
Masaryk University
Faculty of Informatics

Cloud Scheduler for
OpenNebula Middleware

Master’s Thesis

Bc. Gabriela Podolníková

Brno, Fall 2016

Replace this page with a copy of the official signed thesis assignment and the
copy of the Statement of an Author.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Bc. Gabriela Podolníková

Advisor: RNDr. Dalibor Klusáček Ph.D.

i

Acknowledgement

I would like to thank my supervisor RNDr. Dalibor Klusáček Ph.D.
for all the help during those years we were working together. Also I
would like to thank Mgr. Boris Parák for being my adviser when it
comes to OpenNebula nuances. Lastly, I am very grateful to my family
and my boyfriend David for always encouraging me to continue.

ii

Abstract

This thesis focuses on the proposal of the new scheduler for OpenNeb-
ula. OpenNebula is a platform for building and managing cloud infras-
tructure. Scheduler is usually one of many components these cloud
managers offer. In this work, we describe the current scheduler that
OpenNebula provides, its features and its drawbacks. The practical
part of the thesis presents the design and implementation of the new
scheduler. The newly proposed scheduler is called ONEScheduler.
ONEScheduler was designed to have modular architecture, and to be
easily extensible and configurable. The scheduler is implemented as
a maven application build in Java 8 using frameworks, like Spring,
Jackson or XPath.

iii

Keywords

Cloud, Cloud computing, OpenNebula, scheduling, scheduler, virtu-
alization

iv

Contents

1 Introduction 1

2 OpenNebula - Cloud Management Platform 5
2.1 Image . 6
2.2 Virtual Machine . 6
2.3 Host . 7
2.4 Datastore . 7
2.5 Cluster . 8
2.6 User and Group . 9
2.7 ACL and Permissions . 9

2.7.1 Permissions . 9
2.7.2 ACL Understanding 10

3 The OpenNebula’s Default Scheduler 11
3.1 The Match Making Algorithm 11
3.2 Understanding the Requiremens and Ranks 12
3.3 Summary . 13

4 Our Approach – ONEScheduler 14
4.1 Design of ONEScheduler 14

4.1.1 Top Level Structure 15
4.1.2 Package Structure 15

4.2 Technical Solutions . 16
4.3 OpenNebula Client . 18
4.4 Testing Mode . 19
4.5 Configuration . 20

4.5.1 Configuration System 20
4.5.2 Dependency Injection 21

4.6 Modules . 22
4.6.1 Core . 22
4.6.2 Authorization . 24
4.6.3 Filters . 25
4.6.4 Policies . 27
4.6.5 Filtration and Policies Workflow 28
4.6.6 Fair-share . 30
4.6.7 Queues . 30

v

4.6.8 VM Selection . 31
4.6.9 Limit Checking 33

4.7 Writing the Results . 34

5 Evaluation 35
5.1 Experiments . 36

5.1.1 Heterogeneous Experiment 36
5.1.2 Homogeneous Experiment 37
5.1.3 Memory Usage Experiment 38

6 Conclusion 43

Bibliography 45

A ONEScheduler Tutorial 47
A.1 Extending ONEScheduler 47

B Tables of Standard Deviations 48

vi

1 Introduction

In the past few years, cloud has became an essential part of the ev-
eryday world. The trend is to move the data from desktops to large
data centers [1] and provide scalable computing resources and easy
accessibility. Hence, cloud computing is on the rise.

Peter Mell and Timothy Grance describe cloud computing [2] as
“a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or ser-
vice provider interaction”. Consequently, cloud computing is bringing
scalable computing capabilities on-demand. These capabilities are
shared over the Internet and are independent of the consumer’s loca-
tion. The consumer can demand these capabilities in a given quantity
and at any time. Resources are monitored and the customer is being
charged for the quantity of utilized resources.

Therefore, the essential characteristics of the cloud model are on-
demand scalable services, elasticity, network access, multi-tenancy
and pay-per-use system. These features are enabled by the cloud infras-
tructure. The cloud infrastructure consists of a collection of hardware
and software. The hardware represents the physical resources like
storage, computing devices, servers and network. The software is
an abstraction layer that enables essential characteristics of the cloud
model.

Depending on the type of the provided service, cloud computing
can be classified into three categories [3]. Provided services are either
infrastructure (IaaS), platform (PaaS), or software (SaaS), listed by
their decreasing flexibility and difficulty level [1]. IaaS model offers
a scalable computing infrastructure to the consumer. PaaS provides
the ability to use the cloud for deploying and managing consumer-
owned applications. Finally, the SaaS model offers only the usage of
provider-owned applications.

Cloud can have four possible deployment models. The public cloud
is accessed over the Internet and is available to anyone who is paying
for the service. The private cloud is owned, built, and then managed by
a single organization. In the community cloud the cloud infrastructure

1

1. Introduction

is shared among several communities sharing a common concern
(security, mission). Finally, the hybrid cloud combines both the public
and the private characteristics [1].

For the end user, cloud is one big, rather homogeneous, resource
while in reality, the physical infrastructure of the cloud is often dis-
tributed and heterogeneous — a fact which is mostly hidden to a user.
This level of abstraction is achieved by the process of virtualization.
Virtualization simplifies management of the physical hardware. These
physical machines are running an operating system (OS) and a hy-
pervisor. The hypervisor enables the virtualization of resources (CPU
of the physical machines, I/O devices), creating, running and man-
aging Virtual Machines (VM). VMs represent a simulated computer
environment equipped with a guest OS.

With the growth of the demand for cloud services, many manage-
ment systems have been developed. They are used for managing the
cloud environment. Some of the managers come from academic back-
ground — like OpenNebula [4] — and some of them were designed
by companies — e.g., OpenStack [5] and CloudStack [6]. This work
focuses on the cloud management platform OpenNebula. OpenNeb-
ula was released for the first time in 2008 and since then this open
source project aims to ease the process of building an enterprise cloud.
It serves as a resource manager (RM) that offers space for deploying
VMs. RM also controls the life cycle of these VMs. However, only
the deployment itself is not enough. RM should contain a module
that decides when a VM will be deployed and on which resource.
This component is called the scheduler and scheduling represents the
allocation of VMs onto resources in time.

The scheduling problem [7] can be defined as a problem of finding
a solution that fulfills certain criteria. These criteria are mathemat-
ically expressed using so called metrics (objective functions). Then
the quality of the solution depends on the value of the given metric(s).
These metrics can be either resource-centric (used to study the sys-
tem performance), user-centric (includes fair-sharing of the resources
among users, user’s waiting time, reliability), or VM-centric (allowing
to measure the VM performance). Thus, the goal of the scheduler
is to optimize one or more of these metrics. A scheduling policy is a
specific scheduling algorithm which goal is to optimize given metrics.
A policy can determine which VM will be processed first, which user

2

1. Introduction

has higher priority, or how the resources will be utilized, i.e., balanced,
maximized or minimized. The solution produced by the scheduler is
a product of combining several different policies. For example, we can
use a fairness policy together with some resource selection policy, like
First Fit or Best Fit.

Another resource-centric approach that is used in OpenNebula’s
default scheduler [8] is overcommitting the capacity of the resource.
Overcommitment of resources is an approach that assigns a VM on
a resource even if there is not enough free space. This technique is
applied because VMs are usually requesting more computational
space than what they actually need. Therefore the resource does not
use its full potential.

A scheduler can be either static or dynamic. The former considers
only requirements of the VM and with that knowledge places the VM
on the resource. The latter adapts to the current situation in the infras-
tructure like failures, restarts, temporal unavailability of resources,
and load balancing. A dynamic scheduler redistributes already run-
ning VMs on other resources in order to optimize the resource usage.
This process is called migration [9].

The process of finding the optimal schedule comprises of devel-
oping many different approaches [10]. The efficiency of these new
scheduling algorithms needs to be proven before they can be applied
to the real infrastructure. Therefore, there is a need for a tool that can
emulate the infrastructure and run a set of workloads in order to test
the algorithm. These tests need to be iterated several times, thus it is
necessary to have the ability to reproduce the environment. Hence,
scheduling simulators were introduced.

As we can see the scheduling can have many approaches aiming
to satisfy some criteria. Unfortunately OpenNebula’s scheduler is not
designed for easy extensions and is not very well documented. For
these reason, and also that it is a stand-alone module, third parties
tried to create a new scheduler, such as Haizea [11], that is based on
VM lease requests [12], or Green Cloud Scheduler [13] that is oriented
to energy-awareness [14]. These projects were not very successful, thus
they are no longer active.

The goal of this thesis is to design a new scheduler component for
OpenNebula that is easily extensible with new scheduling algorithms.
The scheduler contains the usual modules for managing typical re-

3

1. Introduction

quirements like prioritization of users, filtration of available resources,
and scheduling VMs onto resources. Unlike the other attempts to de-
sign a new scheduler for OpenNebula, our architecture is modular,
hence enabling easy extensions. The main part of this work is to im-
plement an efficient way for representing the data and logical parts of
the scheduler. Lastly, the scheduler is equipped with the possibility of
switching the scheduler into simulation mode.

This work is organized as follows. First, the Chapter 2 introduces
the infrastructure of OpenNebula. Subsequently, Chapter 3 presents
the OpenNebula’s existing scheduler. The following chapter proposes
the design of our approach, the architecture and implementation
details. The last two chapters conclude this work with the evaluation
of our approach and suggestions for future work.

4

2 OpenNebula - Cloud Management Platform

Cloud management platforms are combining software and technolo-
gies like virtualization in order to deliver a solution for simpler man-
agement of the cloud environment. One of these platforms is an open-
source project OpenNebula [15]. OpenNebula eases building and
managing virtualized data centers and IaaS cloud models. It allows
simple networking, storage, virtualization, monitoring, accounting
and multi-tenancy [4]. The platform is build on a monolithic core
written in C++ language. Above this core there is the web interface
Sunstone together with a set of modules written in Ruby language and
the provided stand-alone scheduler written in C++ language (more
details follow in Chapter 3.

The cloud architecture in OpenNebula consists of storage, network-
ing and virtualization components. The infrastructure is often com-
posed of many clusters, such infrastructure is represented in the Fig-
ure 2.1. Clusters are containing a set of hosts where VMs are deployed.
Datastore (DS) provides the necessary storage that serves as a repos-
itory for VM’s running disks. The whole infrastructure is intercon-
nected by a network. The following sections describe important parts
of the OpenNebula’s infrastructure in more detail.

shared
DS 0

image

shared
DS 1

system

shared
DS 2

image

local
DS 3

system

CLUSTER 0

HOST 0 HOST 1 HOST 2

DS 3 VM 0 VM 1 VM 3 VM 2

Figure 2.1: Cluster Infrastructure

5

2. OpenNebula - Cloud Management Platform

2.1 Image

Image is necessary for defining VM’s disks. The image can be either
an operating system (OS), CD-ROM or datablock. Each VM can have only
one CD-ROM disk and must have at least one OS type disk (bootable
disk). Images are stored in a Datastore dedicated only to images. More
about Image Datastore is explained in the Section 2.4.

Images are either persistent or non-persistent. If the image is per-
sistent, it can be used only by one VM as no copy of that image is
made. On the other hand the non-persistent image is copied so they
can be used by many VMs.

2.2 Virtual Machine

Virtual Machine is an emulation of a computer system that provides
functionalities of a physical computer. In OpenNebula, VM charac-
teristics are defined in a template. VM is created once the template is
instantiated. The following attributes define the VM:

∙ State (id) – defines the state of the VM’s life-cycle, e.g., pending
(1), active (3), done (6), etc.

∙ Rescheduling flag – set on 1 if the VM is considered for reschedul-
ing.

∙ CPU – number of cores requested by the VM.

∙ VCPU – number of virtual cpus.

∙ Memory – amount of requested memory in megabytes.

∙ Disks – multiple disks with the desired storage expressed in
megabytes.

∙ Histories – history records of the VM.

∙ Scheduling requirements and policies – defines the scheduling op-
tions and is further discussed in the Section 3.1.

The disk section can contain as many disks as the user needs.
Following list presents the possible types of disks:

6

2. OpenNebula - Cloud Management Platform

∙ Persistent disk – disk using a persistent image from the Image
Datastore.

∙ Clone disk – disk using a non-persistent image from the Image
Datastore.

∙ Volatile disk – file-system disk created on-the-fly.

2.3 Host

Host represents the hypervisor enabled resource where the VM can
be deployed. Host is defined by the state, e.g., enabled, disabled,
offline, error, and by the available and allocated cpu, memory and
storage capacity. The enabled Host is monitoring the real usage of the re-
source.

Every Host can have a reserved cpu and memory capacity. The amount
of these reservations is subtracted from the total capacity. The number
of the requested reservation can be negative so that the Host can be
overcommited.

A Host belongs to a Cluster and can have multiple local Datastores
assigned. Host also memorizes the number of running VMs and can
have PCI devices attached.

2.4 Datastore

The storage space in OpenNebula is represented by Datastores. Open-
Nebula recognizes three types of Datastores:

∙ Image Datastore – stores disk images. These images are moved,
or cloned to the System Datastore whenever the VM is de-
ployed.

∙ System Datastore – holds the images for running VMs. These
images are moved, or cloned back to the Image Datastore when-
ever the VM is shutdown.

∙ File and Kernels Datastore – stores plain files.

7

2. OpenNebula - Cloud Management Platform

Datastore can be either shared or local. The former means that
the available and used capacity can be found directly in the Data-
store attributes. The latter belongs locally to a Host, hence the infor-
mation about used and free megabytes of the storage space is found
directly on the Host. The capacity information is available only when
the Datastore is in the monitoring state.

Datastore characteristics are determined by the driver that is as-
signed to each Datastore. The transfer driver configuration is defined
in the oned.conf file. This file is used to configure OpenNebula and
includes definitions of drivers. An example of a driver configuration
is shown in the oned.conf snippet 2.1.

TM_MAD_CONF = [

name = ”dummy”,
ln_target = ”NONE”,

clone_target = ”SYSTEM”,
shared = ”yes”]

(2.1)

The name is the name of the Datastore’s driver. The parameter shared
defines whether the Datastore is shared or local. The ln_target spec-
ifies the target of the image but only when the image is persistent.
The clone_target specifies the copy location for a non-persistent image.
Both of these parameters can be set to one of these options:

∙ NONE – this option meas that the image is not copied, therefore
no more space is used in the Datastore location.

∙ SELF – the image is copied to the Image Datastore.

∙ SYSTEM – the image is copied to the System Datastore.

2.5 Cluster

Generally a Cluster is a group of physical resources. In OpenNebula
each Cluster in the system has assigned a set of Hosts and Datastores.
In order to create a complete environment, every Cluster should have
at least one System Datastore assigned. Similarly as the Host, Cluster
can also have a reserved cpu and memory capacity. Thus each Host in
this Cluster will subtract or add the given reservation.

8

2. OpenNebula - Cloud Management Platform

2.6 User and Group

OpenNebula is provided with a multi-tenancy feature. A tenant is
a group of users sharing resources. User is defined by a name and
a password and can belong to more groups. To limit the access to
resources, we can assign a quota to a user or a group. With the use of
quotas we have a better overview of the resource usage. The following
entities are those that can be monitored by using quotas:

∙ Datastore – limits the number of images and the maximum
number of megabytes of Datastore storage that can be used.

∙ Network – this quota monitors the number of assigned ad-
dresses.

∙ Virtual Machine – defines the limit for cpu, memory, disk size
and number of VMs that can be created.

∙ Image – limits the maximum number of images that the VM
can use at the same time.

Each of these quotas can be set individually for each user and group
or globally. The global quota is a default option and applies to all users
and groups.

2.7 ACL and Permissions

Every infrastructure should have means for controlling the system.
The supervision over the infrastructure is achieved by an authorization
system. The authorization in OpenNebula is managed by ACL and by
permissions.

2.7.1 Permissions

The permission authorization is very similar to the Unix rights man-
agement. One permission is defined by three triads. First triad defines
what the owner can do, second triad defines what the group mem-
bers can do and last triad is for other users. Each of these triads have
the following rights: use, manage , or to be an admin. The resources
with associated permissions are VMs and Images.

9

2. OpenNebula - Cloud Management Platform

2.7.2 ACL Understanding

The system of ACL rules is a complex system that controls the access
to resources. For example with an ACL rule it is possible to permit
a designated user the right to manage and use some resources. Before
an action (like deployment of a VM) is performed these rules are
checked. Examples of such rules are given below.

#5 HOST/%100 MANAGE *

This rule grants the user with ID 5 to manage the Host on the Cluster
with ID 100.

@10 DATASTORE/#1 USE

This rule grants the group of users with ID 10 to use the Datastore
with ID 1.
As we can see the rules split into four parts:

∙ ID – identifies either the user #5, the group – @10, or uses
the asterisk sign to designate all users.

∙ Resource – defines one or more resources like Host or Datastore.
When more resources are being defined, they are separated
by a plus sign. After the forward slash, there can be an ID of
the resource. The asterisk sign means that the rule applies to
all resources of the specified type.

∙ Rights – determine operations like manage or use that the user
is authorized to perform.

∙ Zone1 – the ID of a zone where the rule is applied. This part is
optional.

1. We can have several instances of OpenNebula. Each of these instances is called
a zone. These instances can be configured as one master and several slaves. In other
words, a zone is a group of Hosts under the control of a single OpenNebula instance.

10

3 The OpenNebula’s Default Scheduler

The OpenNebula’s scheduler is designed to find the best resource for
a VM by filtrating and ranking resources by given policies. Policies
that the scheduler shall use are configurable. The configuration is
defined in the sched.conf file.

The scheduler works with data pools grouping elements of one
type (Hosts, VMs, Users, Clusters, Datastores and ACL rules). Each
scheduling cycle the scheduler takes those VMs that are in the pending
state. The next step is to filter unsuitable resources out. Then one
suitable Host and Datastore is chosen based on the given policy and
they create a match with the VM. OpenNebula follows so called match
making algorithm for finding the most suitable resource for the VM.

3.1 The Match Making Algorithm

The idea of the match making algorithm is to firstly filter the non
suitable Hosts and Datastores out. The non-suitability means that
the resource does not fulfill the VM’s requirements. As the next step
the scheduler picks the best Host and Datastore based on the given
policy. This policy defines some ranking metric, thus resources are
prioritized based upon the rank. Hosts are ranked by using one of
the placement policies and Datastores have assigned rank based on
one of the storage policies.

The match making algorithm follows these steps:

∙ removes VMs that requires more Image Datastore storage than
there is available at the moment;

∙ filters those Hosts that do not have enough memory or cpu ca-
pacity to host the VM out;

∙ filters Hosts that do not fulfill the VM’s requirements out;

∙ filters Datastores that do not fulfill the VM’s requirements out;

∙ ranks Hosts based on the given placement policy and chooses
the best one;

11

3. The OpenNebula’s Default Scheduler

∙ ranks Datastores1 and chooses the best one;

∙ the chosen Host and Datastore represent the best match for the
VM.

3.2 Understanding the Requiremens and Ranks

VM can require a specific resource or a subset of resources. These
requirements can be set in VM’s template under the scheduling sec-
tion. The SCHED_REQUIREMENTS attribute defines requirements for a
Host. The SCHED_DS_REQUIREMENTS specifies characteristics of the re-
quired Datastore. These attributes are not obligatory. Requirements
are boolean expressions and can contain any of resource’s parameters.
An example of the requirement with Host’s CPUSPEED attribute:

SCHED_REQUIREMENTS = ”CPUSPEED > 1000”

VM can specify a ranking policy. These policies are also chosen in
the scheduling section of the VM’s template. The placement policy
is set under the SCHED_RANK attribute. The SCHED_DS_RANK attribute
defines the storage policy. Ranks are arithmetic expressions composed
of resource’s attributes and numbers in a form of an equation. An
example of such equation is shown below. The rank for the Host will
be calculated based on the result of the equation.

SCHED_RANK = ”RUNNING_VMS * 50 + FREE_CPU”

OpenNebula provides three following predefined placement policies.

∙ Packing – minimizes the number of Clusters in use by placing
the VM on a Host with more VMs running first.
SCHED_RANK = RUNNING_VMS

∙ Striping – maximizes the nodes available to a VM by using
the Host with less VMs running first.
SCHED_RANK = -RUNNING_VMS

1. only those Datastores that are in the same Cluster as the chosen Host

12

3. The OpenNebula’s Default Scheduler

∙ Load Aware – maximizes the nodes available to a VM by choos-
ing the Host with less load first.
SCHED_RANK = FREE_CPU

The following list presents options for the storage policies:

∙ Packing – chooses the Datastore with less free space to optimize
the storage usage.
SCHED_DS_RANK = -FREE_MB

∙ Striping – chooses the Datastore with more free space in order
to balance the I/O load.
SCHED_DS_RANK = FREE_MB

The policies can be defined either by setting the mentioned at-
tributes or by configuring them globally in the sched.conf file. With
the latter option, defined policies applies to all VMs.

3.3 Summary

The match making algorithm has many strong characteristics like
the fact that it is possible to use any attribute for configuring require-
ments and ranks. To support that many options, the scheduler uses a
parser generated by Bison2. However the supported policies are only
applied to resource prioritization, thus the scheduler does not support
any prioritization of users or groups. Therefore VMs are being pro-
cessed in a FIFO fashion. This solution is not appropriate in regards
of fair-sharing of resources among users. Furthermore, the scheduler
does not support dynamic migrations. Hence some of the resources
might be overloaded whilst some of them underloaded. Migrations
would dynamically balance the infrastructure by a defined criteria.

Another shortcoming is that it fixes the best Host during the Host
ranking process. The problem with this approach is that the optimal
solution might not be found. When the Host is fixed, we are limiting
ourself to one Host and Datastores in the according Cluster. We might
want to prefer to chose the best storage rather than the best Host.
The OpenNebula’s default scheduler is lacking that possibility.

2. general-purpose parser generator: https://www.gnu.org/software/bison/

13

https://www.gnu.org/software/bison/

4 Our Approach – ONEScheduler

This chapter proposes the design and implementation details of our
scheduler — ONEScheduler. In the previous chapter, the OpenNeb-
ula’s scheduler was described. We also presented its shortcomings.
The mentioned drawbacks can be easily fixed by implementing and
incorporating new policies. Hence, we were motivated to implement
a new scheduler, that would be possible to extend with new features.
ONEScheduler is also configurable via a separated configuration file.

First, we propose the design of our approach, the package structure
and technical solutions. Then we describe the configuration mecha-
nism. Finally, each of the provided features are explained in details.

4.1 Design of ONEScheduler

This section focuses on the architecture of the newly proposed sched-
uler. ONEScheduler is designed to be easily extensible and to have its
features separated into several modules. The architecture also has to
consider that the scheduler will be used in the testing mode. This mode
is provided for testing scheduler’s features with a set of workloads.
Thus, the origin of the data needs to be hidden behind an interface.

When designing a new piece of software, design patterns [17]
are usually applied. The strategy pattern is used for incorporating
new algorithms. Each policy is implemented as a plugin with defined
interfaces. The scheduler has the data origin hidden behind interfaces,
thus the abstract factory pattern applied. The scheduler sees only
the interface, not the specific implementation. The singleton pattern
was applied to auxiliary classes, as they do not need to be instantiated.

The overall idea of ONEScheduler is inspired by the match making
algorithm. We took advantage of this algorithm in order to preserve
the OpenNebula features, like resource filtration and criteria based re-
source ordering. The source code of the scheduler provided by Open-
Nebula is available on GitHub. Hence, the work on our scheduler
started by studying the code of the OpenNebula’s scheduler. The de-
sign of ONEScheduler was drawn once it was clear which parts of
the scheduler will be separated to create a more logical structure,
hence more readable code.

14

4. Our Approach – ONEScheduler

4.1.1 Top Level Structure

Figure 4.1 outlines the top level structure of ONEScheduler. Scheduler
is configurable via separated configuration files. The configuration
is located in the configFiles package. The testing mode has neces-
sary XML documents located in the pools package. The configFiles
package also contains tmMadConf.xml file, where the transfer man-
ager drivers configuration is defined. Why is the drivers configuration
needed is explained in the Section 2.4. The jar file represents the
OpenNebula provided OCA. It contains necessary methods for com-
munication with OpenNebula.

Scheduler

configFiles pools

configuration.properties
fairshare.properties
tmMadConf.xml

clusterpool.xml
datastorepool.xml
hostpool.xml

vmpool.xml
userpool.xml

org.opennebula.client.jar

Figure 4.1: Top Level Structure

4.1.2 Package Structure

The package structure is represented in Figure 4.2. The main package
scheduler groups scheduler’s features into several packages. Each
package represents a module handling one part of the scheduler’s logic.
How these modules have been designed is discussed in the Section 4.6.

15

4. Our Approach – ONEScheduler

The xml package contains the mechanism for loading necessary
data for the testing mode. The implementation is further explained
in the Section 4.4. The one package is used for loading the data pools
from OpenNebula. This part is further discussed in the Section 4.3.

Classes in the config package instantiates pools, filters and poli-
cies. The checked LoadingFailedException exception is thrown if
the instantiation of pools failed.

The result package contains classes managing the deployment of
VMs. This part is further explained in the Section 4.7.

Finally the extensions package comprises of classes that has all
their methods static. These methods are used very often and it was
appropriate to exclude them into a separate package.

4.2 Technical Solutions

At the beginning of the implementation process, we were discussing
two options for the language use — Ruby and Java. Developers of
OpenNebula would prefer the Ruby language. However we chose
the Java language because it is known to be faster performing language
than Ruby. Thus we decided to build the scheduler in Java 8. Besides
using the standard Java platform, we used Spring [18] framework for
handling dependency injection1, Jackson [19] library and XPath for
parsing XML documents, and SLF4J API2 for logging.

The development of the new scheduler was eased by the fact that
OpenNebula provides API for the communication and data retrieval.
We used the Java OpenNebula Cloud API (OCA). This API consists of
methods designed as wrappers for XML-RPC [16] methods3. For using
the API, it is necessary to be familiar with the XML representation of
entities in OpenNebula. In this work we are using the version 5.2 of
OpenNebula [8].

First of all, we had to decide how we will be parsing incoming
XML documents. The scheduler is designed to have the option for

1. The dependency is some object (service) and injection is the process of passing
of the dependency into a dependent object (client).
2. Simple Logging Facade for Java, http://www.slf4j.org/
3. XML-RPC is a protocol that is used for remote procedure call. Data are in a form
of an XML and are transported by the HTTP protocol.

16

http://www.slf4j.org/

4. Our Approach – ONEScheduler

config
FairshareConfig
FilterConfig
PoolConfig
RecordManagerConfig
ResultConfig
SchedulerConfig
SchedulingConfig

exceptions
LoadingFailedException

extensions
MapExtension
QueueListExtension
UserListExtension
VmListExtension

one
mappers

oned

pools
XpathLoader

result
IResultManager
OneResultManager
XmlResultManager

xml
mappers

pools

resources

scheduler
authorization

core

elementpools

elements

fairshare

filters

limits

policies

queues

selectors

setup

Figure 4.2: Package Structure
17

4. Our Approach – ONEScheduler

switching into a testing mode. In this mode, we parse data pools with
the help of Jackson library. The package xml handles parsing of pro-
vided data sets. In the mode, when the scheduler communicates with
OpenNebula, we use OCA’s methods for parsing data pools coming
from OpenNebula. These methods are based on the XPath technology.
When using XPath, it is necessary to specify the path to the desired
attribute in the XML document. Each XML document represents one
pool grouping elements of one type. These elements have a fixed struc-
ture defined by XSD (XML Schema Definition). With the knowledge of
the schema, we are able to specify the path to the element’s attribute
and retrieve the value. The package one handles parsing of incoming
data pools from OpenNebula.

With the two possible mode options, it was necessary to pro-
vide interfaces that would enable switching between those options.
Data pools are presented to the scheduler through the following
interfaces — IAclPool, IClusterPool, IDatastorePool, IGroupPool,
IHostPool, IUserPool, IVmPool. Thus, the scheduler is unaware of
where data have their origin. Both modules contain the necessary
mappers that map each object from the XML document to the fol-
lowing elements — ClusterElement, DatastoreElement, HostElement,
UserElement and VmElement, further referenced only as Element or
Elements. The scheduler then works with these Elements.

4.3 OpenNebula Client

This section explains details of the data retrieval from OpenNebula.
The package one contains the mechanism for fetching and storing
incoming data pools. In order to fetch pools, like ClusterPool, Datas-
torePool, HostPool, UserPool and VirtualMachinePool, it is necessary
to create an instance of the Client class. This class is provided by OCA.
The instance of the Client class is passed to the constructor of pools.

Each object in the pool is mapped to an according Element. OCA
offers the xpath() method for each pool element. An attribute or
a node is retrieved by specifying the path in the XML document.
A node is a complex object, that an element in the XML document can
contain. An example of a node is the disk node in the VM element. As

18

4. Our Approach – ONEScheduler

we know, one VM can have multiple disks, so each disk is represented
as one node.

Elements have some of their attributes obligatory and some op-
tional. In order to ease the mapping, the XPathLoader class was created.
The static methods in this class help with the retrieval of an attribute
or a node, if it exists.

4.4 Testing Mode

In order to test the scheduler’s features, we have provided a testing
mode. This testing mode can be further developed into a simulator.
Running OpenNebula means an unnecessary overhead. Therefore we
have developed a way to emulate the communication with OpenNeb-
ula. The emulation is reached by creating XML documents represent-
ing necessary entities. Each of those elements is defined by a template
that has a given structure defined by XSD.

This section describes details of the data retrieval for the testing
mode. The testing mode uses Jackson library mechanisms for parsing
XML documents. Jackson is a Java library for processing data formats
like JSON and XML. We take the advantage of the library and used it
for deserializing POJOs from XML.

The xml package contains the mechanism for the deserialization.
The XmlMapper’s readValue() method implements that mechanism
by using Jackson. In order to read the document, the method needs
the XML representation of one pool in a form of a String and the class
to which the document will be parsed. The XML file is then processed
and the list of elements is created. The procedure of creating POJOs
by using Jackson is annotation driven.

In order to create the list of elements defined in the XML file, it
needs to have the annotation with the name of the root tag. Hence each
of these lists should be annotated as follows.The localName would be,
in our case, CLUSTERPOOL.

@JacksonXmlRootElement(localName = ”XML_ROOT_TAG”)

Each attribute of the element needs to have JacksonXmlProperty
annotation in order to be recognized by the parsing mechanism in Jack-
son library. An example of such annotation is given below. The local-

19

4. Our Approach – ONEScheduler

Name corresponds to the XML tag of the attribute. A tag <ID> would
have the corresponding localName=ID. Once the process of deserial-
ization is ended, obtained POJOs needs to be mapped to Elements.

4.5 Configuration

ONEScheduler has two possible modes, the mode that communicates
with OpenNebula, and the testing mode. The scheduler is also de-
signed to have the possibility to incorporate new algorithms. Hence,
it was necessary to introduce a configuration mechanism.

4.5.1 Configuration System

The configuration was separated from the source code into a file.
This solution enhances the comfort of setting parameters, like used
policies, for the scheduling process. The configuration file is a simple
property file with keys and values. The configuration.properties
file is located in the configFiles package. The following example
represents a snippet, setting the filters, from the configuration.

hostFilters = FilterHostByCpu, FilterHostByMemory

Loading of the file handles the JRE4-provided Properties class.
The class PropertiesConfig parses the configuration file. This class
contains basic methods that are used for getting the property value.
The value can be one of the following types: String, Array of Strings,
Integer and Float. In order to obtain the value of the parameter, it
is necessary to call the according getter method on an instance of
the PropertiesConfig class. The getter needs the name of the config-
uration parameter key.

If ONEScheduler is in the testing mode, the path to data sets needs
to be set in the configuration file. The following list represent necessary
configurable parameters:

∙ hostpoolpath

∙ clusterpoolpath

4. Java Runtime Environment

20

4. Our Approach – ONEScheduler

∙ userpoolpath

∙ vmpoolpath

∙ datastorepoolpath

The connection to OpenNebula needs these parameters:

∙ secret – should contain the OpenNebula authentication tuple,
user:password, e.g., oneadmin:opennebula

∙ endpoint – should contain the url where the RPC server is
listening, e.g., http://localhost:2633/RPC2

4.5.2 Dependency Injection

The config package handles the instantiation of pools, filters and
policies that are specified in the configuration. There are many depen-
dencies among classes, therefore it was appropriate to use some frame-
work that helps with dependency injection. We are using the Spring
IoC container that is responsible for instantiating classes and injecting
dependencies into them [20].

The Spring container is driven by annotations. Every class is anno-
tated by @Configuration , indicating that these classes contain defini-
tions of one or more @Bean methods. These beans can be then injected
into classes that are dependent on the particular bean. To inject some
instance, as an attribute into another object, the @Autowired annotation
is used. The following classes are provided @Configuration classes.

∙ FairshareConfig – instantiation depends on the selected policy
in fairshare.properties.

∙ FilterConfig – creates instances of filters. Filters are defined
in the configuration.properties and we distinguishe filters
for fairshare, Hosts and Datastores.

∙ PoolConfig – configures data pools.

∙ RecordManagerConfig – creates files fair-share-related files.

∙ ResultConfig – instantiates the result manager.

21

http://localhost:2633/RPC2

4. Our Approach – ONEScheduler

∙ SchedulerConfig – creates the instance of the Scheduler class
and instances of the authorization manager and chosen place-
ment and storage policies.

∙ SchedulingConfig – instantiates the corresponding implemen-
tation to IQueueMapper, IVmSelector and ILimitChecker .

In order to use the defined beans, it is necessary to create an in-
stance of the Spring’s AnnotationConfigApplicationContext. This
class is one of the implementation of the ApplicationContext inter-
face. The getBean() method returns the bean instance of the given
type.

4.6 Modules

A module represents one separated package that groups classes with
same goals, like fair-sharing, filtration or authorization. The package
scheduler consists of these modules.

Figure 4.3 shows the package organization of provided modules,
the blue ones represent the data. The gray ones are features that Open-
Nebula’s match making algorithm includes. Packages fair-share,
queues, selectors and limits represent new features that ONESched-
uler have introduced.

The core package contains the essential Scheduler class where
all the necessary steps to create a plan are taken. The SetUp class
in the setup package contains the application main method. The in-
stance of the Scheduler is created in the main method. The schedule()
method is called on the created instance of the Scheduler class and
the scheduling process starts.

4.6.1 Core

The core package contains essentials classes, like Scheduler, Match
or RankPair. This section describes these classes.

The Match class has been created to represent the Host and Datas-
tore that were matched to VMs. Every time a match is found, the VM
is either added to the list of VMs to an already created Match, or
the Match is created and the VM is added as the first one.

22

4. Our Approach – ONEScheduler

SETUP
SetUp - main
PropertiesConfig

Cluster
ELEMENTS

Datastore
Host
User
Vm

POOLS
IAclPool
IClusterPool
IDatastorePool
IHostPool
IUserPool
IVmPool

CORE

Scheduler

Match
RankPair

SchedulerData
TimeManager

SELECTORS
IVmSelector

LIMITS
ILimitChecker
data

QUEUES
Queue
IQueueMapper

FAIR-SHARE
IVmPenaltyCalculator

POLICIES
IStoragePolicy
IPlacementPolicy

FILTERS
ISchedulingDatastoreStrategy

ISchedulingHostStrategy
SchedulingDatastoreFilter

SchedulingHostFilter

AUTHORIZATION
IAuthorizationManager

FairshareConfiguration

Figure 4.3: Modules

23

4. Our Approach – ONEScheduler

Users VMs
Clusters

Hosts
Datastores

DATA STRUCTURES

SCHEDULER’S LOGIC

Data structure update

VM queue construction

Select VM and process it :
Check image datastore capacity
Get suitable hosts
Sort hosts

Get suitable datastore for each host
Get the best match

For each Queue :

CONFIGURATION

Selected policies.
Configures the behavior
of the scheduler.

Check user’s limits

Get configuration

Figure 4.4: Scheduler Loop Logic

The RankPair class is used when Datastores are ranked, based
on the selected storage policy. Therefore the RankPair’s attributes are
Datastore and an Integer representing the assigned rank. The RankPair
have been introduced to have clearly defined assigned ranks for Data-
stores.

The core class of ONEScheduler is the Scheduler class. It does all
the necessary steps in order to produce a plan. The final plan fulfills
certain policies that were given in the configuration file. Figure 4.4
represents the logic of the scheduler’s steps. First, the scheduler needs
to read the configuration, then it updates data structures. Subsequently,
pending VMs are put into queues. The order in which these VMs are
selected from the queue is defined by the specified policy. Resources
are filtered and the VM is matched with the most suitable Host and
Datastore. The suitability depends on the chosen scheduling policy.

4.6.2 Authorization

The authorization manager is needed to determine whether a user
is authorized to use the resource. If the user is authorized, there is
an ACL rule permitting him to access the resource.

Resources that are checked before scheduling are Hosts and Data-
stores. How ACL rules looks like in OpenNebula is described in
the Section 2.7. Rules that influence the scheduling are those that

24

4. Our Approach – ONEScheduler

have the manage right for Host or a subset of Hosts and use right for
Datastore or more Datastores.

We created the interface IAuthorizationManager in order to de-
termine authorized resources. The manager parses ACL rules and
assigns to each user those resources that the user is authorized to use.
The following methods are provided by the interface.

∙ authorize() – sets the subset of Hosts and Datastores that
the user can access.

∙ getAuthorizedHosts() – returns the list of authorized Hosts
for the VM.

∙ getAuthorizedDs() – returns the list of authorized System
Datastores for the VM.

The ACL authorization applies only when using OpenNebula.
If the scheduler works in testing mode, no ACL rules are created.
However this feature can be easily added by implementing the logic
into AuthorizationManagerXml.

4.6.3 Filters

The filtering is one of the core ideas of the OpenNebula’s match mak-
ing algorithm. ONEScheduler implements all the necessary filtration
introduced in OpenNebula. On top of that, our approach proposes an
extensible version of the original filtration mechanism.

ONEScheduler distinguishes between filtering Hosts and Data-
stores. These filters have many strategies and they are separated in
the package filters. Each of the strategies has to implement given in-
terface. The ISchedulingHostFilterStrategy is an interface for Host
policies. The Datastore policy needs to implement the IScheduling-
DatastoreFilterStrategy. Both interfaces contains a single method
test() which returns true, if the test passed, and false otherwise.
These methods needs to know which VM is being currently scheduled,
the candidate Host and also the Datastore (if we are implementing
a Datastore strategy).

25

4. Our Approach – ONEScheduler

SchedulerData class

When testing the VM against some criteria defined by the filter, it is nec-
essary to pass current data. However ONEScheduler does not deploy
every time a Match for a VM is found in order to reduce the number
of I/O actions. Thus, the SchedulerData class have been created to
store the reserved cpu, memory, and running virtual machines for
each Host and free storage space for each Datastore. This class works
as a reservation system. It is necessary to update these attributes every
time a Match is created.

Host Filtration

Before choosing the Host for VM, it is necessary to filter the unsuitable
Hosts out. They are ruled out based on the memory and cpu capacity.
Each VM demands certain amount of Host’s memory and cpu. If
the Host does not have enough capacity to host the VM, it is not
considered as suitable.

The implementation of memory and cpu filter is in separated
classes called FilterHostByMemory and FilterHostByCpu. These fil-
ters are essential for the correct deployment, so they should be config-
ured in the configuration.properties.

We also provide other two optional filters. The FilterHostByPci
that handles correct matching of Peripheral Component Interconnect
(PCI) nodes required by VM and provided by the Host. This filter
should not be used if the system is not configured to be using PCIs.

The FilterHostBySchedulingRequirements handles requirements
of the VM. In the Section 3.2 we described how a VM can have defined
requirements. The filter parses the VM’s scheduling requirements. If
the Host, that is currently being tested, matches the VM requirement,
the test returns true.

The strategies are set in the configuration file. The test() method
of these strategies is called in the SchedulingHostFilter class. This
class takes the list of strategies configured in the configuration file and
applies the test. If all the tests passed for the Host, then the Host is
suitable for the VM.

By Host filtration we are obtaining a subset of Hosts where the VM
can be deployed. The scheduling continues with Datastore filtration.

26

4. Our Approach – ONEScheduler

Datastore Filtration

Each suitable Host has assigned some storage capacity, either locally
or has some shared Datastores. Disks of the VM are stored in these
Datastores. Datastores are filtered based on their free storage. The total
size of VM’s disks is calculated and is checked against the System
Datastore free capacity.

The filtration of Datastores based on their free capacity is imple-
mented in the FilterDatastoreByStorage policy. As it was explained
in the Section 2.4, the Datastore storage capacity value depends on
whether the Datastore is shared or local. We need to know if the Host
and the Datastore belong to the same Cluster. If the Datastore is in
the same Cluster as the Host, the Datastore might be suitable. Then
if the Datastore is shared, the capacity can be checked directly on
the Datastore. If the Datastore is local, the capacity is checked on
the Host’s local Datastore nodes.

The Section 2.4 mentions, that for determining, whether the Datas-
tore is shared or not, we need to retrieve the transfer manager config-
uration in the oned.conf. This part of the configuration needs to be
copied to the tmMadCong.xml located under configFiles directory.

The next provided filter handles the VM’s Datastore scheduling re-
quirement. Hence, the FilterDatastoreBySchedulingRequirements
tests whether the VM requests a specific Datastore. If there is such
requirement, the test checks if the current Datastore is the one.

Similarly to the Host filtration, the SchedulingDatastoreFilter
takes the list of configured storage policies. Each filter tests the Datas-
tore. All tests passing means that the Datastore is suitable for the VM.
At the end of the Datastore filtration, we obtain a list of suitable Data-
stores for each Host.

4.6.4 Policies

Policies are used for criteria-based Host ordering. The criteria is ex-
pressed by the policy. Policies available in ONEScheduler are inspired
by the resources ranking in OpenNebula. We described these policies
in the Section 3.2.

27

4. Our Approach – ONEScheduler

Usually, the policy depends on the current situation of resources,
thus to each method that the interface defines, it is necessary to provide
the SchedulerData instance.

Host (Placement) Policies

The IPlacementPolicy is an interface that each placement policy
should implement. The IPlacementPolicy defines one method sort-
Hosts() that takes already filtered Hosts and returns a list of sorted
Hosts based on the selected policy. We provide LoadAware, Packing ,
and Striping strategies.

Datastore (Storage) Policies

The storage policy should implement the IStoragePolicy. The inter-
ace declares selectDatastore() method that selects the best ranked
Datastore for each Host and returns the RankPair. This object en-
capsulates the best ranked Datastore along with its assigned rank.
The RankPairs that are obtained for each Host can be then com-
pared based on their rank. The getBestRankedDatastore() method
gets the Datastore that fits the most the selected criteria. We provide
StorageStriping and StoragePacking strategies.

4.6.5 Filtration and Policies Workflow

Figure 4.5 shows the workflow of getting candidates . First steps like, fil-
tration and resource sorting based on the given policy were described
in previous sections. Generally, a candidate for a VM is a suitable
Host with a suitable Datastore. Candidates are represented as a Map
containing Hosts and RankPairs. Hosts are keys in this Map and are
ordered by the placement policy. Thus on the first place in this map,
there is the most suitable Host for the VM. Every key has assigned
value, RankPair, defining the best Datastore and its rank.

The candidates map was created in order to give the option to
choose either the best Host or the best Datastore. The suitability de-
pends on placement and storage policies. For example, if the placement
policy was set on Packing, it would mean that the first Host in the map
would be the one with the most VMs running. If the storage policy

28

4. Our Approach – ONEScheduler

Host1 Host5Host4Host3Host2

filtration

Host4Host3Host2

sorting based on placement policy

Host2Host4Host3

get candidates

Host3 DS1 DS2 DS3

filtration

DS2 DS3

pick best datastore based on storage policy

RankPair:

For each Host:

obtaining map with
Hosts and RankPairs

Host3

DS2 Rank

DS2 Rank Host4 DS1 Rank Host2 DS3 Rank

preferHostFit

Match: Host3 DS2 Match: Host4 DS1

yes no

Figure 4.5: Getting candidates

29

4. Our Approach – ONEScheduler

would be set also on the Packing policy, it would choose for each Host
the Datastore with less free space available.

Then there are two options for choosing the Match from these
candidates. One is to prefer the best Host fit. The second is to prefer
the best Datastore fit. These options are represented in the last step in
Figure 4.5.

4.6.6 Fair-share

The goal of fair-sharing is to assign VMs in a fair way. The fairness
depends on the fair-sharing technique we use. Each technique imple-
ments an algorithm that assigns a priority number to a user or a group.
The fair-sharing is applied in the Queue mapping implementations
discussed in the next section.

4.6.7 Queues

Queue based models are introduced when VMs can be grouped by
some criteria. We designed our Queue class as a list of VMs, assigned
priority, and a name. The list of VMs is represented as a Concurrent-
LinkedQueue that contains VMs. Queue priorities are the same, if
the fair-sharing policy is not set. Hence, the assigned priority is based
on the chosen fair-sharing policy.

The Queue class contains dequeue() method represented on the Fig-
ure 4.7. This method is returning and at the same time removing
the first VM in the Queue. Our Queue implementation also provides
the queue method shown on figure 4.6. This method adds VM at
the end of the Queue.

VM VMVMVMVMVM VM

Queue name
Priority

queue

Figure 4.6: Queue

30

4. Our Approach – ONEScheduler

VM VMVMVMVMVM VM

Queue name
Priority

dequeue

VM

Figure 4.7: Dequeue

Queues are created based on the chosen IQueueMapper imple-
mentation in the configuration file. The interface has one method
mapQueues() which takes the list of VMs and maps them into queues.
The following list presents proposed implementations:

∙ OneQueueMapper – this implementation is the easiest one. It
creates one queue that is filled by VMs in the FIFO fashion.

∙ FixedNumOfQueuesMapper – this class creates the number of
queues given in the configuration file and puts all VMs into
those queues in FIFO fashion.

∙ QueueByUserMapper – creates queue for every user and puts
their VMs into according queue. The priority in this mapper is
not set.

∙ UserFairshareMapper – this mapper adds to the previous im-
plementation the priority of the user. The priority is assigned
to the queue and the queues are sorted by that number.

∙ UserGroupFairshareMapper – handles VMs in a same way as
the previous implementation but it creates queues for groups.
The queue belonging to one group has the VMs in it ordered
by the priority of the user.

4.6.8 VM Selection

The order in which VMs in queues are iterated defines the imple-
mentation of the IVmSelector interface. The one method declared,
the selectVm() method, chooses the VM from queues. Which VM is

31

4. Our Approach – ONEScheduler

VM VMVMVM

VM VMVM

VM VMVMVM

Figure 4.8: Round Robin-like algorithm

selected depends on the implementation. We provide RoundRobin and
QueueByQueue implementations.

Round Robin-like algorithm

Figure 4.8 demonstrates how the Round Robin algorithm goes through
queues. The algorithm remembers the index of the current queue and
changes it for the next iteration. The algorithm starts at the first queue,
calls dequeue to get the VM and increases the index of the current
queue by one. The next iteration, the VM is dequeued from the second
queue. When the index reaches the last queue, it resets its value to
zero to point to the first queue again. The VM selections goes until all
the queues are empty.

Queue by Queue algorithm

The QueueByQueue implementation is selecting VM by VM in one
queue. When the current queue is empty, it continues with the next
queue. Figure 4.9 demonstrates how this algorithm is cycling through

32

4. Our Approach – ONEScheduler

VM VMVMVM

VM VMVM

VM VMVMVM

Figure 4.9: Queue by Queue algorithm

all queues. It always dequeues the first VM in the first Queue until all
queues are empty.

4.6.9 Limit Checking

Users or groups can have assigned limits. These limits can control, for
example, the resource usage or number of assigned VMs. These limits
needs to be checked before the VM is matched with the chosen Host
and Datastore.

This feature provides the ILimitChecker interface. It contains two
methods: checkLimit() and getDataInstance(). The former takes
the VM and its Match and returns whether the VM’s user does not
exceed his limits. If true is returned, the VM can be deployed on
the Host. The latter method returns the data instance. This instance is
needed for storing the current limit-related data, that the implemented
limit checker controls.

33

4. Our Approach – ONEScheduler

4.7 Writing the Results

Once the solution — plan — is found, the results needs to be written.
ONEScheduler is handling the result writing by offering the IResult-
Manager interface with two defined methods. The first is the deploy-
Plan() method that deploys the VM. It takes the passed plan, deploys
VMs and returns the list of VMs where the deployment failed. The fail-
ure can happen, especially when using the scheduler with OpenNeb-
ula, the deploy does not need to be successful. So when an exception
in OpenNebula occurs, the method remembers the failed VM. The
second provided method is migrate(). This method migrates those
VMs that have the rescheduling flag.

OneResultManager deploys the VM using the method deploy()
and migrates the VM by migrate() , these methods are provided by
OCA. The XmlResultManager is ready to have the simulation module
attached in the future.

34

5 Evaluation

The evaluation of ONEScheduler was accomplished by running several
experiments. The purpose of experiments is to see how the scheduler
is performing with the increasing workload (number of VMs) and/or
size of the infrastructure. The performance of ONEScheduler was
analyzed by tracking the runtime and memory usage. The goal was
to see if the runtime grows with the increasing number of VMs and
Hosts and if the memory consumptions is peaking in any parts of
the scheduling process.

For the purpose of experiments, we defined what is a small, medium
and big Host.

∙ small Host – 2 cpu, 1 GB of maximum RAM and 512 GB of
available storage

∙ medium Host – 8 cpu, 4 GB of maximum RAM and 1024 GB of
available storage

∙ big Host – 64 cpu, 128 GB of maximum RAM and 4096 GB of
available storage

Also we define what is a small, medium and big VM.

∙ small VM – 0.25 cpu, 512 MB RAM and 512 MB of requested
storage

∙ medium VM – 1 cpu, 2 GB RAM and 4 GB of requested storage

∙ big VM – 4 cpu, 4 GB RAM and 16 GB of requested storage

Each runtime experiment is composed of several tests. Each test
was repeated 10 times in order to obtain the average required runtime1

and the corresponding standard deviation.

1. Value of the first repetition was omitted to prevent including the overhead of
starting the application into results.

35

5. Evaluation

5.1 Experiments

All of the tests were measured using the same configuration file.
The used policy for Host and Datastore was Striping. The filtration in-
cludes only the necessary memory, cpu and storage filters. The Queue
mapping was omitted and we used only one FIFO Queue. For exper-
iments we also did not use any fair-sharing algorithms. We wanted
to incorporate only those features that the standard OpenNebula’s
scheduler is providing. All of the measurements were run on a PC
equipped with Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 8 GB RAM,
running Windows 10.

5.1.1 Heterogeneous Experiment

The infrastructure for the heterogeneous experiment consists of real
data2, with the actual capacity availability, from the MetaCloud3. For
the purpose of this experiment, we defined possible values for VM’s
cpu, memory and storage capacity. The workload for this experiment
was generated by creating VMs combining the possibilities below. The
following list presents the attribute with according set of possible
values.

∙ cpu = {0.25; 0.5; 1}

∙ memory = {512MB; 1024MB; 2048MB}

∙ disk size = {512MB; 2048096MB; 4096MB}

Figure 5.1 shows results for the heterogeneous experiment. Cor-
responding standard deviations are shown in Table B.1. The biggest
growth is registered with 1024 VMs and 512 VMs. However the growth
is not increasing that quickly. The reason is that the heterogeneous
infrastructure has Hosts with real available storage space. Hosts have
enough cpu and memory capacity to host the VM, however the storage
might not have enough free space to store VM’s disks. Thus, VMs are
only limited to several Hosts with enough storage space.

2. http://metavo.metacentrum.cz/pbsmon2/cloud/
3. MetaCloud is a service provided by the Czech National Grid Infrastructure
MetaCentrum, https://www.metacentrum.cz/cs/

36

https://www.metacentrum.cz/cs/

5. Evaluation

Figure 5.1: Heterogeneous Data

5.1.2 Homogeneous Experiment

We divide this experiment4 into three experiments.

∙ The first was measured with small VMs and medium Hosts.

∙ The second was measured with medium VMs and medium
Hosts.

∙ The third was measured with big VMs and medium Hosts.

The first experiment is represented in Figure 5.2 with the corre-
sponding standard deviations in the Table B.2. In this case, VMs were
matched in most times. Thus, apart from the growth with 1024 and
512 VMs, runtime values stays almost the same.

The second experiment can be seen in Figure 5.3 with the corre-
sponding standard deviations in the Table B.3. This graph shows how
the value of the runtime rapidly increased with 512 or 1024 VMs on
256 or 512 number of Hosts.

4. The data sets used in this experiment can be found on https://github.com/
GabiP/ONEScheduler/tree/experiments

37

https://github.com/GabiP/ONEScheduler/tree/experiments
https://github.com/GabiP/ONEScheduler/tree/experiments

5. Evaluation

Figure 5.2: Homogeneous Data (Small VMs and Medium Hosts)

Figure 5.4 represents results of the third experiment. The corre-
sponding standard deviations are in the Table B.4. The values with big
workload and small infrastructure has only few of the VMs matched.
In most cases VMs were not assigned to Hosts. Therefore the values
of runtime stayed with the big workload almost the same as with the
smaller workload.

5.1.3 Memory Usage Experiment

The memory usage was tracked using the built-in profiler in Netbeans
IDE. We used workload with 256 and 1024 VMs with 8 cpu, 16 GB
RAM and 32 GB of the required disk size. For 256 VMs we had 128
available Hosts. For 1024 VMs we had 512 Hosts. Each Host had 64
cpu, 128 GB of RAM and 32 TB of available storage.

Figure 5.5 shows results with 256 VMs with 128 Hosts with logging
turned on. The highest allocated memory was 120 MB.

Figure 5.6 shows results for 1024 VMs with 512 Hosts with logging
turned on are more interesting. The highest allocated memory was

38

5. Evaluation

Figure 5.3: Homogeneous Data (Medium VMs and Medium Hosts)

Figure 5.4: Homogeneous Data (Big VMs and Medium Hosts)

39

5. Evaluation

Figure 5.5: Used memory with 256 VMs, 128 Hosts (with logging on)

Figure 5.6: Used memory with 1024 VMs, 512 Hosts (with logging on)

220 MB. The memory usage is peaking the most where the scheduler
is logging the most, like in the filtration process. The increasing infras-
tructure ads more possibilities where the VM can be deployed, thus
the logging in filters adds some overhead.

Figure 5.7 represents results with the logging turned off with 256
VMs and 128 Hosts. In this case the allocated memory was never
higher than 75 MB.

Results for 1024 VMs and 512 Hosts with logging turned off are
represented in Figure 5.8. In this case the allocated memory was never
higher than 120 MB.

40

5. Evaluation

Figure 5.7: Used memory with 256 VMs, 128 Hosts (with logging off)

Figure 5.8: Used memory with 1024 VMs, 512 Hosts (with logging off)

41

5. Evaluation

With the given workload and infrastructure, the memory never
steps over the 250 MB limit. We have run the memory usage experi-
ment to see also how the scheduler performs with and without logging.
As we expected, the logging adds an overhead.

42

6 Conclusion

The goal of this thesis was to design new extensible scheduler for
cloud management platform OpenNebula. The first part of this work
consisted of defining the concept of cloud computing and why a
scheduler is an important component of a cloud management sys-
tem. Next chapter described the OpenNebula’s infrastructure. Subse-
quently, the OpenNebula’s default scheduler was presented. Following
chapters focused on the design and implementation of the proposed
scheduler.

Our approach, ONEScheduler, was inspired by the scheduling
component in OpenNebula. We successfully implemented the filtra-
tion of resources and criteria based resource ordering features that
the OpenNebula’s scheduler provides. ONEScheduler is composed
of many modules, each handling one part of the scheduling process
like authorization, fair-sharing, queue mapping, filtrating and rank-
ing. Some of these modules contains new features, like queue based
scheduling and fair-sharing of resources. The goal was to provide
interface to each module. These interfaces are used for incorporat-
ing a new scheduling policies. Furthermore, ONEScheduler can be
switched into testing mode in order to test new policies.

For added convenience, we also made ONEScheduler configurable.
The configuration is in a separated file and is used for defining schedul-
ing policies.

The last part of this work was dedicated to experiments, testing
the ONEScheduler’s performance. We were tracking the scheduler’s
runtime and memory usage. Tests were executed in the testing mode
with heterogeneous and homogeneous data sets. Results were as we
expected, with 1024 VMs, the runtime was quickly growing. When
testing the memory consumption of the scheduler, we discovered that
logging adds an overhead to the memory usage.

To sum up, ONEScheduler is capable of producing a schedule that
fulfills given criteria. The schedule consists of pending VMs mapped
onto resources. If the scheduler has the connection to OpenNebula,
the scheduler can deploy these VMs onto planned resources in Open-
Nebula.

43

6. Conclusion

For future work, the development can further go towards automatic
migrations. The scheduler will have the ability to migrate the already
running VM if there is a more suitable resource available. ONESched-
uler is also currently being extended by the development of a simulator
called ONESimulator. This simulator will emulate the environment
of OpenNebula. ONESimulator can be attached to ONEScheduler
through a provided interface.

44

Bibliography

[1] Kai Hwang, Jack Dongarra, and Geoffrey C. Fox. Distributed and
Cloud Computing: From Parallel Processing to the Internet of Things.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

[2] Peter M. Mell and Timothy Grance. SP 800-145. The NIST Defi-
nition of Cloud Computing. Tech. rep. Gaithersburg, MD, United
States, 2011.

[3] Wenhong Tian and Yong Zhao, eds. Optimized Cloud Resource
Management and Scheduling. Boston: Morgan Kaufmann, 2015.

[4] OpenNebula, industry standard open source cloud computing tool.
2016. url: http://opennebula.org/ (visited on 12/01/2016).

[5] OpenStack. 2016. url: https://www.openstack.org (visited on
12/01/2016).

[6] Apache CloudStack. 2016. url: https : / / cloudstack . apache .
org/ (visited on 12/01/2016).

[7] Maciej Drozdowski. Scheduling for Parallel Processing. 1st. Springer
Publishing Company, Incorporated, 2009.

[8] OpenNebula Documentation, version 5.2. 2016. url: http://docs.
opennebula.org/5.2/ (visited on 12/01/2016).

[9] Flavien Quesnel. Scheduling of Large-scale Virtualized Infrastruc-
tures: Toward Cooperative Management. 1st. Wiley-IEEE Press, 2014.

[10] Joel J. P. C. Rodrigues Chun-Wei Tsai. “Metaheuristic Scheduling
for Cloud: A Survey”. In: 8.1 (2014), pp. 279–290.

[11] Borja Sotomayor. Haizea, The Haizea Manual. 2009. url: http:
//haizea.cs.uchicago.edu/ (visited on 12/01/2016).

[12] Borja Sotomayor et al. “Virtual Infrastructure Management in
Private and Hybrid Clouds”. In: IEEE Internet Computing 13.5
(Sept. 2009), pp. 14–22.

[13] Green Cloud Scheduler. 2012. url: http://coned.utcluj.ro/
GreenCloudScheduler/ (visited on 12/01/2016).

[14] T. Cioara et al. “Energy Aware Dynamic Resource Consolidation
Algorithm for Virtualized Service Centers Based on Reinforce-
ment Learning”. In: 2011 10th International Symposium on Parallel
and Distributed Computing. 2011, pp. 163–169.

45

http://opennebula.org/
https://www.openstack.org
https://cloudstack.apache.org/
https://cloudstack.apache.org/
http://docs.opennebula.org/5.2/
http://docs.opennebula.org/5.2/
http://haizea.cs.uchicago.edu/
http://haizea.cs.uchicago.edu/
http://coned.utcluj.ro/GreenCloudScheduler/
http://coned.utcluj.ro/GreenCloudScheduler/

BIBLIOGRAPHY

[15] Ruben S. Montero, Rafael Moreno-Vozmediano, and Ignacio M.
Llorente. “IaaS Cloud Architecture: From Virtualized Datacen-
ters to Federated Cloud Infrastructures”. In: Computer 45.unde-
fined (2012), pp. 65–72.

[16] Frederic Magoules, Thi-Mai-Huong Nguyen, and Lei Yu. Grid
Resource Management: Towards Virtual and Services Compliant Grid
Computing. 1st. Boca Raton, FL, USA: CRC Press, Inc., 2008.

[17] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addi-
son-Wesley, 1994.

[18] Spring framework. 2016. url: https://spring.io/l (visited on
12/01/2016).

[19] Jackson GitHub repository. 2016. url: https : / / github . com /
FasterXML/jackson-dataformat-xml (visited on 12/01/2016).

[20] Spring IoC container. 2016. url: https : / / docs . spring . io /
spring/docs/current/spring-framework-reference/html/
beans.html (visited on 12/01/2016).

46

https://spring.io/l
https://github.com/FasterXML/jackson-dataformat-xml
https://github.com/FasterXML/jackson-dataformat-xml
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/beans.html

A ONEScheduler Tutorial

This tutorial explains how to use the ONEScheduler1 either in testing
mode or with OpenNebula. When trying the testing mode, the pa-
rameter testingMode in configuration.properties needs to be set
on true. Next, it is necessary to set paths to the directory, where your
testing files are. These paths are set on default pools package with
an example set of pool XML files. We also provided more extended
files in onePoolXml package. These files represent real host, cluster
and datastore pools from Metacloud. The VM pool and user pool is
generated in order to test large amount of pending VMs.

In order to use ONEScheduler with OpenNebula the secret and
endpoint parameters must be configured to match the OpenNebula
authentication credentials. If you are using VirtualBox with an Open-
Nebula appliance, the default secret should be oneadmin:opennebula
and the endpoint http://localhost:2633/RPC2. Then you should kill
the OpenNebula scheduling daemon and run the ONEScheduler ap-
plication.

A.1 Extending ONEScheduler

Let’s assume that you want to extend the policies to sort Hosts by
some class introducing a new strategy, let’s call it NewPlacementPolicy.
Then this class needs to implement the IPlacementPolicy, therefore
the sortHosts() method will apply the new strategy.

In order to use this policy, the bean definition of the placement
policy in the SchedulerConfig class needs to be extended as well. This
bean returns the instance of the placement policy that was set in the
configuration.properties. The bean contains a switch for the pos-
sible policies. To incorporate the NewPlacementPolicy just add a new
switch case and set the policy in the configuration.properties.

1. ONEScheduler is available on https://github.com/GabiP/ONEScheduler.

47

https://github.com/GabiP/ONEScheduler

B Tables of Standard Deviations

1 2 4 8 16 32 64 128 256 512
2 13 14 15 14 19 19 18 17 17 17
4 18 16 113 19 24 13 15 15 16 17
8 20 43 55 85 63 51 95 59 73 40
16 145 86 80 96 133 131 116 100 105 86
32 102 69 95 91 174 153 173 120 151 131
64 131 63 128 128 138 176 189 163 135 171
128 33 123 121 183 174 137 177 186 155 228
256 26 184 47 183 177 173 25 25 215 232
512 24 29 32 24 37 43 25 22 411 424
1024 21 29 29 41 27 23 22 192 237 512

Table B.1: Standard Deviations for Heterogeneous Data

48

B. Tables of Standard Deviations

1 2 4 8 16 32 64 128 256 512
2 17 15 18 19 17 17 23 18 25 24
4 20 20 14 20 17 20 20 24 23 20
8 85 83 74 78 59 80 84 79 49 53
16 98 101 104 112 131 131 101 83 107 124
32 138 150 131 136 174 172 171 172 171 159
64 132 136 173 173 181 184 178 188 235 203
128 34 189 191 180 159 199 154 164 174 255
256 28 24 29 21 23 162 229 276 268 298
512 18 20 17 25 30 181 354 340 376 340
1024 19 19 17 21 19 262 511 453 334 195

Table B.2: Standard Deviations for Homogeneous Data (Small VMs
on Medium Hosts)

1 2 4 8 16 32 64 128 256 512
2 10 17 19 21 16 13 17 21 22 20
4 19 15 20 14 26 20 26 25 16 25
8 36 43 86 69 78 68 77 77 74 70
16 56 41 98 104 135 104 88 83 101 90
32 64 106 103 89 150 105 175 165 170 160
64 99 87 128 132 131 184 133 172 176 181
128 128 136 29 24 18 135 195 226 199 209
256 21 22 31 21 24 156 153 231 254 205
512 20 27 22 161 22 30 160 148 398 160
1024 22 16 19 16 19 28 169 260 253 545

Table B.3: Standard Deviations for Homogeneous Data (Medium VMs
on Medium Hosts)

49

B. Tables of Standard Deviations

1 2 4 8 16 32 64 128 256 512
2 10 17 19 21 16 13 17 21 22 20
4 19 15 20 14 26 20 26 25 16 25
8 36 43 86 69 78 68 77 77 74 70
16 56 41 98 104 135 104 88 83 101 90
32 64 106 103 89 150 105 175 165 170 160
64 99 87 128 132 131 184 133 172 176 181
128 128 136 29 24 18 135 195 226 199 209
256 21 22 31 21 24 156 153 231 254 205
512 20 27 22 161 22 30 160 148 398 160
1024 22 16 19 16 19 28 169 260 253 545

Table B.4: Standard Deviations for Homogeneous Data (Big VMs on
Medium Hosts)

50

	Introduction
	OpenNebula - Cloud Management Platform
	 Image
	 Virtual Machine
	 Host
	 Datastore
	 Cluster
	 User and Group
	 ACL and Permissions
	 Permissions
	 ACL Understanding

	The OpenNebula's Default Scheduler
	 The Match Making Algorithm
	 Understanding the Requiremens and Ranks
	 Summary

	Our Approach – ONEScheduler
	 Design of ONEScheduler
	 Top Level Structure
	 Package Structure

	 Technical Solutions
	 OpenNebula Client
	 Testing Mode
	 Configuration
	 Configuration System
	 Dependency Injection

	 Modules
	 Core
	 Authorization
	 Filters
	 Policies
	 Filtration and Policies Workflow
	 Fair-share
	 Queues
	 VM Selection
	 Limit Checking

	 Writing the Results

	Evaluation
	 Experiments
	 Heterogeneous Experiment
	 Homogeneous Experiment
	 Memory Usage Experiment

	Conclusion
	Bibliography
	ONEScheduler Tutorial
	 Extending ONEScheduler

	Tables of Standard Deviations

