
A Case for Biased Programming in Flash

Eitan Yaakobi, Gala Yadgar, Nachum Bundak, and Lior Gilon
Computer Science Department, Technion

Abstract

The voltage level of flash cells is directly correlated with
the wear they experience. Previous studies showed that
increasing the ratio of ones to zeroes within a flash page
can reduce the amount of bit errors in this page as well as
the long-term wear of its cells. Biased programming en-
sures more ones are programmed than zeroes by employ-
ing specialized codes which, in turn, incur non-negligible
storage overhead.

We propose a novel approach to utilize the page spare
area for biased programming, introducing a new trade-
off: while using the spare area for a stronger ECC can
correct more errors, biased programming can reduce the
number of those errors. We show that as long as the
bit error rate is below a pre-determined threshold, biased
programming can be applied without compromising the
data’s durability. When the threshold is reached, we re-
vert to normal programming, but we can use the chip for
as much as 24% additional writes, thanks to its reduced
wear. We demonstrate the applicability of our approach
on real MLC chips. We also perform an initial evaluation
on a TLC chip, which exposes the challenges in applying
any type of biased programming to TLC flash.

1 Introduction
Flash-based storage can be found in most computing de-
vices. It has become popular thanks to its fast random ac-
cess, low energy consumption, and increasingly large ca-
pacity. However, flash memories are limited in the num-
ber of times they can be written. After a page is written,
it can be written again only after its entire block has been
erased. Each such program and erase (P/E) cycle wears
the pages and increases their bit error rate (BER), up to
the point where they can no longer be used reliably. A
flash chip’s lifetime is measured by the number of P/E cy-
cles its blocks can endure.

A common approach to increase the SSD’s lifetime is
to reduce the amount of data written to it. Write buffer-
ing [16], deduplication [6, 14, 17, 21, 22], and compres-
sion [7, 38] can be used to reduce the amount of user
data that is sent to the device from the upper-level ap-
plication or file system. The amount of internal writes
performed during the garbage collection process can be
further reduced by techniques such as separating hot and

cold data [10, 31], increasing I/O request sizes, and trim-
ming invalid pages by the upper level [30, 32].

Another approach is to extend the number of P/E cy-
cles a block may endure. This is primarily done by pro-
tecting the data written in each flash page by an error
correction code (ECC). The redundancy bits required for
this code are stored in the page’s spare area. The num-
ber of bit errors the code can correct can be increased by
increasing the size of the spare area and by employing
stronger and more efficient codes, such as BCH [2, 20]
and LDPC [12, 24]. In general, the spare-area size is de-
termined by the expected BER at the end of the chip’s
lifetime [28]. As a result, the ECC is stronger than what
is necessary when the chip is still ‘young’. Previous stud-
ies proposed to implement a weaker ECC in the begin-
ning of the chip’s lifetime to reduce flash read and write
latencies [3, 19, 27, 37, 39]. Alternatively, the unused bits
in the spare area can be leveraged to implement special-
ized codes that allow rewriting flash pages without eras-
ing them first [25, 35, 36].

Previous studies correlate the bit values programmed
on the flash cells with the extent of their wear [4, 13,
33,35], a phenomenon termed content-dependent memory
damage [18]. Generally speaking, increasing the number
of ones reduces the average voltage level sustained by the
flash cells, which has been shown to reduce their wear
and increase their lifetime. Jagmohan et. al suggested
to leverage this property for increasing SSD lifetime by
employing biased programming [15]. They proposed to
encode the data written to the flash pages with enumer-
ative (or endurance) codes [8], whose output is biased
(shaped)—it includes either more ones or more zeroes.

The first endurance codes had a high computational
complexity, but more efficient codes have since been pro-
posed, whose complexity is comparable to that of com-
monly used error correction codes [23, 29]. The stor-
age overhead of these codes is correlated with their bias.
Thus, the designs that use them compress the data written
to each page, internally, and utilize the saved space for the
code’s overhead. As a result, the applicability of this ap-
proach depends on the compressibility of the data written
to the SSD, and its efficiency is limited when the data is
compressed externally, by the upper-level. A recent study
compared page-level (‘implicit’) compression, combined
with biased programming, with external (‘explicit’) com-

Figure 1: Standard mapping of voltage levels to bit values in
MLC flash chips.

pression, and concluded that the latter is more effective
for increasing the SSD lifetime [18].

In this study, we propose a novel applicable approach
for programming biased data on flash. Instead of com-
pression, we accommodate the extra overhead in unused
bits of the page spare area. The benefit of this approach
is threefold: it does not depend on the compressibility (or
other properties) of the incoming data, it does not incur
any storage or computational overhead, and it can be fully
implemented within the flash controller, at the chip level.
Thus, it is orthogonal to other device-level optimizations.

The applicability of our biased programming approach
depends on the flash chip characteristics: the size of the
page spare area and the cells’ sensitivity to their volt-
age level. The latter is strongly influenced by propri-
etary flash-level optimizations applied by manufacturers
for minimizing program and read disturbance. Neverthe-
less, our initial results demonstrate that biased program-
ming can be applied successfully even without detailed
information about these optimizations.

We evaluate the applicability of this approach on two
MLC chips, and show that it can increase flash lifetime
by as much as 24.17%. Our main contributions are:
• We provide the theoretical framework for determining
which bias values are feasible for each combination of
page and spare area sizes, and derive the conditions that
must hold for biased programming to preserve the origi-
nal chip’s reliability guarantees (Sections 2 and 3).
• We demonstrate the effect of biased programming with
different bias values on the wear of MLC flash chips from
two manufacturers, one of which exhibits previously un-
documented wear patterns (Sections 2 and 4).
• We apply biased programming according to our derived
‘safety conditions’, successfully increasing the lifetime of
one of the chips by as much as 24.17% (Section 3).
• We present initial steps in the first feasibility study of
biased programming in TLC flash chips, and identify ma-
jor challenges that must be addressed for this approach to
be applicable (Section 4).

2 Biased Programming
Motivation. Flash pages are composed of cells that can
sustain different voltage levels representing their bit val-
ues. Multi-level cells (MLC) can store two bits, while
triple-level cells (TLC) can store three bits. Figure 1
shows the mapping of voltage levels to two-bit values in
MLC flash. Each bit is mapped to a different flash page,
the low (LSB) page or the high (MSB) page.

p q rp tp = (1−q)t T BERp =
tp

r+k

0.5 0 10240b 568 4.019×10−3

0.425 0.212 8069b 448 3.170×10−3

0.4 0.383 6318b 351 2.484×10−3

0.375 0.611 3982b 221 1.564×10−3

0.35 0.903 988b 54 3.821×10−4

Table 1: Spare area allocation and resulting tolerated BER with
k=16KB and r=1280B.

Previous studies showed that programming cells to the
higher voltage levels increases their short-term and long-
term wear, and, as a result, their BER. When the proba-
bility to program 1 or 0 is equal (p = 0.5), the probability
of a cell to be in each voltage level is 0.25. This prob-
ability changes if the probabilities to program 1 or 0 are
not equal. For example, if the probability of 0 is p = 0.4,
the probability to be in each of the states, 11, 10, 00, and
01, is 0.36, 0.24, 0.16, and 0.24, respectively. As a result,
the average voltage level of each cell is reduced, reducing
its overall wear. Biased programming takes advantage of
this property to increase SSD lifetime.

Page spare area. Let k denote the size of the data in a
flash page, in bits, and r denote the size of its spare area.
The strength of the ECC implemented in the spare area
is measured by the number of bit errors it can correct,
t. With BCH codes1, the number of correctable errors is
given by t =

⌊

r
⌈log(k+r)⌉

⌋

. Similarly, the tolerated BER
is the fraction of correctable errors, given by TBER =

t
r+k . The tolerated BER is usually higher than the BER
expected at the end of the chip’s lifetime. As a result,
a weaker ECC (with smaller t), is sufficient in the early
stages of the chip’s life [5, 9, 26].

The k+ r bits of a flash page are programmed simulta-
neously. Thus, we can increase the size of the data area
by “reallocating” a portion of the r redundant bits. In this
work, we use this extra allocation to reduce the entropy of
the data. In other words, we use more bits to encode the
same amount of data. The purpose of this manipulation is
to increase the ratio of ones in the data that is written on
the flash page.

The amount of information that can be stored in k phys-
ical bits is given by h(p)k, where p is the probability that
a bit is 0, and h(p) is the binary entropy function [8].
The amount of information is maximal when p = 0.5 and
h(p) = 1. In other words, when the probabilities that a
bit is 0 or 1 are equal, k physical bits can store k bits of
information. When p < 0.5, kp physical bits are required
to store k bits of information, kp =

k
h(p) .

Let q be the portion of the spare area that is real-
located to the data area, i.e., kp = k + qr. Then, if
we wish to store k bits in the new data area, we re-

1We use BCH codes in our analysis because of their deterministic
properties. LDPC codes can be used in a similar way, but their analysis
is more complex, and is outside the scope of this preliminary work.

Figure 2: Data area and spare area of a flash page. The gray
portion of the spare area is reallocated to the data area.

1e-5

1e-4

1e-3

1e-2

 1000 2000 3000 4000 5000 6000

TBER = 4.019e-3

B
E

R

P/E cycles

p=0.3
p=0.4

p=0.5 (Baseline)
p=0.6
p=0.7

Figure 3: Max BER in chip MLC-A with several bias values.

quire (k+ qr)h(p) = k, and q = k
r ·

1−h(p)
h(p) . The remain-

ing spare area size is rp = (1− q)r. Figure 2 illustrates
this allocation. For example, in the MLC chips used
in our evaluation, k = 16KB and r = 1280B. Encoding
16KB of data with a bias of p = 0.4, where h(p) = 0.971,
requires 16KB+490B, which implies q= 0.383. Note that
the reallocation of the spare area bits is logical—it deter-
mines the type of data they will be used for, but does not
have any implication on how they are written or read.

When qr bits are reallocated to the data area, the
number of bit errors the ECC can correct is reduced to
tp =

⌊

(1−q)r
⌈log(k+r)⌉

⌋

, which is (1− q)× the original TBER.
Table 1 shows the new TBER with several values of p.
We address this reduction in the ECC strength in Sec-
tion 3. In the remainder of this section, we present our ini-
tial experiments that demonstrate the effect of biased pro-
gramming on the BER. Its effect on latency and through-
put are outside the scope of this initial study.

Experimental setup. We use the SigNASII flash eval-
uation board [1], in which we directly program different
flash chips. The interface of the evaluation board allows
to specify k + r bits of data and the physical page on
which they will be programmed. The raw data can be
read and analyzed without prior correction by any ECC.

We use two MLC flash chips in our evaluation. MLC-A
is manufactured with 1Znm technology, and has a lifetime
of 3000 P/E cycles. MLC-B, from a different vendor, is
manufactured with sub-20nm technology, and its lifetime
is not specified. In both chips, the size of the data page
and spare area are 16KB and 1280B, respectively.

Each experiment consists of multiple P/E cycles in
which we program all the pages in one block, read them,
and then erase the block. For analysis purposes, we inten-
tionally exceed the block’s reported (or estimated) life-
time. We calculate the BER in each page, and report the

p 0 1 2 3 Average

0.4 0.36 0.24 0.16 0.24 1.28
0.5 0.25 0.25 0.25 0.25 1.5
0.7 0.09 0.21 0.49 0.21 1.82

Table 2: Voltage level distribution with different bias values.

maximal BER observed in the block within 25 consecu-
tive P/E cycles. We report the maximal BER rather than
the average because it provides a better measure of the
ability of the ECC to return the correct data. We repeat
each experiment three times, with three different blocks,
and report the maximal BER values in the results.

In our first set of experiments, we program all the pages
in the block with randomly generated biased data, with a
different value of p in each experiment. For complete-
ness, we also consider values of p that are inapplicable
with current spare area sizes. Figure 3 shows the result-
ing BER of chip MLC-A. As we expected, when p < 0.5
and more ones are programmed, the BER decreases com-
pared to the baseline. For example, when the blocks reach
the end of their reported lifetime (3000 P/E cycles) with
p = 0.3 and p = 0.4, their maximal BER is 66.5% and
43% lower than that of the baseline, respectively.

We expected a symmetrical increase in BER with p >

0.5. Surprisingly, there was hardly any difference be-
tween the maximal BER of the baseline and that of p =
0.6 and p = 0.7. To explain these results, we take a closer
look at the distribution of voltage levels with each bias,
p, in Table 2. While the average voltage level always in-
creases with p, the probability of a cell to be in the high-
est level, P3, is lower with p = 0.7 than with p = 0.5 (its
probability to be in P2 is considerably higher). The wear
incurred by each voltage level is higher than the previous
level, although this increase is usually non-linear, and de-
pends on the chip’s physical properties [23]. The page’s
short-term BER further depends on the optimizations ap-
plied to it during programming. Thus, a reduction of 4%
in the probability to be in P3 may outweigh an increase of
24% in the probability to be in P2, resulting in the same
BER for p = 0.7 and p = 0.5. We note that with p = 0.4,
the probability to be in both P2 and P3 is lower than the
baseline, ensuring a reduction in BER.

These initial results demonstrate the possible reduction
in BER when biased data is programmed. In the follow-
ing section, we describe how the utilization of the spare
area can be maximized by combining biased program-
ming with ECC.

3 Extending Flash Lifetime
Previous work [35] as well as our initial experiments
show that the maximum BER in the end of the chip’s re-
ported lifetime is considerably lower than its TBER. The
reason is that the ECC and spare area are designed for the
worst-case scenarios of bit errors, while these scenarios

1e-5

1e-4

1e-3

1e-2

 1000 2000 3000 4000 5000 6000

B
E

R

P/E cycles

p=0.5 (Baseline)
Low, p=0.4
High, p=0.4

Figure 4: Maximal BER in chip MLC-A when writing biased
data with p = 0.4 for T0.4 = 2750 P/E cycles.

do not necessarily materialize in simple lab settings. For
example, the TBER of the MLC-A chip is 4.019× 10−3,
but its maximal BER at 3000 P/E cycles (its reported
lifetime) is only 1.415× 10−3. In order to apply biased
programming without compromising these “safety mea-
sures”, we define the conditions for safe reallocation of
the spare area as follows.

Let T be the lifetime of a chip, and let BERmax(T) be
the maximal BER of its blocks after T P/E cycles. We de-
fine the safety ratio as α = BERmax(T)

T BER . Any modification in
the allocation of the spare area must ensure that the safety
ratio is preserved throughout the block’s lifetime. Let Tp
be the number of P/E cycles in which the block is pro-
grammed with biased data with a bias p, with appropriate
reallocation of the spare area. This reallocation is safe as
long as BERmax(Tp)

T BERp
≤ α . For example, for chip MLC-A,

α = 1.415×10−3

4.019×10−3 = 0.35, T BER0.4 = 2.484×10−3 (see Ta-
ble 1), and thus BER(T0.4) must not exceed 8.745×10−4.
From Figure 3, we get T0.4 = 2750 P/E cycles.

After Tp P/E cycles, the ECC implemented in the par-
tial spare area cannot guarantee the correctness of the
data. However, the original ECC, implemented in the en-
tire spare area, can now be used. Thus, when the block
reaches Tp P/E cycles, we “return” the reallocated bits to
the spare area and continue to program the pages with-
out bias. The block can then be used until its maxi-
mal BER is α T BER. Let T ′ be the P/E cycle for which
BER(T ′) = α T BER. The lifetime extension as a result of
using the spare area for both ECC and biased program-
ming is thus T ′−T

T .
Figure 4 shows the BER of chip MLC-A with bi-

ased programming and safe reallocation of the spare area.
In this experiment, we programmed the blocks with bi-
ased data (p = 0.4) for T0.4 = 2750 P/E cycles, and with
unbiased data in the following 3250 cycles. This fig-
ure demonstrates the long-term reduction in cell wear
achieved by biased programming—the BER is lower even
after the bits are returned to the spare area and unbiased
data is programmed. As a result, the block can be used
until T ′ = 3725, where BER(T ′) = α T BER = 1.415×

1e-5

1e-4

1e-3

1e-2

 1000 2000 3000 4000 5000 6000

B
E

R

P/E cycles

Low, p=0.5 (Baseline)
High, p=0.5 (Baseline)

Low, p=0.4
High, p=0.4

Low, p=0.4 in low page
High, p=0.4 in low page

Figure 5: Maximal BER in chip MLC-A when writing biased
data on the low page and on both pages.

10−3. The resulting lifetime extension is T ′−T
T = 24.17%.

There is a noticeable difference between the plots of
the low and high pages. The point of discontinuity in the
plot of the high page suggests that its short-term reduction
in BER is sensitive to the average voltage level of the low
page and to related programming optimizations. These
results agree with previous studies that showed that the
high page usually experiences a higher BER [4, 33, 35].

The difference between the BER of the high and low
pages allows for a finer distinction between the amount
of ECC bits required for each of the pages. This may al-
low low pages to be programmed with biased data during
more P/E cycles, further extending the block’s lifetime.
To explore this option, we repeated our first set of ex-
periments when only the low pages are programmed with
biased data and the high pages are programmed normally.

Figure 5 shows the maximal BER of the high and low
pages of chip MLC-A with biased programming of the
low page and of both pages. Due to space limitations, we
show only results for p = 0.4. The reduction in the BER
of the high page is larger than that of the low page in
both variations of biased programming. As we expected,
the reduction in BER is higher when both pages are pro-
grammed with biased data, but there is a substantial re-
duction even when only the data on the low page is bi-
ased. This indicates that the BER of the high page is af-
fected by the value of the low page. Characterising this
effect is part of our future work.

4 Applicability to other chips
The results we obtained from chip MLC-A were consis-
tent with our expectations and with results of previous
studies. We expected similar results from chip MLC-B,
but were surprised to see a BER pattern which, as far as
we know, has not been publicly documented. Figures 7
and 8 show the BER of the low and high pages, respec-
tively, of chip MLC-B when both pages are programmed
with biased data. The lifetime of this chip is not given,
so we ran each experiment for 10,000 P/E cycles. We ob-
serve an iterative process, where the BER increases with
every P/E cycle, and then decreases abruptly before in-

Figure 6: Two examples of mapping of voltage levels to bit values in TLC flash chips.

1e−4

1e−3

1e−2

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TBER = 4.019e−3

B
E

R

P/E cycles

Low, p=0.5 (Baseline)
Low, p=0.45
Low, p=0.4

Low, p=0.35
Low, p=0.3

Figure 7: Maximal BER of the low page in chip MLC-B.

creasing again. The BER of the low pages shows a larger
variation within each iteration, but reaches the same max-
imal BER at the end of each iteration. The BER of the
high pages experiences less variability, but its maximal
value increases in each iteration.

Our industry collaborators confirmed that the reduction
in BER is the result of a special “deep erase” operation,
but were unable to share additional details. Most impor-
tantly, we could not accurately identify the trigger for this
operation. However, our results show that biased pro-
gramming reduces the BER of both pages, and that as a
result, deep erasures occur at different P/E cycles for dif-
ferent values of p. Due to this unusual BER pattern, we
could not determine the safe reallocation for biased pro-
gramming for our second experiment. Nevertheless, these
initial results support the applicability of biased program-
ming to this type of chip as well.

TLC flash chips. The three bits represented by a triple-
level flash cell are mapped to three different pages: high,
middle, and low. Unlike in MLC chips, the mapping
of voltage levels to bit values in TLC chips is not stan-
dard, and different manufacturers use different mapping
schemes. Figure 6 shows two such schemes. The poten-
tial to reduce the cell’s voltage level via biased program-
ming is different in each scheme. For example, in Scheme
I [34], the low and the middle pages are mapped to one
in both the highest and the lowest voltage levels (like in
MLC chips). However, in Scheme II [11], ones are more
often mapped to the lower levels in all three pages.

Applying a bias of p = 0.4 to Schemes I and II reduces
the average voltage level from 3.5 to 3.01 and 2.9, re-
spectively. This corresponds to a reduction of 13% and
17%, respectively, compared to the reduction of 15% with
p= 0.4 in the MLC chip, suggesting that comparable life-
time gains can be achieved for TLC chips.

We repeated our first set of experiments with a TLC
chip from manufacturer B, whose page size (k) and spare

1e−4

1e−3

1e−2

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TBER = 4.019e−3

B
E

R

P/E cycles

High, p=0.5 (Baseline)
High, p=0.45
High, p=0.4

High, p=0.35
High, p=0.3

Figure 8: Maximal BER of the high page in chip MLC-B.

area size (r) are 8KB and 976B, respectively, resulting
in T BER = 6.258× 10−3. The lifetime of this chip is
not specified, and its mapping of voltage levels to bit val-
ues is different from both schemes in Figure 62. With this
scheme, a bias of p= 0.4 achieved a reduction of only 8%
in the average voltage level. By applying a different bias
to each page we were able to achieve a reduction of 11%.
However, in our experiments, the maximal BER of all the
pages increased in almost all cases. This increase might
be explained by a detailed analysis of voltage level distri-
bution, similar to that in Table 2. Thus, further research is
required to identify the precise limitations of biased pro-
gramming in TLC chips, by distinguishing between short
and long term effects and between the effect of biased
programming on the different pages. This research is part
of our future work.

5 Conclusions and Future Research
We presented a generally applicable approach for apply-
ing biased programming to flash pages. Our approach
does not assume anything about the incoming data, and
does not incur any computational or storage overheads.
We have demonstrated its applicability on real MLC flash
chips, showing a potential increase of up to 24% in the
chip’s lifetime compared to using ECC alone. These re-
sults indicate that both uses of the page spare area should
be considered when determining its size during chip de-
sign. This initial study opens several interesting research
questions. One is identifying the best combination of bias
values of low and high pages for a specific chip’s physical
properties. Another is identifying a pattern of biased pro-
gramming that will be suitable for TLC and 3D-NAND
flash chips, possibly using different code types. Finally,
integrating biased programming directly into the chip’s
ECC logic may achieve further reduction in BER, and re-
quires additional research and architectural support.

2This scheme was made available to us under NDA.

References
[1] NAND flash memory tester (SigNASII).

http://www.siglead.com/eng/innovation signas2.html,
2014.

[2] BOSE, R., AND RAY-CHAUDHURI, D. On a class
of error correcting binary group codes. Information
and Control 3, 1 (1960), 68 – 79.

[3] CAI, Y., HARATSCH, E. F., MUTLU, O., AND
MAI, K. Error patterns in MLC NAND flash mem-
ory: Measurement, characterization, and analysis.
In Conference on Design, Automation and Test in
Europe (DATE) (2012).

[4] CAI, Y., MUTLU, O., HARATSCH, E., AND MAI,
K. Program interference in MLC NAND flash
memory: Characterization, modeling, and mitiga-
tion. In 31st IEEE International Conference on-
Computer Design (ICCD) (2013).

[5] CAPPELLETTI, P., BEZ, R., CANTARELLI, D.,
AND FRATIN, L. Failure mechanisms of flash cell
in program/erase cycling. In International Electron
Devices Meeting (IEDM) Technical Digest (1994).

[6] CHEN, F., LUO, T., AND ZHANG, X. CAFTL: A
content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In
9th USENIX Conference on File and Stroage Tech-
nologies (FAST ’11) (2011).

[7] COLGROVE, J., DAVIS, J. D., HAYES, J.,
MILLER, E. L., SANDVIG, C., SEARS, R., TAM-
CHES, A., VACHHARAJANI, N., AND WANG, F.
Purity: Building fast, highly-available enterprise
flash storage from commodity components. In ACM
SIGMOD International Conference on Management
of Data (SIGMOD) (2015).

[8] COVER, T. Enumerative source encoding. IEEE
Transactions on Information Theory 19, 1 (January
1973), 73–77.

[9] DESNOYERS, P. What systems researchers need to
know about NAND flash. In 5th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStor-
age) (2013).

[10] DESNOYERS, P. Analytic models of SSD write per-
formance. Trans. Storage 10, 2 (Mar. 2014), 8:1–
8:25.

[11] DOI, M., TOKUTOMI, T., HACHIYA, S.,
KOBAYASHI, A., TANAKAMARU, S., NING, S.,
IWASAKI, T. O., AND TAKEUCHI, K. Quick-low-
density parity check and dynamic threshold voltage

optimization in 1x nm triple-level cell NAND flash
memory with comprehensive analysis of endurance,
retention-time, and temperature variation. Japanese
Journal of Applied Physics 55, 8 (2016), 084201.

[12] GALLAGER, R. Low-density parity-check codes.
IRE Transactions on Information Theory 8, 1 (Jan-
uary 1962), 21–28.

[13] GRUPP, L. M., CAULFIELD, A. M., COBURN, J.,
SWANSON, S., YAAKOBI, E., SIEGEL, P. H., AND
WOLF, J. K. Characterizing flash memory: Anoma-
lies, observations, and applications. In 42nd Annual
IEEE/ACM International Symposium on Microar-
chitecture (MICRO) (2009).

[14] GUPTA, A., PISOLKAR, R., URGAONKAR, B.,
AND SIVASUBRAMANIAM, A. Leveraging value
locality in optimizing NAND flash-based SSDs. In
9th USENIX Conference on File and Storage Tech-
nologies (FAST) (2011).

[15] JAGMOHAN, A., FRANCESCHINI, M., LASTRAS-
MONTA?O, L. A., AND KARIDIS, J. Adaptive en-
durance coding for nand flash. In 2010 IEEE Globe-
com Workshops (Dec 2010), pp. 1841–1845.

[16] KIM, H., AND AHN, S. BPLRU: A buffer manage-
ment scheme for improving random writes in flash
storage. In 6th USENIX Conference on File and
Storage Technologies (FAST) (2008).

[17] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H.,
SMALDONE, S., AND WALLACE, G. Nitro: A
capacity-optimized SSD cache for primary storage.
In USENIX Annual Technical Conference (ATC)
(2014).

[18] LI, J., ZHAO, K., ZHANG, X., MA, J., ZHAO, M.,
AND ZHANG, T. How much can data compressibil-
ity help to improve NAND flash memory lifetime?
In 13th USENIX Conference on File and Storage
Technologies (FAST 15) (Santa Clara, CA, 2015),
USENIX Association, pp. 227–240.

[19] LI, Q., SHI, L., XUE, C. J., WU, K., JI, C.,
ZHUGE, Q., AND SHA, E. H.-M. Access char-
acteristic guided read and write cost regulation for
performance improvement on flash memory. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST 16) (2016).

[20] LIN, S., AND COSTELLO, D. J. Error Control Cod-
ing, Second Edition. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 2004.

[21] LIU, C., NI, F., WU, X., ZHANG, X., AND JIANG,
S. Freewrite: Creating (almost) zero-cost writes
to SSD in applications. In 10th ACM Interna-
tional Systems and Storage Conference (SYSTOR
’17) (2017).

[22] LIU, C., NI, F., WU, X., ZHANG, X., AND JIANG,
S. LX-SSD: Enhancing the lifespan of NAND flash-
based memory via recycling invalid pages. In 33rd
International Conference on Massive Storage Sys-
tems and Technology (MSST ’17) (2017).

[23] LIU, Y., AND SIEGEL, P. H. Shaping codes for
structured data. In 2016 IEEE Global Communica-
tions Conference (GLOBECOM) (Dec 2016), pp. 1–
6.

[24] MACKAY, D. J. C. Good error-correcting codes
based on very sparse matrices. IEEE Transactions
on Information Theory 45, 2 (Mar 1999), 399–431.

[25] MARGAGLIA, F., YADGAR, G., YAAKOBI, E., LI,
Y., SCHUSTER, A., AND BRINKMANN, A. The
devil is in the details: Implementing flash page reuse
with WOM codes. In 14th Usenix Conference on
File and Storage Technologies (FAST) (2016).

[26] MIELKE, N., BELGAL, H., KALASTIRSKY, I.,
KALAVADE, P., KURTZ, A., MENG, Q., RIGHOS,
N., AND WU, J. Flash EEPROM threshold insta-
bilities due to charge trapping during program/erase
cycling. IEEE Transactions on Device and Materi-
als Reliability 4, 3 (Sept 2004), 335–344.

[27] PAN, Y., DONG, G., AND ZHANG, T. Exploit-
ing memory device wear-out dynamics to improve
NAND flash memory system performance. In 9th
USENIX Conference on File and Storage Technolo-
gies (FAST) (2011).

[28] PARK, H., KIM, J., CHOI, J., LEE, D., AND NOH,
S. H. Incremental redundancy to reduce data reten-
tion errors in flash-based SSDs. In 2015 31st Sym-
posium on Mass Storage Systems and Technologies
(MSST ’15) (2015).

[29] SHARON, E., ACHTENBERG, S., ALROD, I.,
KLEIN, A., AND EYAL, A. Data shaping for im-
proving endurance and reliability in sub-20nm nand.
In Flash Memory Summit (August 2014).

[30] SHEN, Z., CHEN, F., JIA, Y., AND SHAO, Z. DI-
DACache: A deep integration of device and appli-
cation for flash based key-value caching. In 15th
USENIX Conference on File and Storage Technolo-
gies (FAST 17) (2017).

[31] STOICA, R., AND AILAMAKI, A. Improving flash
write performance by using update frequency. Proc.
VLDB Endow. 6, 9 (July 2013), 733–744.

[32] TANG, L., HUANG, Q., LLOYD, W., KUMAR, S.,
AND LI, K. RIPQ: Advanced photo caching on flash
for facebook. In 13th USENIX Conference on File
and Storage Technologies (FAST 15) (2015).

[33] TARANALLI, V., UCHIKAWA, H., AND SIEGEL,
P. H. Channel models for multi-level cell flash
memories based on empirical error analysis. IEEE
Transactions on Communications 64, 8 (Aug 2016),
3169–3181.

[34] YAAKOBI, E., GRUPP, L., SIEGEL, P., SWAN-
SON, S., AND WOLF, J. Characterization and error-
correcting codes for TLC flash memories. In In-
ternational Conference on Computing, Networking
and Communications (ICNC) (2012).

[35] YADGAR, G., YAAKOBI, E., MARGAGLIA, F., LI,
Y., YUCOVICH, A., BUNDAK, N., GILON, L.,
YAKOVI, N., SCHUSTER, A., AND BRINKMANN,
A. An analysis of flash page reuse with WOM
codes. ACM Trans. Storage 14, 1 (Feb. 2018), 10:1–
10:39.

[36] YADGAR, G., YAAKOBI, E., AND SCHUSTER, A.
Write once, get 50% free: Saving SSD erase costs
using WOM codes. In 13th USENIX Conference on
File and Storage Technologies (FAST) (2015).

[37] ZAMBELLI, C., INDACO, M., FABIANO, M.,
DI CARLO, S., PRINETTO, P., OLIVO, P., AND
BERTOZZI, D. A cross-layer approach for new
reliability-performance trade-offs in MLC NAND
flash memories. In Design, Automation Test in Eu-
rope Conference Exhibition (DATE) (2012).

[38] ZHANG, X., LI, J., WANG, H., ZHAO, K., AND
ZHANG, T. Reducing solid-state storage device
write stress through opportunistic in-place delta
compression. In 14th USENIX Conference on File
and Storage Technologies (FAST 16) (2016).

[39] ZHAO, K., ZHAO, W., SUN, H., ZHANG, X.,
ZHENG, N., AND ZHANG, T. LDPC-in-SSD: Mak-
ing advanced error correction codes work effec-
tively in solid state drives. In 11th USENIX Con-
ference on File and Storage Technologies (FAST)
(2013).

