > 0 are further from −P , but identically further from P . Then it is sufficient to

assume that the threshold θ? < P , otherwise no threshold exists and voting is never optimal.

− |θ − P | − 2c ≥ − |θ − (−P )| ⇐⇒ θ − P − 2c ≥ −θ − P ⇐⇒ θ ≥ c.

Then a voter will vote if her observed sample is as described above, and (by symmetry) |θ| ≥ c.

A.2 Four candidate case

With four candidates and k = 2 samples, there are 25 possible sample draws. The set of relevant

samples is constrained by the observation (from the two candidate case) that a voter will vote only

if his samples disagree with one another, ã1 6= ã2, ∅ and ã2 6= ã1, ∅, or his samples indicate that the

full population is abstaining, ã1 = ã2 = ∅.
As in the analysis of the two candidate case, by symmetry we may assume that θ > 0. The

voter’s preferred candidate is +P if θ ∈ (0, (P + X)/2], and +X if θ > (P + X)/2. Unlike in the

two candidate case, it is now important to consider the exact value of P .

• ã1 = ã2 = ∅. Then the voter believes the entire population is abstaining, and he is pivotal.

His expected utility from not voting is

θ < P :
1

4
(− |θ − P | − |θ + P | − |θ −X| − |θ +X|) = −1

2
(P +X) ;

P ≤ θ < X :
1

4
(− |θ − P | − |θ + P | − |θ −X| − |θ +X|) = −1

2
(θ +X) ;

X ≤ θ :
1

4
(− |θ − P | − |θ + P | − |θ −X| − |θ +X|) = −θ.

Because the rest of the voting population is abstaining, if an agent votes he should vote for
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his most-preferred candidate. Then

θ < P : − |θ − P | − c ≥ −1

2
(P +X) ⇐⇒ θ ≥ c+

1

2
(P −X) ;

P ≤ θ < 1

2
(P +X) : − |θ − P | − c ≥ −1

2
(θ +X) ⇐⇒ 2 (P − c) +X ≥ θ;

1

2
(P +X) ≤ θ < X : − |θ −X| − c ≥ −1

2
(θ +X) ⇐⇒ θ ≥ 2

3
c+

1

3
X;

X ≤ θ : − |θ −X| − c ≥ −θ ⇐⇒ X ≥ c.

For the first condition to be (somewhere) consistent, it must be that c + (P − X)/2 < P ,

or c < (P + X)/2. For the second condition to be (somewhere) consistent, it must be that

2(P − c) + X > (P + X)/2, or c < (3P + X)/4. For the third condition to be (somewhere)

consistent, it must be that (2c + X)/3 ≤ (P + X)/2, or c ≤ (3P + X)/4. For the fourth

condition to be (somewhere) consistent, it must be that c ≤ X. Since X > P , the tightest

condition is c < (P +X)/2.

Therefore, if c < (P + X)/2 and the voter samples two abstentions, he will vote for his

preferred candidate (by symmetry) whenever |θ| ≥ c+ (P −X)/2.

• ã1 6= ã2, and ã1, ã2 6= ∅. Then the voter is pivotal between candidates ã1 and ã2; if he votes,

he will vote for the one which is closer to θ. Denote this candidate by p?, and the other

candidate by p×. The agent will vote if

− |θ − p?| − c ≥ 1

2

(
− |θ − p?| −

∣∣θ − p×∣∣) ⇐⇒ −|θ − p?| − 2c ≥ −
∣∣θ − p×∣∣ .

If ã1, ã2 = ±P , the two candidate analysis applies, and the agent will vote if θ ≥ c. The same

is true if ã1, ã2 = ±X.

There are 12 ways that ã1 can differ from ã2, neither being an abstention. 4 are handled

above, leaving 8 further cases to analyze. It is more straightforward to complete the analysis

in terms of which candidate an agent prefers, conditional on a drawn sample. Noting that an

agent with type θ > 0 will never prefer candidate −X, the number of cases may be further

reduced.

Now suppose that p? = P and p× = −X (recall that we are maintaining the assumption that

θ > 0). The agent votes if

− |θ − P | − 2c ≥ − (θ +X) .

If θ > P , this holds if P −2c ≥ −X, or if c < (P +X)/2. Since c < (P +X)/2 by assumption,

all θ > P vote for P after observing this split sample. If θ < P , the above inequality holds if

θ ≥ c+ (P −X)/2. Since c < (P +X)/2 by assumption, the right-hand side is strictly below

P . Then all θ ∈ (2c+ (P −X), P ] vote for P after observing this split sample. It follows that

all types θ ≥ c+ (P −X)/2 vote for P after observing this split sample.
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Now suppose that p? = −P and p× = X. The agent votes if

− |θ + P | − 2c ≥ − |θ −X| .

Since p? = −P , it must be that θ < X, and the above becomes −θ − P − 2c ≥ θ − X. In

turn, this is θ ≤ (X − P )/2− c.

Now suppose that p? = X and p× = −P . The agent votes if

− |θ −X| − 2c ≥ − (θ + P ) .

If θ > X, this holds if c < (X + P )/2, which holds by assumption, and the agent votes after

observing this split sample. If θ < X, the above inequality holds if θ ≥ c + (X − P )/2.

Note that p? = X and p× = −P if and only if θ ≥ (X − P )/2, so any agent with type

θ > c+ (X − P )/2 is such that p? = X and p× = −P .

Under the assumption that θ > 0, it cannot be the case that p? = −X and p× = P .

Now suppose that p? = P and p× = X. The agent votes if

− |θ − P | − 2c ≥ − |θ −X| .

Since p× = X, it must be that θ < (P +X)/2 < X. Then −|θ −X| = θ −X. If θ < P , the

above inequality is θ − P − 2c ≥ θ −X, which holds if and only if c ≤ (X − P )/2. If θ > P ,

the above inequality is P − θ − 2c ≥ θ − X, which holds if and only if θ ≤ (X + P )/2 − c.
Then the agent votes for p? if θ < P and c ≤ (X − P )/2, or if θ ∈ [P, (X + P )/2− c].

Now suppose that p? = X and p× = P . The agent votes if

− |θ −X| − 2c ≥ − |θ − P | .

Since p? = X, it must be that θ > P , so −|θ − P | = P − θ. If θ < X, the above inequality is

θ −X − 2c ≥ P − θ, or θ ≥ (X + P )/2 + c. If θ ≥ X, the above inequality is X − θ − 2c ≥
P − θ, or c ≤ (X − P )/2. Then the agent votes for p? if θ ≥ X and c ≤ (X − P )/2, or if

θ ∈ [(X + P )/2 + c,X].
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Now suppose that p? = −P and p× = −X. The agent votes if

− |θ + P | − 2c ≥ − |θ +X| .

Since θ ≥ 0, this is −P − θ − 2c ≥ −θ −X, or c ≤ (X − P )/2.
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