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Chapter 1

Informal introduction

1.1 Sequences of Laurent polynomials

In the lecture we wish to give an introduction to Sergey Fomin and Andrei Zelevinsky’s theory of
cluster algebras. Fomin and Zelevinsky have introduced and studied cluster algebras in a series of
four influential articles [FZ, FZ2, BFZ3, FZ4] (one of which is coauthored with Arkady Berenstein).
Although their initial motivation comes from Lie theory, the definition of a cluster algebra is very
elementary.

We will give the precise definition in Chapter 2, but to give the reader a first idea let a and b be
two undeterminates and let us consider the map

F : (a, b) 7→
(

b,
b + 1

a

)
.

Surprisingly, the non-trivial algebraic identity F5 = id holds. This equation has a long and colour-
ful history. The equation in this form dates back to Arthur Cayley [Ca] who remarks that this
equation was already essentially known to Carl-Friedrich Gauß [Ga] in the context of spherical
geometry and Napier’s rules. Latin speaking Gauß refers to the phenomenon as pentagramma
mirificum, which the author would translate as marvelous pentagram.

But not only the periodicity F5 = id after five steps is remarkable. Another interesting feature
is the Laurent phenomenon: all terms occurring on the way are actually Laurent polynomials in the
initial values a and b. Figure 1.1 illustrates the five Laurent polynomials.

(a, b)

(
b, b+1

a

)

(
b+1

a , a+b+1
ab

)(
a+b+1

ab , a+1
b

)

( a+1
b , a

)
F

F

F

F

F

Figure 1.1: A pentagon of Laurent polynomials

Fomin-Reading [FR, Section 1.1] provide a variation of the theme. For a natural number i ∈N

let Fi be the map that we obtain from F by replacing the polynomial b + 1 in the numerator of
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Figure 1.2: A hexagon of Laurent polynomials

the second entry with the polynomial bi + 1. Surprisingly, we have the relations (F1F2)3 = id
and (F1F3)4 = id. Furthermore, all occurring terms are again Laurent polynomials as Figure 1.2
indicates in the case of F1 and F2.

Various mathematicians have developed different approaches to these marvels. Whereas dy-
namical system theorists try to explain the Laurent phenomenon by the notion of algebraic entropy,
cf. Hone [Ho, Section 2], Fomin and Zelevinsky wish to explain it by Lie theory. The authors ob-
serve that the exponents in the denominators arbs (with r, s ≥ 0) of the non-initial variables yield
vectors (r, s) ∈ R2 that have an interpretation in terms of root systems. In Figure 1.1 we get the
vectors (1, 0), (1, 1) and (0, 1) and in Figure 1.2 we get the vectors (1, 0), (1, 1), (1, 2) and (0, 1).
These are the coordinates of the positive roots in the basis of simple roots for root systemss of
type A2 and B2. For the maps F1 and F3 we will get a corresponding interpretation in terms of
the root system G2. The term root system (and the notion of positive and simple roots) will be
made precise during the lecture. Roughly speaking this means that every reflection across a line
orthogonal to one of the vectors preserves the configuration of vectors. Figure 1.3 displays the
three root systems and the positive roots are coloured gray.

α1

α1 + α2α2

α1

α1 + α2 2α1 + α2α2

α1

3α1 + α2α2

3α1 + 2α2

α1 + α2 2α1 + α2

Figure 1.3: The root systems of type A2, B2 and G2

Readers familiar with the work of H. S. M. Coxeter [Co1, Co2] might also notice that the rela-
tions (F1F2)3 = id and (F1F3)4 = id resemble relations in certain Coxeter groups.

At the beginning of the lecture we will provide a precise definition of a cluster algebra. It is
a commutative algebra which is generated by so-called cluster variables. We obtain the relations
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among the cluster variables by generalising the recursions in the above examples and by applying
the recursions to more general input data. We can encode the relations among the cluster variables
by quivers and mutations.

As the definition of a cluster algebra is very abstract, we want to discuss examples. Most
importantly, we will discuss cluster algebras of rank 2, which serve as a good prototype for the
whole theory. In this case, the cluster variables form a sequence and we can describe the relations
by two parameters. The parameters are positive integers and usually called b and c. If |bc| ≤
3, then there are only finitely many cluster variables (and the three cases bc = 1, 2, 3 yield the
examples above). We also study the case b = c = 2. Zelevinksy [Ze, Equation 13] observes that
the non-linear exchange relations for cluster variables degenerates to a linear recurrence relation
and Caldero-Zelevinsky [CZ, Theorem 4.1] give interesting formulae for the coefficients. A second
class of examples that we will consider are cluster algebras of type A, whose structure admits an
interpretation by triangulations of polygons. Here, the relations among cluster variables become
Ptolemy relations.

After the examples, we will state and prove Fomin-Zelevinsky’s two main theorems, namely
the classification of cluster algebras of finite type and the Laurent phenomenon. As indicated
above we can classify cluster algebras of finite type by finite type root systems and Dynkin dia-
grams.

The core of the lecture will be connections to other fields of mathematics. First of all, the
Caldero-Chapoton map [CC] connects cluster algebras with representations of quivers, where the
quivers of finite representation type are also classified by Dynkin diagrams. Furthermore, we will
study the connection to Lie theory. Especially, we will study canonical bases and totally positive
matrices. Both topics had been a main motivation for the defining relations of a cluster algebra.

As the reader might have noticed, explicit calculation can not be avoided and we will see how
the computer algebra software SAGE might help. If time permits, we will discuss cluster varieties.

1.2 Exercises

Exercise 1.1. Verify the equation (F1F3)4 = id and draw the corresponding octogon. What expo-
nents occur in the denominators?

Exercise 1.2. By considering the orbit of (1, 1) prove that F2 is of infinite order, i.e. there does not
exist a natural number k such that Fk

2 = id.
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Chapter 2

What are cluster algebras?

2.1 Quivers and adjacency matrices

2.1.1 Quivers

In this section we wish to introduce quivers. Quivers turn out o be a crucial tool to construct
cluster algebras. We start with the following definition.

Definition 2.1.1 (Quiver). A quiver is a tuple Q = (Q0, Q1, s, t) where Q0 and Q1 are finite sets
and s, t : Q1 → Q0 are arbitrary maps. If Q is a quiver, then elements in the set Q0 will be called
vertices and elements in the set Q1 will be called arrows. For an arrow α ∈ Q1, we refer to the vertex
s(α) ∈ Q0 as the starting point and to the vertex t(α) ∈ Q1 as the terminal point of α.

It is very convenient to visualize a quiver by a picture. For every vertex we draw a point in the
plane and we connect the points by corresponding arrows. Figure 2.1 shows two examples. We
call such a picture a drawing of the quiver in the plane. Often we use natural numbers for vertices
and small greek letters for arrows.

1 2

3

α3

β3

α1
β1α2

β2

3 4

1 2
α

β

γ δεζ

η

θ

Figure 2.1: Two quivers

The readers familiar with discrete mathematics might know the concept under the name di-
rected graph. Pierre Gabriel has introduced the terminology quiver in the context of quiver rep-
resentation (which we will study in later). The idea for introducing a new word for well-known
concept is emphasize a new and different way to look at the concept. Cluster theorists (who often
have a background in representation theory) have adopted the terminology.

In the rest of the section we wish to introduce some notions which will become important in
later chapters. Most notions are classical and have originated from graph theory.

9
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Definition 2.1.2 (Isomorphism). Let Q = (Q0, Q1, s, t) and Q′ = (Q′0, Q′1, s′, t′) be two quivers. An
isomorphism between Q and Q′ is a pair ( f0, f1) of bijective maps f0 : Q0 → Q′0 and f1 : Q1 → Q′1
such that the diagrams

Q1

Q′0Q′1

Q0
s

f1

s′

f ′1

Q1

Q′0Q′1

Q0
t

f1

t′

f ′1

commute, i.e. for all arrows α ∈ Q1 we have f0(s(α)) = s′( f1(α)) and f0(t(α)) = t′( f1(α)). If there
is an isomorphism between Q and Q′, then the quiver Q and Q′ are said to be isomorphic. In this
case we will write Q ∼= Q′.

The name isomorphism is of Greek origin and means the having the same structure. Informally
speaking, two quivers are isomorphic and only if the quivers have the same structure in the sense
that we can obtain one quiver from the other by renaming the vertices (via the map f0) and edges
(via the map f1). The notion clearly induces an equivalence relation.

Definition 2.1.3 (Sinks and sources). Let Q = (Q0, Q1, s, t) be a quiver. A vertex i ∈ Q0 is called a
source if there is no arrow α ∈ Q1 with t(α) = i. A vertex i ∈ Q0 is called a sink if there is no arrow
α ∈ Q1 with s(α) = i.

For example, in the second quiver of Figure 2.1 the vertex 1 is a source and the vertex 4 is a
sink. The first quiver contains neither sources nor sinks.

Definition 2.1.4 (Path). Let Q = (Q0, Q1, s, t) be a quiver. If m ≥ 1 is a positive integer, then a
sequence p = (α1, α2, . . . , αm) ∈ Qm

1 of arrows such that t(αk) = s(αk+1) for all k ∈ {1, 2, . . . , m− 1}
will be called a path of length m in Q. In this case we will call the vertex s(α1) the starting point of
p and vertex t(αm) the terminal point of p and we will write s(p) = s(α1) and t(p) = t(αm). For
every vertex i ∈ Q0 we introduced a lazy path ei of length 0 and we set s(ei) = t(ei) = i. A path p
is called closed if s(p) = t(p). A closed path of length 1 is called a loop.

For example, the sequence (α1, α2, α3) of arrows in the first quiver of Figure 2.1 is a closed path
with starting and terminal point 2, the sequence (α1, α2) is a path with starting point 2 and ending
point 1 and the sequence (α2, α1) is not a path.

Definition 2.1.5 (Cycle). Let Q = (Q0, Q1, s, t) be a quiver. Two closed paths (α1, α2, . . . , αm) and
(α′1, α′2, . . . , α′m) of the same length m ≥ 1 in Q are equivalent if there is an integer k ∈ {1, 2, . . . , m}
such that (α′1, α′2, . . . , α′m) = (αk, αk+1, . . . , αm, α1, α2, . . . , αk−1). Let m ∈ N be a positive integer. An
oriented cycle of length m or an m-cycle is an equivalence class of a path of length m. An oriented
cycle of length 3 is called a triangle.

For example, the three sequences (α1, α2, α3), (α2, α3, α1) and (α3, α1, α1) in the first quiver of
Figure 2.1 are equivalent paths. Their equivalence class is a triangle. Altogether, there are 23 = 8
triangles in the quiver Q.

Definition 2.1.6 (Subquiver). Let Q = (Q0, Q1, s, t) be a quiver. A quiver Q′ = (Q′0, Q′1, s′, t′) with
Q′0 ⊆ Q0 and Q′1 = Q1 is called a subquiver of Q if for every arrow α ∈ Q′1 the starting and
terminal points s(α), t(α) ∈ Q′0 and satisfy equations s′(α) = s(α) and t′(α) = t(α). A subquiver
Q′ of Q is called full if every arrow α ∈ Q1 with s(α), t(α) ∈ Q′0 lies in Q′1.
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1 2

3

α3

β3

α1
β1α2

β2

1 2

3

α3

β3

β1β2

1

3

α2
β2

Figure 2.2: Subquivers

For example, Figure 2.2 displays a (well-known) quiver Q, a subquiver Q′ with Q′0 = {1, 2, 3}
and Q′1 = {α3, β1, β2, β3} (which is not full) and a full subquiver Q′′ with Q′′0 = {1, 3}. Clearly, a
full subquiver is uniquely determined by its set of vertices.

Definition 2.1.7 (Acyclic). A quiver Q = (Q0, Q1, s, t) is called acyclic if it contains no oriented
cycle (or equivalently, if it contains no closed path).

If a quiver contains a loop, then it cannot be acyclic. For another example, the first quiver in
Figure 2.1 is not acyclic as it admits various oriented cycles. The second quiver in the figure is
acyclic. It is easy to see that a quiver is acyclic if and only if it contains only finitely many paths.

Proposition 2.1.8. Let Q = (Q0, Q1, s, t) be an acyclic quiver with n = |Q0| vertices. Then Q
is isomorphic to a quiver Q′ = (Q′0, Q′1, s′, t′) with Q′0 = {1, 2, . . . , n} such that for every arrow
α′ ∈ Q′1 we have s′(α′) < t′(α′).

We refer to such a numbering of the vertices of an acyclic quiver as a topological ordering. The
vertices of the second quiver in Figure 2.1 are in topological order.

Proof. We prove the statement by mathematical induction on the number n of vertices. If n = 1,
then Q contains no arrows as it contains no loops. In this case Q is isomorphic to the quiver with
one vertex 1 and no arrows. Now let n ≥ 2. Among all of the finitely many paths in Q, we consider
a path p of maximal length. The terminal point t(p) must be a sink in Q, because otherwise we
could form a path of longer length. By induction hypothesis we know that the full subquiver Q′

with the set Q′0 = Q0\{t(p)} as vertices admits a topological ordering. Rename the vertices of Q′0
by {1, 2, . . . , n− 1} (according to the topological order on Q′) and rename t(p) by n. The result is
a topological ordering on Q.

Definition 2.1.9 (Connected). We say that a quiver Q = (Q0, Q1, s, t) is disconnected if there exists
a partition Q0 = Q′0 t Q′′0 of the set of vertices into two disjoint and non-empty sets such that the
starting and terminal points s(α), t(α) of every arrow α ∈ Q1 belong to same part of the partition,
i.e. we either have s(α), t(α) ∈ Q′0 or we have s(α), t(α) ∈ Q′′0 . We say that Q is connected if it is not
disconnected.

Of course, a quiver is connected if and only if every drawing of Q in the plane is connected in
the topological sense. We finish the section by two examples. The names come from Lie theory
and will be explained later.

Example 2.1.10. Let n ≥ 1 be an integer. Often we consider the following two quivers, which are
also shown in Figures 2.3, 2.4.

(a) The quiver Q = (Q0, Q1, s, t) with Q0 = {1, 2, . . . , n} and Q1 = {α1, α2, . . . , αn−1} such that
s(αi) = i and t(αi) = i + 1 for all indices i ∈ {1, 2, . . . , n − 1} is called the linearly oriented
quiver of type An.



12 CHAPTER 2. WHAT ARE CLUSTER ALGEBRAS?

1 2 3 n− 1 n· · ·
α1 α2 αn−1α2 αn−1

Figure 2.3: The linearly oriented quiver of type A

1 2 3 n− 1 n· · ·
α1 α2 αn−1α2 αn−1

αn

Figure 2.4: A circle

(b) The quiver Q = (Q0, Q1, s, t) with Q0 = {1, 2, . . . , n} and Q1 = {α1, α2, . . . , αn} such that
s(αi) = i for all i ∈ {1, 2, . . . , n}, t(αi) = i + 1 for all i ∈ {1, 2, . . . , n− 1} and t(αn) = 1 is
called a circle of length n.

2.1.2 Signed and non-signed adjacency matrices

Sometimes – especially in computer science – it is convenient to encode a quiver by a matrix. This
can be done in two different ways, namely by incidence matrices, which encode incidence rela-
tions between vertices and arrows, and by adjacency matrices, which encode adjacency relations
between the vertices. For our purposes adjacency matrices will become the most important way
to encode quivers.

Definition 2.1.11. (a) Let Q = (Q0, Q1, s, t) be an arbitrary quiver with n = |Q0| vertices. The
adjacency matrix of Q is the n × n integer matrix A = A(Q) = (aij)i,j∈Q0 where aij is the
number of arrows i→ j with starting point i ∈ Q0 and terminal point j ∈ Q0.

(b) Let Q = (Q0, Q1, s, t) be an arbitrary quiver with n = |Q0| vertices. Assume that Q contains
neither loops nor 2-cycles. The signed adjacency matrix of Q is the n× n integer matrix B =
B(Q) = (bij)i,j∈Q0 where bij = aij − aji.

By construction the signed adjacency matrix B = B(Q) = (bij)i,j∈Q0 of a quiver Q is a skew-
symmetric matrix, i.e. it satisfies the equation B = −BT. Especially, all diagonal entries bii (with
i ∈ Q0) are zero. Figure 2.5 shows an example of the signed and non-signed adjacency matrix of a
quiver.

Proposition 2.1.12. Let A be the adjacency matrix of a quiver Q = (Q0, Q1, s, t) and let k be a
positive integer. We denote the k-th power of A by Ak = (a(k)ij )i,j∈Q0 . Then for all vertices i, j ∈ Q0

1 2

3

A =

0 1 0
0 0 1
1 0 0

 B =

 0 1 −1
−1 0 1
1 −1 0



Figure 2.5: An adjacency and a signed adjacency matrix
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the entry a(k)ij is equal to the number of paths p with starting point s(p) = i and terminal point
t(p) = j of length k

Let In ∈ Mat(n× n, Q) be the n× n identity matrix. Note that the notation suits the convention
A0 = In, because for every vertex i ∈ Q0 there is a lazy path of length 0 starting and ending in i,
but there is no path from vertex i to vertex j of length 0 if i 6= j.

Proof. We prove the statement by mathematical induction on k. The claim is true for k = 1 by
definition. Let us now assume that k ≥ 2 and that the statement is true for k − 1. Consider the
equation Ak = AAk−1. By the definition of matrix multiplication we have

a(k)i,j = ∑
r∈Q0

aira(k−1)
rj

for all vertices i, j ∈ Q0. The term aira(k−1)
rj is equal to the number of paths from i to j of length

k such that the first step is i → r. Then the right hand side is the number of paths from i to j of
length k, parametrised by the first step.

Especially, in the above situation the sum of all the entries is Ak is equal to the number of
all paths of length k in Q. Let us denote this number by PQ(k). Now let S ∈ Gln(C) be an
invertible matrix such that the matrix J = S−1AS is a Jordan canonical form. Then A = SJS−1

and thus Ak = SJkS−1. Let λ ∈ C be an eigenvalue of largest absolute value. The number
r = r(A) = |λ| ∈ R+ is also known as the spectral radius of A. We deduce that the function
N→N, k 7→ PQ(k) lies in the class O(rk) for k→ ∞. Later we will see characterization of Dynkin
diagrams by spectral properties. Let us illustrate this circle of ideas by some examples.

Example 2.1.13. (a) The matrix A in Figure 2.5 is a permutation matrix and so the sequence
(Ak)k∈N of matrices is periodic:

A =

0 1 0
0 0 1
1 0 0

 , A2 =

0 0 1
1 0 0
0 1 0

 , A3 = I3.

Especially, there is a path from 1 to 1 of length k if and only if k is divisible by 3. The
roots of the characteriztic polynomial χA(X) = X3 − 1 ∈ C[X] are the third roots of unity
1, e

2πi
3 , e

4πi
3 ∈ C. The absolute value of all these numbers is 1 which implies that the function

k 7→ PQ(k) is bounded by a constant. In fact, it is the constant function 3.

(b) For another example, let A′ be the adjacency of the first quiver in Figure 2.1. Then A′ = 2A
so that (A′)k = 2k Ak for all k ≥ 0. In other words, the number of paths of length k is equal to
3 · 2k and increases exponentially in k. This is reflected by the fact that the eigenvalues, i.e.
the roots of the characteriztic polynomial x3 − 8, all have absolute value 2.

(c) For another example, let A be the adjacency of the second quiver in Figure 2.1. Here, the
quiver Q is acyclic and so that the matrix A is nilpotent:

A =


0 2 1 0
0 0 1 2
0 0 0 2
0 0 0 0

 , A2 =


0 0 2 6
0 0 0 2
0 0 0 0
0 0 0 0

 , A3 =


0 0 0 4
0 0 0 0
0 0 0 0
0 0 0 0

 , A4 = 0.

The characteriztic polynomial is χA(X) = X3 ∈ C[X] and λ = 0 is the only eigenvalue so
that PQ(k) is eventually 0. More generally, a quiver Q is acyclic if and only if the adjacency
matrix A(Q) is nilpotent.
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It is noteworthy to remark that we do not loose information about the quiver when we pass
from a quiver Q to its adjacency matrix A(Q). More precisely, let Q and Q′ be two quivers with
adjacency matrices A(Q) = (aij)i,j∈Q0 and A(Q′) = (aij)i,j∈Q0 . Then Q and Q′ are isomorphic if
and only if there exists a bijection σ : Q0 → Q′0 such that ai,j = a′σ(i),σ(j) for all i, j ∈ Q0. Moreover,
for every matrix A ∈ Mat(n× n, Z) there exists a quiver Q with n vertices such that A(Q) = A.
Similar statements for the assignment Q 7→ B(Q) are not true, but they become true if we restrict
ourselves to the class of quivers that contain neither loops nor 2-cycles.

2.2 Quiver mutation

2.2.1 The definition of quiver mutation

In this section we define quiver mutation. We assume that Q = (Q0, Q1, s, t) is a quiver without
loops and 2-cycles. For the definition it is important to partition both the set of vertices and the
set of arrows into four parts. Let k ∈ Q0 be a vertex.

3

4

1 2

5

α1
α2
α3

β1

β2

δ

ε

γ

ζ

η

Figure 2.6: A quiver on five vertices

We call a vertex i ∈ Q0 a direct predecessor of k if there exists an arrow i → k in Q1 and we
call a vertex j ∈ Q0 a direct successor of k if there exists an arrow k → j in Q1. We denote the
sets of direct predecessors and successors by DP(k) and DS(k), respectively. The sets DP(k) and
DS(k) are disjoint, because there are no 2-cycles in Q. Moreover, the vertex k is neither a direct
predecessor nor a direct successor of itself, because there are no loops in Q. We also consider the
set U(k) = Q0\({k} ∪DP(k) ∪DS(k) of vertices that are unrelated to (or not adjacent to) k, so that
we get a partition

Q0 = {k} tDP(k) tDS(k) tU(k).

Furthermore, we call an arrow α ∈ Q0 outgoing if s(α) = k and we call it incoming if t(α) = k.
We denote the sets of outgoing and incoming arrows by S(k) and T(k), respectively. The sets S(k)
and T(k) are disjoint, because there are no loops in Q. Moreover, let

A(k) = {α ∈ Q1 : s(α) ∈ DP(k), t(α) ∈ DS(k)} ∪ {α ∈ Q1 : s(α) ∈ DS(k), t(α) ∈ DP(k)}

be the set of arrows that connect a direct predecessor of k with a direct successor of k or vice versa.
Furthermore, we denote by R(k) = Q1\{A(k) ∪ S(k) ∪ T(k)} the set of remaining arrows. We get
a partition

Q1 = S(k) t T(k) tA(k) t R(k).
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For example, the vertex k = 2 of the quiver Q that is shown in Figure 2.6 has outgoing arrows
S(k) = {β1, β2}, outgoing arrows T(k) = {α1, α2, α3, δ}, direct predecessors DP(k) = {1, 4} and
direct successors DS(k) = {3}. We have U(k) = {5}, A(k) = {ε, γ} and R(k) = {ζ, η}.

Definition 2.2.1 (Quiver mutation). Let Q = (Q0, Q1, s, t) be a quiver without loops and 2-cycles
and let k ∈ Q0 be a vertex. The mutation of Q at k is a new quiver µk(Q) = Q′ = (Q′0, Q′1, s′, t′)
constructed as follows:

(a) The set of vertices does not change under mutation, i.e. we have Q′0 = Q0.

(b) The set arrows does change under mutation and it is equal to the union Q′1 = S∗(k)∪T∗(k)∪
A∗(k) ∪ R(k) where the four sets are given as follows:

(M1) We reverse all arrows that terminate in k: if α ∈ T(k) is an arrow i → k in Q1 for some
direct predecessor i ∈ DP(k), then let α∗ ∈ Q′1 be an arrow k → i, i.e. we set s′(α∗) = k
and t′(α∗) = i. Put S∗(k) = {α∗ : α ∈ S(k)}.

(M2) We reverse all arrows that start in k: if β ∈ S(k) is an arrow k → j in Q1 for some direct
successor j ∈ DS(k), then let β∗ ∈ Q′1 be an arrow j → k, i.e. we set s′(β∗) = j and
t′(β∗) = k. Put T∗(k) = {α∗ : β ∈ T(k)}.

(M3) Let i ∈ DP(k) be a direct predecessor and j ∈ DS(k) a direct successor of k. Let rij be
the number of paths (α, β) ∈ Q1 × Q1 of the form i → k → j in Q. Let Aij = rij + bij.
If Aij ≥ 0, then define A∗(k) to be the set containing Aij arrows αij(r) : i → j (for
1 ≤ r ≤ Aij). Otherwise define A∗(k) to be the set containing −Aij arrows αji(r) : j → i
(for 1 ≤ r ≤ −Aij).

(M4) The arrows in the set R(k) do not change under mutation.

A more intuitive way to describe mutation rule M3 is as follows: for every such path i→ k→ j
we add an arrow i → j. Then we remove one possibly created 2-cycle after the other until the
quiver does not contain 2-cycles anymore. By definition, the quiver µk(Q) again contains neither
loops nor 2-cycles. Let us illustrate the definition by some examples.

Example 2.2.2. (a) First of all, let us consider the quiver Q = (Q0, Q1, s, t) from Figure 2.6. We
compute the mutation µ2(Q). By rules M1 and M2 the mutation reverses the incoming ar-
rows α ∈ T(2) = {α1, α2, α3, δ} as well as the outgoing arrows β ∈ S(2) = {β1, β2} (which
we both have coloured blue). By M4 the arrows η, ζ ∈ R(2) remain unchanged.

We have one (red) arrow γ : 3→ 1. The six paths (αr, βs) for r ∈ {1, 2, 3} and s ∈ {1, 2} yield
six new arrows 1 → 3. According to mutation rule M3 the quiver µ2(Q) has five arrows
α13(1), . . . , α13(5) : 1 → 3. We have one (red) arrow γ : 4 → 3. The two paths (δ, βs) for
s ∈ {1, 2} yield two new arrows 4 → 3. According to mutation rule M3 the quiver µ2(Q)
altogether has three arrows α43(1), α43(2), α43(3) : 4→ 3.

3

4

1 2

5

α1
α2
α3

β1

β2

δ

ε

γ

ζ

η
7−→

3

4

1 2

5

α∗1
α∗2
α∗3

β∗1

β∗2

δ∗

ζ

η
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(b) As a second example let us start with the very same quiver Q and calculate the mutation of Q
at vertex 3. The (blue) arrows β1, β2, γ and ε are incident to the vertex 3 and change direction.
The mutation does not affect the arrows δ, ζ ∈ R(2). The number of arrows α : 1→ 2 is equal
to 3 and therefore by 1 larger than the number of paths 2→ 3→ 1 giving one arrow 1→ 2 in
µ3(Q). The arrow η : 4→ 1 together with the path (ε, γ) yields two arrows 4→ 1 in µ3(Q).

3

4

1 2

5

α1
α2
α3

β1

β2

δ
ε

γ

ζ
η

7−→
3

4

1 2

5

β∗1

β∗2

δ

ε∗

γ∗

ζ

(c) In the previous examples we have µ2(µ2(Q)) ∼= Q and µ3(µ3(Q)) ∼= Q (and both isomor-
phisms are the identity on the set of vertices).

(d) For a completely different example let us consider the following quiver Q:

1 2

3

4

5

Mutation at a vertex k ∈ {1, 2, 3, 4} produces an isomorphic quiver: Q ∼= µ1(Q) ∼= µ2(Q) ∼=
µ3(Q) ∼= µ4(Q). More precisely, the following table shows which vertices correspond to
each other under the isomorphisms.

Q0 µ1(Q)0 µ2(Q)0 µ3(Q)0 µ4(Q)0

1 2 2 4 2
2 1 1 1 3
3 3 3 2 4
4 4 4 3 1
5 5 5 5 5

Bernhard Keller’s Java applet is a useful software to perform mutations. It turns out that
isomorphisms µk(Q) = Q are seldom and hence Example 2.2.2 d is exceptional in this respect.
On the other hand, we can dramatically generalise the isomorphisms from Example 2.2.2 c as the
following proposition shows.

Proposition 2.2.3. The assignment Q 7→ µk(Q) is involutory, i.e. for all quivers Q = (Q0, Q1, s, t)
without loops and 2-cycles and all vertices k ∈ Q0 we have Q ∼= µk(µk(Q)).

http://www.math.jussieu.fr/~keller/quivermutation/
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Proof. Let Q = (Q0, Q1, s, t) be a quiver without loops and 2-cycles and let i, j, k ∈ Q0 be vertices
with i 6= j. As a shorthand notation we put µk(Q) = Q′ = (Q′0, Q′1, s′, t′) and µk(µk(Q)) = Q′′ =
(Q′′0 , Q′′1 , s′′, t′′). We prove that number of arrows i → j in Q1 is equal to the number of arrows
i→ j in Q′′1 .

First note that the set of direct predecessors of k in Q′ is DS(k) and that the set of direct suc-
cessors of k in Q′ is DT(k). Therefore, S∗(k) is the set of arrows in Q′ that terminate in k and T∗(k)
is the set of arrows in Q′ that start in k. It follows that the claim is true in the case that i = k
or j = k, because we reverse the arrows incident to k twice. Furthermore, we see that all the ar-
rows between i and j remain unchanged under both mutations except when i ∈ DP(k) is a direct
predecessor of k in Q and j ∈ DS(k) is a direct successor of k in Q or vice versa.

Suppose that i ∈ DP(k) is a direct predecessor of k in Q and that j ∈ DS(k) is a direct successor
of k in Q. If there are no arrows from j to i in Q and aij ≥ 0 arrows from i to j in Q, then the first
mutation yields aikakj + aij arrows from i to j in Q′. This number is greater than or equal to the
number akjaik of paths j → k → i in Q′, so after the cancellation of 2-cycles in second mutation
aij arrows from i to j remain in Q′′. Now let us assume that there are aji > 0 arrows from j to
i in Q (and hence no arrows from i to j). We distinguish two cases. If aji ≥ aikakj, then the first
mutation yields aji − aikakj arrows from j to i in Q′. The second mutation adds akjaik arrows from
j to i, so that altogether and without cancellation we get aji arrows from j to i in Q′′. If aji < aikakj,
then the first mutation yields aikakj − aji arrows from i to j in Q′. This number is smaller than the
number akjaik of paths j → k → i in Q′, so after the cancellation of 2-cycles in second mutation
akjaik − (aikakj − aij) = aij arrows from i to j remain in Q′′.

2.2.2 Mutation classes

As the mutation of a quiver Q = (Q0, Q1, s, t) without loops and 2-cycles at a vertex k ∈ Q0 again
contains no loops and 2-cycles, we may form iterated mutations. If k, k′ ∈ Q0 are two vertices of
Q, then we will denote the quiver µk(µk′(Q)) also by (µk ◦ µk′)(Q).

Definition 2.2.4 (Mutation equivalence). We say that two quivers Q and Q′ are mutation equivalent
if there exists a sequence (k1, k2, . . . , kr) ∈ Qr

0 of vertices of Q of length r ≥ 0 such that the quiver
(µk1 ◦ µk2 ◦ · · · ◦ µkr)(Q) is isomorphic to Q′.

Mutation equivalence defines an equivalence relation on the class of all quivers without loops
and 2-cycles: it clearly is transitive and reflexive and it is symmetric by Proposition 2.2.3. If the
quivers Q and Q′ are mutation equivalent, then we will also write Q ∼ Q′.

Definition 2.2.5 (Mutation class). Let Q be a quiver without loops and 2-cycles. The mutation class
of Q is the set of all isomorphism classes that contain a representative Q′ with Q ∼ Q′.

Example 2.2.6. (a) Every acyclic quiver with two vertices is isomorphic to a quiver with vertex
set Q0 = {1, 2} and b arrows 1→ 2 for some natural number b ∈ N. We refer to this quiver
as Q(b). For every b ∈ N we have Q(b) ∼= µ1(Q(b)) ∼= µ2(Q(b)). Hence, the mutation class
of an acyclic quiver with two vertices is a singleton.

(b) Let Q be the first quiver from Example 2.1. By chance we have Q ∼= µ1(Q) ∼= µ2(Q) ∼= µ3(Q).
Hence, the mutation class of Q is a singleton.

1 2

3

α3

β3

α1 β1α2β2 7−→

1 2

3

α∗3

β∗3

α∗2
β∗2
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(c) The isomorphism classes of the following four quivers form a mutation class of size 4.

1 2 3

1 2 3

1 2 3

3

1

2

(d) The following example shows that mutation classes can be infinite. For every natural num-
ber n ∈ N let T(n + 1, n, 2) be the quiver with Q0 = {i, j, k} such that there are n arrows
from i to j, 2 arrows from j to k and n + 1 arrows from k to i. Then µk(T(n + 1, n, 2)) ∼=
T(n + 2, n + 1, 2), so that (T(n + 1, n, 2))n∈N is an infinite family of mutation equivalent,
pairwise non-isomorphic quivers.

1

3

2 1

3

2 1

3

2 1

3

2

Definition 2.2.7. We say that a quiver Q is mutation finite if its mutation class is finite. Otherwise
it is called mutation infinite.

By the above discussion, the quivers in Example 2.2.6 a-c are mutation finite, whereas the
quivers in Example 2.2.6 d are not. In general, it is difficult to decide whether a given quiver is
mutation finite.

To formulate a generalization of Example 2.2.6 c we wish to introduce a further piece of nota-
tion. If Q = (Q0, Q1, s, t) is a quiver, then we will call the graph on vertices Q0 such that there is
an edge from i to j for every arrow α : i → j in Q1 the underlying diagram Γ = Γ(Q) of Q. In this
case we also say that Q is an orientation of Γ. Note that a mutation at a sink or a source does not
change the underlying diagram. A graph is called a tree if it is connected and does not contain
closed paths.

Proposition 2.2.8. Any two orientations of the same tree are mutation equivalent.

Proof. Let T be a tree and let Q = (Q0, Q1, s, t) and Q′ = (Q0, Q′1, s′, t′) be orientations of T. We
claim that there exists a sequence (k1, k2, . . . , kr) ∈ Qr

0 of length r ≥ 0 such that (µk1 ◦ µk2 ◦ · · · ◦
µkr)(Q) ∼= Q′ and every mutation is a mutation at a sink or a source.

We prove the claim by mathematical induction on the number n = |Q0| of vertices. The case
n = 1 is trivial. Let n ≥ 2. By Euler’s formula the tree has n− 1 edges. Hence there must exist a
vertex i of T that is incident to only one edge. Let us denote the unique vertex that is adjacent to i
by j. By induction hypothesis there exists a sequence (j1, j2, . . . , js) of vertices in Q0\{i} such that
the mutations µj1 , µj2 , . . . , µjs transform the full subquiver of Q with vertices Q0\{i} into the full
subquiver of Q′ with vertices Q0\{i}. To transform Q into Q′ we use the same sequence of vertices
except that we possibly include µi before we perform µj to ensure that j is a sink or a source at that
step. The other mutations do not affect the vertex i. In this way we get a sequence of mutations at
sinks or sources that transform Q into Q′.

We say that a quiver is of type An if it has the same underlying diagram as the linearly oriented
quiver of type An. Proposition 2.2.8 implies that for a given natural number n ∈ N all quivers of
type An are mutation equivalent to each other.



2.2. QUIVER MUTATION 19

Figure 2.7: Three triangulations of a regular octogon

2.2.3 The mutation class of quivers of type A

In this section we wish to introduce a combinatorial model for the mutation class of quivers of
type A in terms of triangulations of a regular polygon. For every natural number n ≥ 3 let Pn be a
regular polygon with n vertices, embedded in the Euclidean plane. A line that joins two different
and non-consecutive vertices of Pn is called a diagonal. We say two diagonals d1, d2 are crossing if
d1 and d2 intersect in a point that lies in the interior of Pn. Let us start with a basic definition.

Definition 2.2.9 (Triangulation). Let n ≥ 1 be a natural number. A triangulation of the regular
(n + 3)-gon Pn+3 is a collection of non-crossing diagonals that dissect the polygon in triangles.

It is easy to see that every triangulation of Pn+3 contains exactly n diagonals and that it dissects
the polygon in n + 1 triangles. Furthermore, note that every diagonal in a triangulation borders
exactly two triangles. In other words, we could define a triangulation as a maximal collection
of pairwise non-crossing diagonals of Pn+3. Figure 2.7 shows three different triangulations of a
regular octogon.

Now let us fix a natural number n ≥ 1 and a regular polygon Pn+3. To every triangulation
T of Pn+3 we attach a quiver Q(T) = Q = (Q0, Q1, s, t) as follows. First of all, we put Q0 = T,
i.e. the vertices of Q correspond to the diagonals in the triangulation. We introduce an arrow
from the diagonal d1 to the diagonal d2 in Q1 whenever d1 and d2 are two sides of a triangle in
the triangulation such that d1 directly precedes d2 when traversing the boundary of the triangle in
counterclockwise orientation. For an example, Figure 2.8 displays the quivers associated with two
triangulations of the regular octogon.

•

• •

• •

•

•

•• •

Figure 2.8: The quiver attached to a triangulation

For every vertex v of Pn+3 there is a special triangulation Tv given by all the n diagonals that
are incident to v. An example is the first triangulation in Figure 2.7. Note that the quiver Q(Tv) is
a linearly oriented quiver of type An.



20 CHAPTER 2. WHAT ARE CLUSTER ALGEBRAS?

d
d′

Figure 2.9: The flip T  Fd(T) of a triangulation at a diagonal

Natural questions arise: Does a mutation of a quiver Q(T) for a triangulation T at a vertex
come again from triangulation? Can we even formulate the mutation rule geometrically? It turns
out that quiver mutation has a simple graphical description.

Definition 2.2.10 (Flips). Let d ∈ T be diagonal of a triangulation T of the regular polygon Pn+3.
If we remove the diagonal d from the triangulation, then the two triangles with side d merge into
a quadrilateral. Let d′ be the other diagonal of this quadrilateral. The flip of the triangulation T at
the diagonal d is the triangulation Fd(T) = (T ∪ {d′})\{d}.

By construction, the flip of a triangulation is again a triangulation. Just as the mutation the
flip is involutory, i.e. for all d and T we have Fd(Fd(T)) = T. Figure 2.9 shows an example of a
flip. Moreover, Figure 2.10 displays all 14 triangulations of a hexagon and their flips. The next
proposition relates flips of triangulations with mutations of quivers.

Proposition 2.2.11. Let d ∈ T be diagonal of a triangulation T of the regular polygon Pn+3. We
denote the quiver of the triangulation T by Q and the quiver of the flip Fd(T) by Q′. Then we have
Q′ ∼= µd(Q).

Proof. The diagonal d ∈ T is the side of two triangles of the triangulation. Thus the vertex d ∈ Q0
has at most two direct predecessors and at most two direct successors (depending on whether the
segments are sides or diagonals of Pn+3). Denote the direct predecessors and successors of d in Q
in the two triangles (if existent) by P1, P2, S1 and S2.

•
S2

P2

S1

P1
•

•

• •d

••

•

•

•

•

••

•

•

•

•

•
•

•

••

••

•

• P2

S1

P1

S2

d′

Let P′ be the quadrilateral with diagonals d and d′. The flip does not change the triangulation
outside of P′. So the arrows in Q′ that come from triangles outside of P′ remain the same as in Q.
But these arrows are neither incident to k nor do they connect a direct predecessor with a direct
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Figure 2.10: The triangulations of a hexagon and their flips
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n 0 1 2 3 4 5 6
Cn 1 1 2 5 14 42 132

Figure 2.11: The first Catalan numbers

successor, so they also remain the same under mutation according to rule M4. It is also evident
that inside P′ the arrows incident to d change direction in agreement with mutation rules M1 and
M2. Furthermore, arrows S1 → P1 and S2 → P2 vanish and arrows P1 → S2 and P2 → S1 appear
in agreement with mutation rule M3.

Especially, for every quiver Q of type An there is a triangulation T of Pn+3 such that Q = Q(T).
Hence, the triangulations form a combinatorial model for the mutation class of quivers of type
An. The simple description of the mutation by flips is one justification for the definition of quiver
mutation, which may seem unintuitive at first sight.

2.2.4 Catalan numbers

Definition 2.2.12 (Catalan numbers). The initial values C0 = C1 = 1 together with the recursion

Cn+1 =
n

∑
k=0

CkCn−k = C0Cn + C1Cn−1 + C2Cn−2 + . . . + CnC0

for all n ≥ 1 define an increasing sequence (Cn)n∈N of positive integers. Elements of the sequence
are called Catalan numbers.

The table in Figure 2.11 displays the first Catalan numbers. The numbers have a long and
colourful history. They are named after Eugène Charles Catalan, although Leonhard Euler had
already considered the sequence. In a famous exercise, Stanley [Sta, Exercise 6.19] enumerates
many combinatorial objects by Catalan numbers.

Proposition 2.2.13. The number of triangulations of the regular polygon Pn+3 is equal to the Cata-
lan number Cn+1.

Before we give a proof, let us note that the formula remains true for n ∈ {0,−1} if we adopt
the convention that the regular 2- and 3-gons admit exactly one triangulation (consisting of zero
diagonals).

Proof. We prove the claim by strong mathematical induction on n. It is obviously true for n = 1,
because a quadrilateral admits C2 = 2 triangulations.

Now assume that n ≥ 2. We label the vertices of Pn+3 consecutively and in counterclockwise
order with the numbers 1, 2, . . . , n + 3. Let T be a triangulation of Pn+3. Then we consider the
smallest number k ∈ {3, 4, . . . , n + 3} such that vertex 1 is connected with vertex k, either by a
diagonal or a side of Pn+3. The line 1k dissects the whole polygon in an k-gon P′ with vertices
1, 2, . . . , k and an (n + 5− k)-gon P′′ with vertices k, k + 1, k + 2, . . . , n + 3, 1. Inside P′ there must
be a triangle with side 1k. The third vertex of this triangle must be the vertex 2, because by
construction 1 is not connected to vertices 3, 4, . . . , k− 1. The line 2k dissects the polygon P′′ in the
triangle 12k and a polygon P′′′. So very triangulation T of Pn+3 induces a triangulation T′′ of the
(n + 5− k)-gon P′′ and a triangulation T′′′ of the (k− 1)-gon P′′′.

Conversely, every pair (T′′, T′′′) of triangulations an (n+ 5− k)-gon and an (k− 1)-gon defines
a triangulation T of Pn+3 such that k is smallest number connected to vertex 1.
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By induction hypothesis the number of triangulations of polygon P′′ is equal to Cn+3−k and
the number of triangulations of polygon P′′ is equal to Ck−3. We see that

n+3

∑
k=3

Cn+3−kCk−3 =
n

∑
k=0

Cn−kCk = Cn+1

is the number of triangulations of the regular polygon Pn+3.

2.2.5 Matrix mutation

In this section we wish to write the mutation rule in terms of matrices. Let us introduce the
following notations. For a real number x ∈ R we put [x]+ = max(0, x). Furthermore, we denote
the sign of x by sgn(x) ∈ {−1, 0, 1}.

Definition 2.2.14. Let n ∈ N be a natural number and k ∈ {1, 2, . . . , n} be an index. Suppose that
B = (bij)1≤i,j≤n ∈ Mat(n × n, Z) a skew-symmetric matrix. The mutation of B at k is the matrix
µk(B) = B′ = (b′ij)1≤i,j≤n ∈ Mat(n× n, Z) with entries

b′ij =

{
−bij, if i = k or j = k;
bij + sgn(bik)[bikbkj]+, otherwise.

Some authors formulate the mutation in a different way. For example, the reader sometimes
finds the formula 1

2 (bik|bkj|+ |bik|bkj) instead of sgn(bik)[bikbkj]+. The meaning to both formulae is
the same. It is zero unless the numbers bik, bkj are either both positive or both negative. In this case
the term is equal to ±|bikbkj| and the sign depends on the sign of bik and bkj.

Proposition 2.2.15. Let Q = (Q0, Q1, s, t) be a quiver without loops and 2-cycles. Let B = B(Q) be
the signed adjacency matrix and let k ∈ Q0 be any vertex of Q. Then the signed adjacency matrix
of the mutation µk(Q) of Q at k is equal to the mutation µk(B) of B at k.

Proof. Denote the entries of the signed adjacency matrices of Q and µk(Q) by B = (bij)i,j∈Q0 and
B′ = (b′ij)i,j∈Q0 . Let i, j ∈ Q0 be vertices. According to the rules M1 and M2 the mutation reverses
all arrows incident to k, i.e. b′ij = −bij if i = k or j = k. The above discussion shows that
sgn(bik)[bikbkj]+ = 0 unless i is a direct predecessor of k and j is a direct successor of k (in which
case bik > 0 and bkj > 0), or vice versa (in which case bik < 0 and bkj < 0). In both cases, by
the choice of the sign the addition of the term |bikbkj| corresponds to the augmentation of |bikbkj|
arrows from a direct predecessor to a direct successor. This product is equal to the number of paths
of length 2 from the direct predecessor to the direct successor via k, in agreement with mutation
rule M3. The deletion of 2-cycles does not affect the B-matrix.

2.2.6 Invariants of mutation

Often invariants are a useful tool to study sequences and dynamical system. Quiver mutation has
a trivial invariant, namely the number of vertices does not change under mutation. In contrast, the
number of arrows may change under mutation. This is one reason why we work with incidence
matrices instead adjacency matrices in this context. In fact, most graph theoretic properties are
not mutation invariant. For instance, acyclicity is not invariant under mutation as Example 2.2.6
(c) shows. See Exercise 2.4 for two numbers that actually remain invariant under matrix mutation,
namely the rank of the matrix and the greatest common divisor of the entries in a column.
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2.3 Cluster algebras attached to quivers

2.3.1 Generalities on algebras

Let us briefly recall some relevant notions from algebra. The material is classical, compare for
example Artin [Art], Assem-Simson-Skowronski [ASS], Bosch [Bos] and Scheja-Storch [SS].

Definition 2.3.1 (Ring). A ring is a triple (A,+, ·) that consists of a set A together with two binary
operations + : A × A → A, (x, y) 7→ x + y and · : A × A → A, (x, y) 7→ x · y such that the pair
(A,+) is an abelian group, the operation · is associative and distrubutive laws x · (y + z) = x · y +
x · z and (x + y) · z = x · z + y · z hold for all elements x, y, z ∈ A.

If (A,+, ·) is a ring, then we will denote the zero element in the abelian group (A,+) by the
symbol 0. Furthermore, we will say that the ring is unital if there exists an element 1 ∈ A such that
1 · x = x = x · 1 for all elements x ∈ A. In this case we will call the element 1 a unit. It is easy to
see that there can only be one unit.

Definition 2.3.2 (Algebra). Let k be a field. A k-algebra is a unital ring (A,+, ·) together with a bi-
nary operation · : k× A→ A, (λ, x) 7→ λ · x, called scalar multiplication, such that the abelian group
(A,+) together with the scalar multiplication forms k-vector space and the scalar multiplications
is compatible with the ring multiplication, i.e. the equations λ · (x · y) = (λ · x) · y = x · (λ · y)
hold for all scalars λ ∈ k and all elements x, y ∈ A

Examples of algebras include the polynomial ring k[X] in one variable, the polynomial ring
k[X1, X2, . . . , Xn] in several variables and the matrix algebra Mat(n× n, k) for every natural num-
ber n ∈ N. The first two examples are infinite-dimensional algebras whereas the third example is
a finite-dimensional algebra.

Sometimes we write ab instead of a · b for brevity. We say that the ring A is commutative if
xy = yx for all elements x, y ∈ A. For example, the polynomial algebra is commutative, but the
matrix algebra is not commutative.

Definition 2.3.3 (Subalgebra). Let (A,+, ·) be an algebra over a field k. A subalgebra is a k-vector
subspace B ⊆ A such that the identity 1 ∈ A lies in B and it it closed under multiplication, i.e. we
have b1b2 ∈ B for all elements b1, b2 ∈ B.

For example, k[x2] ⊆ k[x] is the subalgebra of the polynomial algebra of k-linear combinations
of powers of x with even degree.

Definition 2.3.4 (Generated subalgebra). Let (A,+, ·) be an algebra over a field k and (xi)i∈I a
family of elements xi ∈ A. The subalgebra generated by (xi)i∈I is the smallest subalgebra which
contains all elements of the family. We denote this algebra by k[xi : i ∈ I] and refer to the family
(xi)i∈I as a generating set. We say that A is finitely generated if there are finitely many elements
x1, x2, . . . , xn ∈ A such that A = k[x1, x2, . . . , xn].

For example, the polynomial algebra k[X1, X2, X3] is generated by the three elements X1, X2, X3.
For the rest of the section let us assume that (A,+, ·) is a commutative algebra over a field k. In this
case, the subalgebra generated by a family (xi)i∈I of elements is the set of all k-linear combinations
of monomials xa1

i1
xa2

i2
· . . . · xar

ir for all sequences (i1, i2, . . . , ir) ∈ Ir and (a1, a2, . . . , ar) ∈Nr and r ≥ 0.

Definition 2.3.5 (Zero divisors). A non-zero element x ∈ A is called a zero divisor if there exists an
element y ∈ A such that xy = 0. An algebra is called integral domain if it does not contain any zero
divisors.
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We say that a subset S ⊆ A is a multiplicative system if 1 ∈ S, 0 /∈ S and st ∈ S for all elements
s, t ∈ S. Assume that S ⊆ A is s multiplicative system. We say that two pairs (x, s), (y, t) in A× S
are equivalent if xt = sy. In this case we also write (x, s) ∼ (y, t). We see that the relation ∼
defines an equivalence relation on the set A× S: the relation clearly is reflexive and symmetric.
For transitivity, assume that (x, s) ∼ (y, t) and (y, t) ∼ (z, u) are equivalent pairs in A× S. The
equations xt = sy and yu = zt imply xut = suy = szt and thus (xu− sz)t = 0. Since t 6= 0 and A
is an integral domain, we conclude that xu = sz so that (x, s) ∼ (z, u).

Because of the similarity with identification of fractions, we also use the symbol x
s to denote

the equivalence class of (x, s) ∈ A× S in S−1A. Lastly, let us introduce the notation S−1A for the
set of equivalence classes.

Definition 2.3.6 (Localisation). Let A be an integral domain and S ⊆ A a multiplicative system.
The localisation of A at S is the ring (S−1A,+, ·) where we define addition and multiplication by
the formulae

x
s
+

y
t
=

xt + ys
st

∈ S−1A,
x
s
· y

t
=

xy
st
∈ S−1A

for all elements x
s , y

t ∈ S−1A. It is easy to see that both the addition and the multiplication are
well-defined, i.e. they are independent of the choice of the representatives of (x, s) and (y, t) in
A× S. Furthermore, S−1A inherits a k-vector space structure from A so that it is again an algebra.

Let us discuss two examples of localisations which will become important in the following
sections. First of all, note for every integral domain the set S = {x ∈ A : x 6= 0} is a multiplicative
system. The localisation of A at S is called the quotient field. For instance, for every natural number
n ∈ N the quotient field of the polynomial algebra k[X1, X2, . . . , Xn] is the field k(X1, X2, . . . , Xn)
of rational functions in n variables with coefficients in k.

For a second example note that the set of monomials {Xa1
1 Xa2

2 · . . . · Xan
n : (a1, a2, . . . , an) ∈ Nn}

is another multiplicative system in k[X1, X2, . . . , Xn]. The localisation is canonically isomorphic to
the algebra k[X±1

1 , X±1
2 , . . . , X±1

n ] of Laurent polynomials.

Definition 2.3.7 (Algebraic independence). Let k ⊆ F be a field extension. We say that the el-
ements u1, u2, . . . , un in F are algebraically dependent over the field k if there exists a polynomial
f ∈ k[X1, X2, . . . , Xn] with coefficients in k such that f (u1, u2, . . . , un) = 0. The elements are called
algebraically independent if they are not algebraically dependent.

2.3.2 Cluster algebras associated with quivers

Now we are ready to present Fomin-Zelevinsky’s definition of cluster algebras. Moreover, we
fix a natural number n ≥ 1. Furthermore, although there is a more general setup, we stick to
the case when the base field k = Q is the field of rational numbers. First of all, let us F be a
field extension of Q. Typically we have F = Q(u1, u2, . . . , un) for some algebraically independent
variables u1, u2, . . . , un. The field F is called the ambient field.

We present the definition of a cluster algebra in several steps.

Definition 2.3.8 (Cluster). A cluster is a sequence x = (x1, x2, . . . , xn) ∈ F n of algebraically inde-
pendent elements of length n. We refer to the elements in a cluster x ∈ F n as cluster variables.

If x = (x1, x2, . . . , xn) ∈ F n is a cluster, then the field F must contain the field Q(x1, x2, . . . , xn).
Thus, if we have a distinguished cluster x = (x1, x2, . . . , xn) ∈ F n, then the smallest possible field,
namely Q(x1, x2, . . . , xn), is a natural choice of an ambient field.

Definition 2.3.9 (Seed). A seed is a pair (x, Q) where x ∈ F n is a cluster and Q is a quiver with
vertices Q0 = {1, 2, . . . , n} without loops and 2-cycles.
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x1 x2

x3

x4

Figure 2.12: An example of a seed

Assume that (x, Q) and (x′, Q′) are two seeds given by clusters x, x′ ∈ F n and quivers Q =
(Q0, Q1, s, t) and Q′ = (Q′0, Q′1, s′, t′). We say that the seeds are isomorphic, if there exists a quiver
isomorphism given by two bijections σ : Q0 → Q′0 and τ : Q1 → Q′1 such that xi = x′σ(i) for all
indices i ∈ {1, 2, . . . , n}. In other word, two seeds are isomorphic if they are obtained from each
other by a simultaneous reordering of cluster variables and quiver vertices. In this case we write
(x, Q) ∼= (x′, Q′). Often we identify isomorphic seeds. We visualize a seed by drawing the quiver
in the plane with cluster variables instead of vertices, see Figure 2.12.

Definition 2.3.10 (Mutation of seeds). Let (x, Q) be a seed and k ∈ {1, 2, . . . , n} an index. The
mutation of (x, Q) at k is a seed µk(x, Q) = (µk(x), µk(Q)) where µk(Q) is the mutation of the
quiver Q at vertex k and µk(x) = (x′1, x′2, . . . , x′k) ∈ F n is the cluster with x′l = xl if l 6= k and

x′k =
1
xk

(
∏

α : i→k
xi + ∏

β : k→j
xj

)
∈ F .

Here the product is taken over all arrows in α ∈ Q1 that start or terminate in vertex k, respectively,
counted possibly with multiplicity. Of course, the product is understood to be 1 if there are no
such arrows.

Remark 2.3.11. Let B = B(Q) is the signed adjacency matrix of the quiver Q in a seed (x, Q), then
we can rewrite the above equation as

xkx′k = ∏
α : i→k

xi + ∏
β : k→j

xj = ∏
i∈{1,2,...,n} : bik>0

xbik
i + ∏

i∈{1,2,...,n} : bik<0
x−bik

i

The equation is also called exchange relation.

Remark 2.3.12. It is easy to see that the mutation is well-defined, i.e. the mutation of a seed at
an index is again a seed. Moreover, mutation is involutory, i.e. for all seeds (x, Q) and all indices
k ∈ {1, 2, . . . , n} we have (µk ◦ µk)(x, Q) ∼= (x, Q): the equation (µk ◦ µk)(x) = x is true, because
quiver mutation rules M1, M2 switch the roles of direct predecessors and direct successors, and
Proposition 2.2.3 implies (µk ◦ µk)(Q) ∼= Q.

Mutation equivalence defines an equivalence relation on the class of all quivers without loops
and 2-cycles: it clearly is transitive and reflexive and it is symmetric by Proposition 2.2.3. If the
quivers Q and Q′ are mutation equivalent, then we will also write Q ∼ Q′.

Definition 2.3.13 (Mutation equivalence). We say that two seeds (x, Q) and (x′, Q′) are mutation
equivalent if there exists a sequence (k1, k2, . . . , kr) ∈ Qr

0 of indices of length r ≥ 0 such that the seed
(µk1 ◦ µk2 ◦ · · · ◦ µkr)(x, Q) is isomorphic to (x′, Q′). In this case, we also write (x, Q) ∼ (x′, Q′).

Definition 2.3.14 (Cluster algebra). Let (x, Q) be a seed. The cluster algebraA(x, Q) attached to the
seed is the subalgebra of the ambient field F generated by the set

χ(x, Q) =
⋃

(x′,Q′)∼(x,Q)

{x′1x′2, . . . , x′n}.
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x1
x2

1+x3x4
x2

x3

x4

1+x2
2

x1
x2

x3

x4

Figure 2.13: The mutations of the previous seed at vertices 2 and 1

In other words it is generated by all cluster variables in all seeds that are mutation equivalent to
the given seed. We also call the seeds (x′, Q′) ∼ (x, Q) the seeds of the cluster algebra A(x, Q), the
clusters x′ the clusters of the cluster algebraA(x, Q) and the elements in χ(x, Q) the cluster variables
of the cluster algebra A(x, Q). We denote the variable x′k also by µk(xk).

Let us make some remarks. First of all, since all cluster variables of a cluster algebra A(x, Q)
lie in the subfield Q(x1, x2, . . . , xn) ⊆ F , the definition is independent of the choice of the ambient
field. Of course, if the seeds (x, Q) and (x′, Q′) are mutation equivalent, then the cluster algebras
A(x, Q) = A(x′, Q′) are the same. Moreover, if y ∈ Gn is another cluster of the same length (in
a another ambient field G), then the cluster algebras A(x, Q) ∼= A(y, Q) are isomorphic algebras.
Therefore, we sometimes write A(Q) instead if A(x, Q).

If we think of the cluster algebra as being associated with a distinguished seed (x, Q), then we
will refer to this seed as the initial seed. Moreover, we will refer to the natural number n ∈ N as
the rank of the cluster algebra A(x, Q).

Example 2.3.15. (a) Let Q be a quiver of type A1, i.e. the quiver has a single vertex and no
arrows. A cluster x = (x1) contains only one element and is mutation equivalent to only one
other cluster ( 2

x1
). Thus, up to isomorphism the cluster algebra A(x, Q) admits two seeds,

two clusters and two cluster variables and it is isomorphic to the algebra Q[x±1
1 ] of Laurent

polynomials in one variable.

(b) Let Q be the quiver 1 → 2 of type A2. We choose an initial seed x1 → x2. Seed mutation
yields the following mutation equivalence classes of seeds.

x1 → x2

1+x2
x1
← x2

1+x1
x2
→ 1+x1+x2

x1x2

1+x1
x2
← 1+x1+x2

x1x2

1+x1
x2
→ x1

We get five (isomorphism classes ) of seeds, five clusters and five cluster variables. Note the
occurring terms are the same as in the introductory example from Section 1.1. Surprisingly,
there are only finitely many cluster variables and all of them are elements in the Laurent
polynomial ring Q[x±1

1 , x±1
2 ] ⊆ Q(x1, x2).

The cluster algebra is the subalgebra of Q(x1, x2) generated by the set

χ =

{
x1, x2,

1 + x1

x2
,

1 + x2

x1
,

1 + x1 + x2

x1x2

}
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1+x2+x1 x3
x1 x2

1+x1 x3
x2

1+x2+x1 x3
x2 x3

x1

1+x1 x3
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1+x2+x1 x3
x2 x3

1+x2+x1 x3
x1 x2
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x2

x3

x1

x2
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x2

x3

1+x2
x1

x2

1+x2
x3

1+x2
x1

1+2x2+x2
2+x1 x3

x1 x2 x3

1+x2
x3

1+x2+x1 x3
x2 x3

1+2x2+x2
2+x1 x3

x1 x2 x3

1+x2
x3

1+x2
x1

1+2x2+x2
2+x1 x3

x1 x2 x3

1+x2+x1 x3
x1 x2

1+x2+x1 x3
x2 x3

1+2x2+x2
2+x1 x3

x1 x2 x3

1+x2+x1 x3
x1 x2

x1

1+x2
x3

1+x2+x1 x3
x2 x3

1+x2+x1 x3
x1 x2

1+x2
x1

x3

Figure 2.14: The clusters associated with quivers of type A3
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of cluster variables. The generating set is redundant. Note that

1 + x1 + x2

x1x2
=

1 + x2

x1
· 1 + x1

x2
− 1.

So that this generating set is not minimal with respect to inclusion, because a removal of this
cluster variable yields the same subalgebra. Note that also x2 = 1+x2

x1
· x1 − 1. We conclude

A(x, Q) ∼= Q

[
x1,

1 + x1

x2
,

1 + x2

x1

]
∼= Q[U, V, W]/(UVW −U −V − 1)

is actually the coordinate ring of a 2-dimensional hypersurface in 3-dimensional space.

(c) Let Q be a quiver of type A1 × A1, i.e. the quiver has two vertices and no arrows. A clus-
ter x = (x1) contains only two algebraically independent variables and its seed is mutation
equivalent to three other seeds with clusters (x1, 2

x2
), ( 2

x1
, x2) and ( 2

x1
, 2

x2
). Thus, the cluster

algebra A(x, Q) admits four seeds, four clusters and four cluster variables and it is isomor-
phic to the algebra Q[x±1

1 , x±2 ] of Laurent polynomials in two variables.

(d) Let Q be the quiver 1 → 2 → 3 of type A3. We choose an initial seed x1 → x2 ← x3. The
calculations in Figure 2.14 shows that the cluster algebra has 9 cluster variables grouped into
14 seeds. As in the previous example, there are only finitely many cluster variables and all
of them are elements in the Laurent polynomial ring Q[x±1

1 , x±1
2 , x±1

3 ] ⊆ Q(x1, x2, x3).

Note that Figure 2.14 has the same shape as Figure 2.10. The shape is known as associahedron
or Stasheff polytope. Generalising the example, we define the exchange graph of a cluster algebra
A(x, Q) as follows: the vertices are the isomorphism classes of seeds that are mutation equivalent
to the seed (x, B) and we connect two vertices by an arrow if they are related by a single mutation.
Note that the exchange graph is always n-regular, i.e. every vertex is adjacent to exactly n vertices.

2.4 Skew-symmetrizable matrices, ice quivers and cluster algebras

We wish to generalize the notion of cluster algebras in two ways. Firstly, we forbid mutations
at certain indices which we call frozen indices. Secondly, we replace the class of quivers without
loops and 2-cycles, which are given by skew-symmetric matrices due to the discussion in Section
2.2.1, with the larger class of skew-symmetrizable matrices. For the rest of the section, let us fix
integers m, n with m ≥ n ≥ 1.

Let B̃ = (bij) be an m× n matrix with integer entries. Let us write the matrix

B̃ =

[
B
C

]
in block form, where B is an n× n-matrix B and C an (m− n)× n-matrix. We refer to the matrix B
as the principal part of B̃. We call the principal part B skew-symmetrizable if there exists a diagonal
n× n matrix D = diag(d1, d2, . . . , dn) with positive integer diagonal entries such that the matrix
DB is skew-symmetric, i.e. the equation dibij = −djbji holds for all 1 ≤ i, j ≤ n. In this case, the
matrix D is called a skew-symmetrizer for B̃. Notice that an entry bij of a skew-symmetrizable matrix
is different from zero if and only if the entry bji is different from zero. In this case, the entries have
different sign. We call the matrix B̃ an exchange matrix if the principal part is skew-symmetrizable.

We say that two exchange matrices B̃ = (bij) and B̃′ = (b′ij) are isomorphic if there exists a
permutation σ ∈ Sm such that σ(j) ∈ {1, 2, . . . , n} for all j ∈ {1, 2, . . . , n} and bij = bσ(i),σ(j) for all
i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}.
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Let B̃ be an exchange matrix. We call the indices k ∈ {1, 2, . . . , n} mutable and the indices
k ∈ {n + 1, n + 2, . . . , m} frozen. A mutation of B̃ at a mutable index k is the matrix m× n matrix
µk(B̃) = B̃′ = (b′ij) with entries

b′ij =

{
−bij, if k ∈ {i, j};
bij + sgn(bik)[bikbkj]+, otherwise.

The principal part of the mutation B̃′ is skew-symmetrizable with the same skew-symmetrizer D:
the equations di sgn(bik)[bikbkj]+ = −dj sgn(bjk)[bjkbki]+ for all i, j become obvious after multipli-
cation with dk.

Let k be a field of characteristic 0 and F a field extension. An extended cluster is a sequence
x = (x1, x2, . . . , xm) of algebraically independent elements in the ambient field F . An extended seed
is a pair (x, B̃), where x is an extended cluster and B̃ is an exchange matrix. The mutation of a seed
(x, B̃) at a mutable index k is defined by the same formulae as above: we replace the variable xk in
the extended cluster by the element

x′k =
1
xk

 ∏
bik>0

xbik
i + ∏

bjk<0
x
−bjk
j

 ∈ F ,

where the sum is taken over all mutable and frozen indices i, j ∈ {1, 2, . . . . , m}, and replace the
exchange matrix B̃ with its mutation µk(B̃). As before, the mutation is well-defined and involutory.
It defines an equivalence relation on the class of all extended seeds that we will denote by ∼.

Let (x, B̃) be an extended seed. Authors consider two versions of cluster algebras in this con-
text. The cluster algebra without invertible coefficients A(x, B̃) attached to the seed is the subalgebra
of the ambient field F generated by the set

χ(x, B̃) =
⋃

(x′,B̃′)∼(x,B̃)

{x′1, x′2, . . . , x′m}.

The cluster algebra with invertible coefficients A(x, B̃)inv attached to the seed is the subalgebra of the
ambient field F generated by the set

χ(x, B̃)inv =

 ⋃
(x′,B̃′)∼(x,B̃)

{x′1x′2, . . . , x′n}

 ∪ {x−1
n+1, x−1

n+2, . . . , x−1
m }.

We will refer to the elements x′1, x′2, . . . , x′n in the above union as the cluster variables of the cluster
algebra and to the elements xn+1, xn+2, . . . , xm as the frozen variables of the cluster algebra. We will
refer to the number n of cluster variables in a single cluster as the rank of the cluster algebra.

For example, a cluster algebra A(x, B̃) of rank 1 admits two extended clusters (x1, x2, . . . , xm)
and (x′1, x2, . . . , xm). Thus, it is isomorphic to the coordinate ring k[X′1, X1, X2, . . . , Xm]/(X1X′1− P)
of an m-dimensional hypersurface for some polynomial P ∈ k[X2, . . . , Xm].

Let us remark that the cluster algebras A(x, B̃) and A(x,−B̃) are naturally isomorphic for all
extended clusters x and all exchange matrices B̃, because they have the same exchange relations.

An ice quiver is a quiver Q = (Q0, Q1, s, t) without loops and 2-cycles together with a partition
of the set of vertices Q0 = M t F into two sets, called mutable and frozen vertices, such that the
starting and terminating point of an arrow α ∈ Q1 cannot both be frozen vertices. An isomorphism
between ice quivers Q = (Q0, Q1, s, t) and Q′ = (Q′0, Q′1, s′, t′) is an isomorphism ( f0, f1) of quivers
such that f0 : Q0 → Q′0 maps mutable vertices to mutable vertices and frozen vertices to frozen
vertices. The mutable part of an ice quiver Q is the full subquiver on the set of mutable vertices.
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Let Q = (Q0, Q1, s, t) be an ice quiver with mutable vertices M = {1, 2, . . . , n} and frozen
vertices F = {n + 1, n + 2, . . . , m}. For i ∈ Q0 and j ∈ M let bij = aij − aji. Then the m × n
matrix B(Q) = (bij) is an exchange matrix with a skew-symmetric principal part. The denote the
corresponding cluster algebra by A(x, Q). Conversely, an exchange matrix with skew-symmetric
principal part defines an ice quiver.

For example, let Q be the ice quiver with one mutable vertex 1, one frozen vertex 2 and one
arrow 1 → 2. Let (x1, x2) be an initial extended cluster. Then the cluster algebra A(x, Q) without
invertible coefficients admits two seeds, (x1, x2) and (y1, x2) where the two cluster variables x1
and y1 satisfy x1y1 = 1+ x2. As x1 and y1 are algebraically independent,A(x, Q) ∼= k[x1, y1] is iso-
morphic to a polynomial ring. We obtain the cluster algebraA(x, Q)inv with invertible coefficients
by localizing at the multiplicatively closed set generated by the element x1y1 − 1.

Let B̃ be an exchange matrix. For further use let us define an ice quiver Q(B̃) with vertex sets
M = {1, . . . , n} and F = {n + 1, . . . , m} by introducing an arrow i → j between two vertices
i ∈ Q0 and j ∈ M if and only if bij > 0 and by drawing an arrow j → i between two vertices
i ∈ F and j ∈ M if and only if bji < 0. We say that the seed (x, B̃) is acyclic if the mutable part of
the quiver Q(B̃) does not contain an oriented cycle. In this case, we also call the matrix B̃ acyclic.
Finally, we call the cluster algebra A(x, B̃) acyclic if it admits an acyclic seed.

2.5 Exercises

Exercise 2.1. Let Q be the following acyclic quiver with four vertices and three arrows:

3

4

1 2

(a) Compute µ2(Q).

(b) Describe the mutation class of Q.

Exercise 2.2. Let Q be the following quiver:

3 4

1 2

(a) Compute the mutations µ1(Q), µ2(Q) and µ2(µ2(Q)).

(b) Among the four quivers Q, µ1(Q), µ2(Q) and µ2(µ2(Q)), decide which pairs are isomorphic.

Exercise 2.3. Construct all triangulations of a regular pentagon. What are their flips?

Exercise 2.4. Let n ∈N be a natural number and B a skew-symmetric matrix with integer entries.
Assume that k ∈ {1, 2, . . . , n} and B′ = µk(B) is the mutation of B at k.
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(a) Prove that the rank is mutation invariant, i.e. prove that rank(B) = rank(B′).

(b) Prove that the greatest common divisor of the entries in a column is mutation invariant, i.e.
prove that the equation gcd(bij : i ∈ {1, 2, . . . , n}) = gcd(b′ij : i ∈ {1, 2, . . . , n}) holds for all
j ∈ {1, 2, . . . , n}.
(This observation is due to Jan Schröer.)

Exercise 2.5. Let Q = (Q0, Q1, s, t) the quiver with vertices Q0 = {1, 2, 3} and arrows 1→ 2, 2→ 3
and 1→ 3. Describe the mutation class of Q.

Exercise 2.6. Use Keller’s applet to prove that the following quivers are mutation to quivers whose
underlying diagram is a tree (and hence they are mutation equivalent to acyclic quivers).

1 2

3 4

1 2 3

4 5 6

(This observation was pointed out by Andrew Hubery.)

Exercise 2.7. LetA(x, Q) be the cluster algebra attached to the seed x1 → x2 ← x3 of type A3 from
Example 2.3.15 (c). Then the set of cluster variables

χ(x, Q) =

{
x1, x2, x3,

1 + x2

x1
,

1 + x1x3

x2
,

1 + x2

x3
,

1 + x2 + x1x3

x1x2
,

1 + x2 + x1x3

x2x3
,
(1 + x2)2 + x1x3

x1x2x3

}
,

is by definition a generating set of the cluster algebra. In this exercise we want to convince our-
selves that this generating set is not minimal with respect to inclusion at all.

(a) Let us introduce the abbreviations u = x1, v = x3, w = 1+x2
x1

, t = 1+x2+x1x3
x2x3

. Write every
cluster variable in χ(x, Q) as a polynomial expression in u, v, w, t.

(b) Prove that the cluster algebraA(x, Q) is isomorphic to the coordinate ring of a 3-dimensional
hypersurface in 4-dimensional space.

Exercise 2.8. In this exercise we wish to establish a left and right symmetry in the definition of a
skew-symmetrizable matrix. Let n be a positive integer. Prove that an n× n matrix B̃ with integer
entries is skew-symmetrizable if and only if there exists a diagonal matrix D = diag(d1, d2, . . . , dn)
with positive integer entries such that BD is skew-symmetric.
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Examples of cluster algebras

3.1 Sequences and Diophantine equations attached to cluster algebras

A Diophantine equation is a polynomial equation in one or several variables over the integers that
we wish to solve also over the integers. As the tenth in the famous list of problems David Hilbert
asks for an algorithm to solve every Diophantine equation. Matiyasevich’s theorem asserts that
no algorithm exists. Thus, particular methods to solve Diophantine equations are particularly
interesting. In this section we wish to illustrate how cluster theory can help to solve particular
Diophantine equations.

3.1.1 Sequences associated with cluster algebras

Let A(x, Q) be a cluster algebra of rank n ∈ N associated with a quiver Q with vertices Q0 =
{1, 2, . . . , n}. Let us consider the vertex 1 ∈ Q0. Proposition 2.2.3 asserts that µ1(µ1(Q)) ∼= Q.
By chance, we sometimes have µ1(Q) ∼= Q. In this section we wish to construct a sequence of
distinguished cluster variables in this situation.

Suppose that the mutation µ1(Q) = Q′ = (Q0, Q′1, s′, t′) is isomorphic to the original quiver
Q = (Q0, Q1, s, t). Then, by definition the isomorphism is given by two bijections σ : Q0 → Q0
and τ : Q1 → Q′1. For simplicity suppose that the bijection σ is the cyclic permutation (123 . . . n).
Let us denote the cluster variable x′1 = µ1(x1) by the symbol xn+1. A cyclic reordering trans-
forms the mutated cluster µ1(x, Q) = (x′1, x2, . . . , xn) into the cluster (x2, x3, . . . , xn, xn+1). We see
that the mutated seed µ1(x, Q) is isomorphic to the seed ((x2, x3, . . . , xn+1), Q)) with the same
quiver Q. If we iterate this process, we get a sequence of cluster variables (xi)i∈N+ . More-
over, there is a single Laurent polynomial P ∈ Z[X1, X2, . . . , Xn] such that the recursive formula
xn+i = P(xi, xi+1, . . . , xi+n−1) holds true for all indices i ≥ 1. Using this formula we can extend the
sequence to a sequence (xi)i∈Z. Note that the xi with i ≤ 0 are also cluster variables of the cluster
algebras A(x, Q).

The above discussion is very theoretical. Do such situations actually exist? In the following
sections we will see that desired isomorphisms µk(Q) ∼= Q occasionally exist and we will study
the associated sequences for these examples.

3.1.2 Cluster algebras attached to quivers with 2 vertices

Let us study such sequences for some examples. First of all, all cluster algebras of rank 2 have this
properties. Consider the quiver Q(b) from Example 2.2.6 with two vertices 1, 2 and b ≥ 1 arrows
1→ 2. As we have already mentioned in a previous section, we have an isomorphism µ1(Q) ∼= Q

33
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of quiver, so that we can construct a sequence of cluster variables as above. The first elements
in the sequence are the initial cluster variables x1, x2 ∈ F . We can use the following recursion
formulae to compute the elements xi with i ≥ 2 and i ≤ 0, respectively:

xi+2 =
1 + xb

i+1

xi
, xi−2 =

1 + xb
i−1

xi
.

More symmetrically, we can write the recursion as xi+1xi−1 = xb
i + 1 for all i ∈ Z.

Let us look at the cases b = 1, 2 in more detail. We have already studied the case b = 1,
in which Q is a quiver of type A2. The computations in Example 2.3.15 show that the sequence
(xi)i∈Z becomes a 5-periodic sequence

. . . , x1, x2,
1 + x2

x1
,

1 + x1 + x2

x1x2
,

1 + x1

x2
, x1, x2,

1 + x2

x1
, . . .

of Laurent polynomials in x1 and x2, with integer coefficients. Hence the cluster algebra is of finite
type. Now let us consider the case b = 2. The quiver Q(2) is known as the Kronecker quiver,
because Leopold Kronecker classified the representations of the quiver. Some clusters are shown
in Figure 3.1 and some cluster variables in the sequence (xi)i∈Z are the following:

. . . ,
1 + x2

1
x2

, x1, x2,
1 + x2

2
x1

,
1 + 2x2 + x2

2 + x1

x2
1x2

,
1 + 3x2 + 3x2

2 + x3
2 + 2x1 + 2x1x2 + x2

1

x3
1x2

2
, . . .

By Exercise 1.2 the sequence is not periodic so that the cluster algebra is of infinite type. Never-
theless the sequence several remarkable properties. As we have mentioned in Section 2.2.6, it is
useful to study a sequence by its invariants. Surprisingly, the sequence (xi)i∈Z admits an invariant.

Proposition 3.1.1. Let Q be the Kronecker quiver and (xi)i∈Z the sequence of cluster variables of
the cluster algebra A(x, Q). Then the rational expression

T(i) =
1 + x2

i + x2
i+1

xixi+1
∈ F

is independent of i ∈ Z and hence an invariant.

Proof. Let i ∈ Z be an integer. Then the elementary calculations

1 + x2
i + x2

i+1

xixi+1
=

x2
i + xixi+2

xixi+1
=

xi + xi+2

xi+1
=

xixi+2 + x2
i+2

xi+1xi+2
=

1 + x2
i+1 + x2

i+2

xi+1xi+2
.

imply that T(i) = T(i + 1) for all i ∈ Z. Hence the expression remains unchanged when we pass
from i ∈ Z to i + 1 and we have T(i) = T(j) for all i, j ∈ Z by mathematical induction.

Let us denote this element by T = T(i) ∈ F . Note that T is actually in element in the cluster
algebra A(x, Q), because we can write the element as T = x0x3 − x1x2. Moreover, the above
calculation shows that Txi = xi−1 + xi+1 for all i ∈ Z. In other words, the non-linear exchange
relation xi+1xi−1 = x2

i + 1 for all i ∈ Z degenerates to the linear recurrence relation xi+1 + xi−1 =
Txi for all i ∈ Z. As further consequence we can conclude on the one hand that the cluster algebra
A(x, Q) ∼= Q[x1, x2, T] = Qx0, x1, x2, x3 is finitely generated and isomorphic to the coordinate ring
Q[X1, X2, Y]/(X2

1 + X2
2 + 1− X1X2Y) of a hypersurface . On the other hand we can conclude that

all cluster variables are Laurent polynomials in x1 and x2.

If we specialize x1 = x2 = 1, then the positive part sequence of cluster variables specializes
to the sequence ( fi)i∈N from the solution of Exercise 1.2 which is defined by the starting values
f0 = f1 = 1 and the recursion fi+1 + fi−1 = 3 fi. (And we had noticed the degeneration of the
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 · · ·x1 x2  x2 x3  x3 x4

Figure 3.1: The sequence of cluster variables for the Kronecker quiver

non-linear exchange relation to a linear exchange relation already in the solution of that exercise.)
Proposition 3.1.1 shows that the specialized clusters ( fi, fi+1) for all i ∈ N are integer solutions to
the quadratic Diophantine equation a2 + b2 + 1 = 3ab. The next proposition asserts that we can
characterize the sequence by this property.

Proposition 3.1.2. Let (a, b) ∈ N×N be a pair of natural numbers such that a2 + b2 + 1 = 3ab.
Then there exists a natural number i ∈N such that (a, b) = ( fi, fi+1) or (b, a) = ( fi, fi+1).

Proof. We prove the proposition by mathematical induction on max(a, b). It is clear that if a = 0
or b = 0, then the pair (a, b) ∈ N×N can not be a solution of the equation a2 + b2 + 1 = 3ab.
Therefore, the pair (1, 1) is the only solution with a, b ≤ 1. Furthermore, it is the only solution
with a = b.

Now let us suppose that (a, b) ∈N×N is a solution where at least one of the entries is strictly
larger than 1. Without loss of generality we can assume that a < b so that b > 1. Let us fix a. Then
X2 + a2 + 1− 3aX = 0 is a quadratic equation with root b. Let b′ be the unique other root of this
quadratic equation. By Viete’s Theorem we have b′ = 3a− b and bb′ = a2 + 1. The pair (b′, a) is
again a solution with positive integers. We claim that max(b′, a) < max(b, a). We have a < b by
assumption and b′ < b, because otherwise the chain of inequalities a2 + 1 = bb′ ≥ b2 ≥ (a + 1)2

would be true, which is impossible. By induction hypothesis there exists a natural number i ∈ N

such that (b′, a) = ( fi−1, fi). We conclude that (a, b) = ( a2+1
b , b) = ( fi, fi+1).

In other words, the cluster transformations µ1 : (a, b) 7→ ( 1+b2

a , b) and µ2 : (a, b) 7→ (a, 1+a2

b )
generate, starting from the initial solution (1, 1), all positive solutions of the Diophantine equation
a2 + b2 + 1 = 3ab. More precisely, the pairs (µ1 ◦ µ2 ◦ µ1 . . .)(1, 1) yield the positive solutions (a, b)
with a > b and the pairs (µ2 ◦ µ1 ◦ µ2 . . .)(1, 1) yield the positive solutions (a, b) with a < b.

3.1.3 Cluster algebras of rank 2

Let us amplify the discussion in Section 3.1.1. We replace quivers, which correspond to skew-
symmetric exchange matrices, by skew-symmetrizable matrices. A non-zero skew-symmetrizable
2 × 2 matrix has the form B =

(
0 −b
c 0

)
for some non-zero integers b and c with the same sign.

Without loss of generality let us assume that b, c > 0 or b = c = 0. Let x = (x1, x2) be an initial
cluster. Then the cluster variables form a sequence (xn)n∈Z. The exchange relation from some
cluster (xn−1, xn) to the neighboring cluster (xn, xn+1) is

xn+1xn−1 =

{
xb

n + 1, if n is even;
xc

n + 1, if n is odd;

for all n ∈ Z. Thus, without loss of generality we may assume c ≥ b. For brevity, we denote the
corresponding cluster algebra by A(b, c).

In the case (b, c) = (1, 2) the sequence (xn)n∈Z is periodic with period 6, as an elementary
calculation shows (compare also Section 1.1):

. . . , x1, x2,
x2

2 + 1
x1

,
x1 + x2

2 + 1
x1x2

,
x2

1 + 2x1 + 1 + x2
2

x1x2
2

,
x1 + 1

x2
, x1, x2, . . .
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In a similar spirit, the sequence (xn)n∈Z is periodic with period 8 in the case (b, c) = (1, 3) (com-
pare also Exercise 1.1):

. . . , x1, x2,
x3

2 + 1
x1

,
x1 + x3

2 + 1
x1x2

,
x3

1 + 3x2
1 + 3x1 + 1 + 2x3

2 + 3x1x3
2 + x6

2

x2
1x3

2
,

x2
1 + 2x1 + 1 + x3

1

x1x3
2

,
x3

1 + 3x2
1 + 3x1 + 1 + x3

2

x1x3
2

,
x1 + 1

x2
, x1, x2, . . .

The next proposition asserts that these two example together with the cluster algebras of type A2
are the only instances of coefficient-free cluster algebras of rank 2 with only finitely many cluster
variables.

Proposition 3.1.3. The cluster algebra A(b, c) admits only finitely many cluster variables if and
only if bc ∈ {0, 1, 2, 3}.

Proof. The example show thatA(b, c) admits only finitely many cluster variables if bc ∈ {0, 1, 2, 3}.
For the reverse direction, suppose that bc ≥ 4. We specialize x1 = x2 = 1 and show that the
sequence of specialized cluster variables (x2n)n∈N+ is strictly increasing, hence the corresponding
non-specialized cluster variables are pairwise different. We prove the statement by mathematical
induction. By definition, we have x3 = 2 and so x4 = 2c + 1 > 1 = x2. Assume that the positive
integer n is even. By definition, the exchange relations

xn−2xn = xc
n−1 + 1, xn−1xn+1 = xb

n + 1, xnxn+2 = xc
n+1 + 1

hold. It follows that xc
n−1xc

n+1 = (xb
n + 1)c and (xn−2xn − 1)(xnxn+2 − 1) = (xb

n + 1)c. So the
inequality xn+2 > xn is equivalent to the inequality (xn−2xn − 1)(x2

n − 1) < (xb
n + 1)c. Inequality

bc ≥ 4 implies that we either have b, c ≥ 2 or we have b = 1 and c ≥ 4. As the first case, suppose
that b, c ≥ 2. It suffices to show that (xn−2xn − 1)(x2

n − 1) < (x2
n + 1)2, which is equivalent to

the obvious inequality xn−2x3
n < x4

n + 3x2
n + xn−2xn. As the second case, suppose that b = 1 and

c ≥ 4. It suffices to show that (xn−2xn− 1)(x2
n− 1) < (xn + 1)4, which is equivalent to the obvious

inequality xn−2x3
n < x4

n + 4x3
n + 7x2

n + 4xn + xn−2xn.

3.1.4 An example of rank 3

For a second example, let n ∈N be a natural number. Let us consider the quiver Q = (Q0, Q1, s, t)
with vertices Q = {1, 2, . . . , n} where we introduce exactly one arrow i → j whenever i < j. Then
Q is an acyclic quiver and the vertices are in topological order. Then it is easy to see that the quiver
µ1(Q) is isomorphic to Q and an isomorphism is given the permutation (12 . . . n). Let (xi)i∈Z be
the associated sequence of cluster variables.

 · · ·

x1

x2

x3

 

x2

x3

x4

 

x3

x4

x5

Figure 3.2: Another sequence of cluster variables

For simplicity let us assume that n = 3. In this case the sequence (xi)i∈Z is given by the initial
cluster (x1, x2, x3) ∈ F 3 and the recursion formula

xi+3 = P(xi, xi+1, xi+2) =
1 + xi+1xi+2

xi
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for i ∈ Z. Figure 3.2 illustrates the sequence of clusters. The situation is in some respects very dif-
ferent from the Kronecker case. For example, as we mutate every cluster at only two vertices, we
cannot expect every cluster variables to appear in the sequence. On the other hand the sequence
shares certain features with the cluster algebra of the Kronecker quiver. Surprisingly, the sequence
also admits an invariant. More precisely:

Proposition 3.1.4. The following rational expression is independent of i ∈ Z:

T = T(i) =
xi−1 + xi+1 + xi(x2

i−1 + x2
i+1)

xi−1xixi+1
.

Proof. Let i ∈ Z and (r, s, t) = (xi−1, xi, xi+1). Put xi+2 = 1+st
r = r′. Then we have

s + r′ + t[s2 + (r′)2]

str′
=

sr2 + (1 + st)r + t[r2s2 + (1 + st)2]

rst(1 + st)
=

r + t + sr2 + st2

rst
,

which implies the claim.

Remark 3.1.5. For all i ∈ Z we have

Txi+1 − xi−1 =
xi−1 + xi+1 + xix2

i+1

xi−1xi
=

1 + xi+1xi+2

xi
= xi+3.

As in the case of the Kronecker quiver, the non-linear recurrence relation xi+3 = P(x1, x2, x3) for
all i ∈ Z degenerates to the linear recurrence relation xi+2 + xi−2 = Txi for all i ∈ Z. Especially,
all occuring terms are Laurent polynomials in x1, x2 and x3.

As above, let us specialize x1 = x2 = x3 = 1. The table in Figure 3.3 lists the first elements
in the sequence. The linear recurrence relation implies that all elements are natural numbers.
Because T specializes to 4, all specialized clusters (xi, xi+1, xi+2) for i ∈ N+ are solution to the
quadratic Diophantine equation a + c + b(a2 + c2) = 4abc. For example, the triples (1, 1, 1),
(1, 1, 2), (1, 2, 3) and 2, 3, 7 are solutions to this equation. However, not every solution of the
equation comes from such a triple as the solution (6, 1, 2) shows: the sequence (xi)i∈N is weakly
increasing, so we have xi ≤ xi+1 ≤ xi+2 for all natural numbers i ≥ 1.

i 1 2 3 4 5 6 7 8
xi 1 1 1 2 3 7 11 26

Figure 3.3: The sequence of specialized cluster variables

3.1.5 Somos sequences and cluster algebras

Let k ≥ 2 be an integer. The k-Somos sequence is a sequence (ai)i∈N+ of rational numbers defined
by starting values a1 = a2 = . . . , ak = 1 and the recursion

ai+k =
1
ai

bk/2c

∑
r=1

ai+k−rak+r.

for all natural numbers i ≥ 1. For instance, the k-Somos sequence is constant for k ∈ {2, 3}. The
first non-trivial cases are k = 4, in which case recursion becomes ai+4ai = ai+3ai+1 + a2

i+2, and
k = 5, in which case recursion becomes ai+5ai = ai+4ai+1 + ai+3ai+2. The following table lists
elements of these Somos sequences.
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i 1 2 3 4 5 6 7 8 9 10
Somos 4 ai 1 1 1 1 2 3 7 23 59 314
Somos 5 ai 1 1 1 1 1 2 3 5 11 37

Figure 3.4: Somos sequences

3 4

1 2
1

2

34

5

Figure 3.5: The quivers for two Somos sequences

Note that all elements are in the table natural numbers – an observation truely linked to the
Laurent phenomenon. The sequences are named after Michael Somos, who encounters the se-
quence in the context of elliptic theta functions, cf. Gale [Gal]. Several authors have then intro-
duce further Somos sequences. Malouf [Mal] proves that the elements of the 4-Somos sequence
are integers. Fomin-Zelevinsky [FZ5] prove that the k-Somos sequence is integral for k = 3, 4, 5, 6
and we will have a look at their argument when we will discuss the Laurent phenomenon. The
k-Somos sequence has non-integer elements for k = 7, 8, 9, . . .

Are the sequences associated with some cluster algebra? Yes, indeed they are and Figure 3.5
displays the associated quivers. The quiver is featured in Exercise 2.2. In both cases we have
µ1(Q) ∼= Q and the attached sequences of cluster variables specialize to the Somos sequences.
Higher Somos sequence do not admit an interpretation as sequences of cluster variables. In the
case k = 6 for example, the Somos exchange relation is trinomial whereas the cluster exchange
relation is binomial.

3.1.6 The Markov equation and cluster algebras

Let Q be the quiver with vertices Q0 = {1, 2, 3} and exactly two arrows 1⇒ 2, exactly two arrows
2 ⇒ 3 and exactly two arrows 3 ⇒ 1 from Figure 2.1. Here, mutation at every vertex yields an
ismorphic quiver, i.e. we have µ1(Q) ∼= µ2(Q) ∼= µ3(Q) ∼= Q. We conclude that for every cluster
(x1, x2, x3) of A(x, Q) the three possible mutations have the same form

µ1 : (x1, x2, x3) 7→
(

x2
2 + x2

3
x1

, x2, x3

)
,

µ2 : (x1, x2, x3) 7→
(

x1,
x2

1 + x2
3

x2
, x3

)
,

µ3 : (x1, x2, x3) 7→
(

x1, x2,
x2

1 + x2
2

x3

)
.

Again, we can study the cluster algebra by its invariant. It is easy to check that the three
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(1, 1, 2)

(1, 2, 1)

(1, 1, 1) (2, 1, 1)

(2, 5, 1)

(2, 1, 5)

(13, 5, 1)

(2, 5, 29)

(2, 29, 5)

(13, 1, 5)

(13, 34, 1)

(13, 5, 194)

Figure 3.6: Solutions to the Markov equation

mutations do not change the expression

T =
x2

1 + x2
2 + x3

3
x1x2x3

∈ F .

The invariant specializes to T = 3 when we specialize x1 = x2 = x3 = 1. The three mutations
yield solutions to the Diophantine equation a2 + b2 + c2 = 3abc. This equation is known as the
Markov equation as Markov [Ma] introduces the equation. Beineke-Brüstle-Hille [BBH] notice the
importance of the Markov equation for cluster algebras of rank 3. Using similar arguments as in
the Kronecker case we can show the following.

Proposition 3.1.6. All solutions of the Markov equation can be obtained from the trivial solution
by a sequence of cluster transformations.

Proof. Let (a, b, c) ∈ N3 be a solution of the equation a2 + b2 + c2 = 3abc. We prove by mathe-
matical induction on max(a, b, c) that there exists a sequence (i1, i2, . . . , ir) of indices in {1, 2, 3} of
length r ≥ 0 such that (a, b, c) = (µi1 ◦ µi2 ◦ . . . ◦ µir)(1, 1, 1).

Note that no solutions with a = 0, b = 0 or c = 0 exists. Then the claim is true for max(a, b, c) =
1. Let us now assume that (a, b, c) ∈ N3 is a solution with max(a, b, c) ≥ 2. Without loss of
generality we may assume that a ≤ b ≤ c. Note that a 6= b and b 6= c in this case, so that we
have a < b < c. We use the same trick as in the Kronecker case. Let c′ ∈ Q be the second solution
of the quadratic equation f (X) = X2 − 3abX + a2 + b2. Viete’s theorem implies c′ = 3ab− c and
cc′ = a2 + b2, so that c′ is again a positive integer. The triple (a, b, c) is again a solution in positive
integers. Note that f (b) = 2b2 + a2 − 3ab2 < 0 unless a = b = 1, in which case we get solutions
(1, 1, 1) and (1, 1, 2) of required form. We conclude f (b) = (b− c)(b− c′) < 0 and b < c′, so that
max(a, b, c′) < max(a, b, c). The claim now follows easily by applying the induction hypothesis to
the triple (a, b, c′).

We will refer to the cluster algebras featured in this section also as Kronecker cluster algebra,
Somos cluster algebras and Markov cluster algebra.
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3.2 The Kronecker cluster algebra

Let Q be the Kronecker quiver 1⇒ 2 and x = (x1, x2) ∈ F a cluster of length 2. We have seen that

the element T =
1+x2

1+x2
2

x1x2
∈ A(x, Q) plays a special role. In the following sections we wish to study

the cluster algebra A(x, Q) more closely, because cluster algebras of rank 2 are a good prototype
for the whole theory.

3.2.1 Homogeneous linear recurrence relations

In Section 3.1.2 we have seen that the cluster variables of the cluster algebra A(x, Q) form a se-
quence obeying a linear recurrence relation. In this section we wish to recollect some material on
linear recurrences. We work over an algebraically closed, but otherwise general base field k.

Let n ≥ 1 be a positive integer and let µ = (µ0, µ1, . . . , µn) ∈ kn+1 be a sequence of scalars with
µ0, µn 6= 0. We denote by A(µ) the set of all sequences a = (ai)i∈Z of elements in k such that the
relation µ0ai + µ1ai+1 + . . . + µnai+n = 0 holds for all integers i ∈ Z. The set A(µ) is closed under
addition and scalar multiplication and hence forms a linear subspace of the k-vector space kZ of
all sequences of elements in k. Moreover, it is closed under shifts. We define a map φ : A(µ)→ kn

by setting φ(a) = (a1, a2 . . . , an).

Proposition 3.2.1. The map φ : A(µ)→ kn is an isomorphism of vector spaces.

Proof. The map φ is clearly k-linear. We prove that it is surjective and injective. Let (a1, a2, . . . , an) ∈
kn be a vector. We extend the vector to sequence a ∈ A(µ) by setting recursively

ai+n = − 1
µn

(µ0ai + µ1ai+1 + . . . + µn−1ai+n−1), for i ≥ 1;

ai = −
1
µ0

(µ1ai+1 + µ2ai+2 + . . . + µnai+n), for i ≤ 0.

By construction a ∈ A(µ) and φ(a) = (a1, a2, . . . , an), so the map φ is surjective. Suppose that
φ(a) = 0 for some a ∈ A(µ). By an induction argument the recursion implies that ai = 0 for all
integers i ∈ Z. Hence the map φ is also injective.

Especially, the k-dimension of the vector space A(µ) is equal to n. The characteristic polynomial
of µ is the polynomial Pµ = µ0 + µ1X + µ2X2 + . . . + µnXn ∈ k[X]. Let λ be a root of the character-
istic polynomial (in the algebraically closed field k) with multiplicity r. Note that λ 6= 0. First of
all, note that the sequence (λi)i∈Z is an element in A(µ). Moreover, for every s ∈ {1, 2, . . . , r− 1}
the element λ is also a zero of the s-th derivative P(s)

µ of the characteristic polynomial. Hence,
the sequence

(
(i + 1)(i + 2) . . . (i + s− 1)λi)

i∈Z
is an element in A(µ). We deduce that the space

Aλ = {p(i)λi : p ∈ k[X] s. th. deg(p) < r} is a subspace of A(µ) of dimension r. As the sum of the
dimensions of the Aλ, for all roots λ of Pµ, is equal to n and as their contains only the 0, we get a
direct sum decomposition A(µ) = ⊕λ A(λ)

For example, we can derive an explicit formula for the Fibonacci numbers (Fn)n∈N with F0 =
0, F1 = 1 and Fn+1 = Fn + Fn−1 by calculating the zeros of the characteristic polynomial. In fact,
the roots of the polynomial X2 − X− 1 are closely related to the golden section. We get

Fn =
1√
5

((
1 +
√

5
2

)n

−
(

1−
√

5
2

)n)
.

In particular, the formula implies that the quotient Fn+1/Fn converges to the golden section in the
limit n→ ∞.



3.2. THE KRONECKER CLUSTER ALGEBRA 41

3.2.2 A combinatorial interpretation of the coefficients

In Section 3.1.2 we have seen that the cluster variables of the cluster algebra A(x, Q) are Laurent
polynomials in Z[x±1 , x±2 ]. In this section we wish to provide a combinatorial interpretation of the
coefficients.

First note that the cluster (x1, x2) ∈ F 2 is a F -linear combination of (1, 0) and (0, 1). Thus it is
enough to study the simpler sequence with starting values (0, 1) instead of (x1, x2). Let us define
a sequence (sn)n∈Z by s0 = 1, s1 = T and sn+1 = Tsn − sn−1 for all n ∈ Z. Note that s−1 = 0. The
elements 1, T, T2 − 1, T3 − 2T, T4 − 3T2 + 1, . . . of the sequence are called Chebychev polynomials,
or more precisely normalized Chebychev polynomials of the second kind.

For natural numbers n, p, q ∈ N let cn,p,q ∈ N be the number of subsets of {1, 2, . . . , n} that
contain exactly p odd, exactly q even and no consecutive elements. For example, we have c7,2,1 = 3,
because the possible subsets are {1, 3, 6}, {1, 4, 7} and {2, 5, 7}. A famous exercise asserts that the
number of all subsets without consecutive numbers (and no condition on the number of odd
and even numbers) is a Fibonacci number. The next statement is due to Caldero-Zelevinsky [CZ,
Theorem 5.2].

Proposition 3.2.2. Let n ≥ 0 be a natural number. Then the element sn ∈ F is equal to the sum

sn =
1

xn
1 xn

2

(
n

∑
p=0

n

∑
q=0

c2n,p,qx2q
1 x2p

2

)
.

Proof. We prove the proposition by strong mathematical induction. The statement is clearly true
for n = 0 and n = 1. Now assume that n ≥ 2. By induction hypothesis, the coefficient x2q−n

1 x2p−n
2

in the Laurent polynomial Tsn−1 − sn−2 is equal to c2n−2,p,q + c2n−2,p,q−1 + c2n−2,p−1,q − c2n−4,p,q.
Now let us partition the subsets A of {1, 2, . . . , n} that contain exactly p odd, exactly q even and
no consecutive elements into three classes. No such subset contains both 2n and 2n− 1.

1. Assume that 2n /∈ A and 2n− 1 /∈ A.

In this case, the set A is a subset of {1, 2, . . . , 2n− 2} with exactly p odd, exactly q even and
no consecutive elements. The number of such subsets is equal to c2n−2,p,q.

2. Assume that 2n /∈ A and 2n− 1 ∈ A.

It follows that 2n− 2 /∈ A. In this case, the A is a union of {2n− 1} and a subset A′ with
exactly p− 1 odd, exactly q even and no consecutive elements. The number of such subsets
is equal to c2n−2,p−1,q. But not every such subset A′ yields an admissible set A. The subsets A′

that do not yield admissible sets A are precisely the sets with 2n− 2 ∈ A′. For those subsets
we have 2n− 3 /∈ A′, so that A′ is the union of {2n− 2} and a subset A′′ of {1, 2, . . . , 2n− 4}
with exactly p− 1 odd, exactly q− 1 even and no consecutive elements. Every such subset
A′′ yields an admissible subset A′ and the number of such subsets is equal to c2n−4,p−1,q−1.
Altogether we get c2n−2,p−1,q − c2n−4,p−1,q−1 sets A.

3. Assume that 2n ∈ A and 2n− 1 /∈ A.

In this case, the set A is the union of {2n} and a subset A′ of {1, 2, . . . , 2n− 2}with exactly p
odd, exactly q− 1 even and no consecutive elements. The numbers of such subsets is equal
to c2n−2,p,q−1 and every such subset A′ yields an admissible set A.

We deduce that the coefficient of monomial x2q−n
1 x2p−n

2 in the Laurent polynomial sn is equal to
the number c2n−2,p,q + c2n−2,p−1,q + c2n−2,p,q−q − c2n−4,p−1,q−1 = c2n,p,q.
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In this recursion formula we only use number cn,p,q for even numbers n. In a similar spirit,
there are recursion formulae for the numbers cn,p,q that involve both even and odd numbers. For
instance, we can prove the formula c2n+1,p,q = c2n,p,q + c2n−1,p−1,q for all natural numbers n, p, q ∈
N by distinguishing whether the largest number 2n + 1 is an elements in the considered set or
not. Similarly, we have c2n+2,p,q = c2n+1,p,q + c2n,p,q−1 for all natural numbers n, p, q ∈ N. It turns
out that the recursions are useful for deriving a formula for the cluster variables.

Proposition 3.2.3. Let n ≥ 1 be a natural number. Then the cluster variable xn is equal to the sum

xn+2 =
1

xn
1 xn−1

2

(
n

∑
p=0

n

∑
q=0

c2n−1,p,qx2q
1 x2p

2

)
.

Proof. We have x1 = x2s−1 − x1s0 and x2 = x2s0 − x1s−1, so that we have xn+2 = x2sn − x1sn−1 for
all n ∈ Z. We conclude

xn+2 =
1

xn
1 xn

2

(
n

∑
p=0

n

∑
q=0

c2n,p,qx2q
1 x2p+1

2

)
− 1

xn−1
1 xn−1

2

(
n−1

∑
p=0

n−1

∑
q=0

c2n−2,p,qx2q+1
1 x2p

2

)

=
1

xn
1 xn−1

2

(
n

∑
p=0

n

∑
q=0

c2n,p,qx2q
1 x2p

2 −
n−1

∑
p=0

n−1

∑
q=0

c2n−2,p,qx2(q+1)
1 x2p

2

)

=
1

xn
1 xn−1

2

n

∑
p=0

n

∑
q=0

(
c2n,p,q − c2n−2,p,q−1

)
x2q

1 x2p
2 =

1
xn

1 xn−1
2

n

∑
p=0

n

∑
q=0

c2n−1,p,qx2q
1 x2p

2

Here, we use the convention cn,p,q = 0 whenever one of the indices is negative, which is consistent
with all recursion formulae. The statement follows.

We can obtain a similar formula for the cluster variables xn with n ≤ 0 by switching the roles of
x1 and x2. Especially, all coefficients are non-negative numbers, because they count the number of
elements in certain sets. It is a common strategy to find a combinatorial interpretation for proving
positivity of givem integer numbers. A more general conjecture of Fomin-Zelevinsky [FZ] asserts
the following:

Conjecture 3.2.4 (Positivity conjecture). Let A(x, Q) be an arbitrary cluster algebra attached to
a seed (x, Q) of rank n. Then every cluster variable u of Ax, Q) is an element the semiring
N[x±1

1 , x±1
2 , . . . , x±1

n ] of Laurent polynomials with non-negative coefficients in the initial cluster
x = (x1, x2, . . . , xn).

There is an explicit formula for the coefficients in term of binomial coefficients. Recall that for
natural number n, k ∈ N the binomial coefficient (n

k) counts the number of subsets of {1, 2, . . . , n}
with exactly k elements. We adopt the convention (n

k) = 0 when k < 0 and that (n
0) = for n < 0.

With a similar argument as above, by distinguishing whether n is in the considered subset or not,
we obtain the recursion formula (n

k) = (n−1
k ) + (n−1

k−1) for all natural numbers k ∈N and all positive
integers n ∈N+. Therefore, the binomial coefficients fit into Pascal’s triangle.

Binomial coefficients occur in various combinatorial contexts. The name comes from the inter-
pretation of the numbers as coefficients in the binomial expansion (x + y)n = ∑n

k=0 (
n
k)xkyn−1 for

all n ≥ 0. For another example, the binomial coefficient (a+b
a ) counts the number of shortest lattice

paths from the point (0, 0) ∈N2 to the point (a, b) ∈N2.

Proposition 3.2.5. Let m ≥ 1. The number of subsets of {1, 2, . . . , m} that contain exactly p odd,
exactly q even and no consecutive elements is given by the formulae

cm,p,q =


(

n− p
q

)(
n− q

p

)
, if m = 2n is even;(

n− p
q

)(
n + 1− q

p

)
, if m = 2n + 1 is odd;
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Figure 3.7: Pascal’s triangle

1 1 1 1 1 1
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Figure 3.8: The number of shortest lattice paths

for all p ∈ {0, 1, . . . , bm+1
2 c} and all q ∈ {0, 1, . . . , n}.

Proof. We prove the statement by strong mathematical induction on m. It is true for m = 1 due
to the convention (−1

0 ) = 1. Now assume that m ≥ 2. Using the induction hypothesis we deduce
that, depending on whether m is even or odd,

c2n,p,q = c2n−1,p,q + c2n−2,p,q−1 = (n−1−p
q )(n−q

p ) + (n−1−p
q−1 )(n−q

p ) = (n−p
q )(n−q

p ),

c2n+1,p,q = c2n,p,q + c2n−1,p−1,q = (n−p
q )(n−q

p ) + (n−p
q )(n−q

p−1) = (n−p
q )(n+1−q

p ),

which proves the statement.

The author is not aware of a direct combinatorial proof. Nonetheless the proposition gives an
explicit formula for the coefficients that appear when we write the cluster variables as Laurent
polynomials in the initial cluster variables.

3.2.3 Sketch of the derivation of another formula for the coefficients

There is a different way to compute the elements sn for n ≥ 0, by the methods introduced in
the last section. The roots of the characteristic polynomial X2 − TX + 1 attached to the linear
recurrence relation are the two elements

λ1,2 =
1
2

(
T ±

√
T2 − 4

)
∈ F .
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The sequences (sn)n∈Z and (xn)n∈Z are then linear combinations of the sequences (λn
1)n∈Z and

(λn
2)n∈Z. In fact, for sn we get combination (which we only need to check for n = −1, 0):

sn =
λn+1

1 − λn+1
2

λ1 − λ2
.

Using the explicit formula for the eigenvalues and the binomial theorem we can derive the formula
sn = ∑n

s=0(−1)s(n−s
s )Tn−2s for the Chebychev polynomials sn for all n ≥ 0. Both expressions must

be equal, so we have proved the identity

1
xn

1 xn
2

n

∑
p=0

n

∑
q=0

(
n− p

q

)(
n− q

p

)
x2q

1 x2p
2 =

n

∑
s=0

(−1)s
(

n− s
s

)(
1 + x2

1 + x2
2

x1x2

)n−2s

.

Again, the author is not aware of a direct proof of the identity.

3.3 Cluster algebras of type A

In this section we wish to provide to models for cluster algebras of type A. The first model is the
coordinate ring of the Grassmann variety, where the Plücker relations play the role of the exchange
relations. The second model arises from the triangulations of regular polygon which we studied
in Section 2.2.3. Here, the Ptolemy relations play the role of the exchange relations.

3.3.1 Generalities on Grassmann varieties

Let d and n be natural numbers such that d ≤ n. The Grassmannian Grd(kn) is the set of all d-
dimensional subspaces of the n-dimensional vector space kn. It is named after the mathematician
and linguist Hermann Grassmann.

In particular, the projective space Pn(k) is the Grassmannian Gr1(kn+1) of lines in the vector
space kn+1. A line is spanned by a non-zero vector (x0, x1, . . . , xn) ∈ kn+1. Two such vectors
x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) span the same line if and only if they are linearly
dependent, i.e. there exists some scalar λ ∈ k such that x = λy. In this case we will write x ∼ y.
We deduce that P(k) = (kn\{0})/ ∼. We denote the equivalence class of x = (x0, x1, . . . , xn) ∈
kn+1\{0} in Pn(k) by (x0 : x1 : . . . : xn).

In general, note that a d-dimensional vector space is spanned by d linearly independent vectors
(xi1, xi2, . . . , xin) ∈ kn for i ∈ {1, 2, . . . , d}. The vectors constitute the row vectors of a d× n matrix
X of full rank with entries in k. Two such matrices X, Y ∈ Matd×n(k) define the same subspace if
and only if there exists an invertible matrix d× d matrix A such that X = AY. In this case we will
write X ∼ Y, which defines an equivalence relation.

For every subset I ⊆ {1, 2, . . . , n} and every X ∈ Matd×n(k) we define the Plücker coordinate
pI(X) as the d × d minor of the matrix X on columns I. The coordinates are named after Julius
Plücker. Altogether, there are N = (n

d) Plücker coordinates, and so the collection (pI(X)) de-
fines a point the affine space kN (after choosing an ordering of the indices I). For example, a
2-dimensional subspace V in R3 is spanned by two vectors. In this case, there are three Plücker
coordinates. The coordinates are essentially the coordinates of the cross product x × y, which
uniquely determines the subspace V, because it is perpendicular to V with respect to the standard
scalar product. It turns out that this is not true in general.

Next we wish to explain why the Grassmannian Grd(kn) is in general a projective variety. First
of all, note that for a matrix X of full rank (pI(X)) ∈ kN cannot be zero, because not all the d× d
vanish. Moreover, if X = AY for some A ∈ Gld(k), then pI(X) = det(A)pI(Y) for all subsets I. It
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follows that (pI(X)) ∼ (pI(Y)) in this case, so that every d-dimensional subspace V ⊆ kn defines
an element φ(V) ∈ PN−1(k). We call the map the Plücker embedding. The next proposition justifies
the name.

Proposition 3.3.1 (Plücker embedding). The map φ : Grd(kn+1)→ PN−1(k) is injective.

Proof. Suppose that the subspaces V, W satisfy φ(V) = φ(W). Let X, Y ∈ Matd×n(k) be ma-
trices that define these subspaces. Then by definition we have pI(X) = pI(Y) for all subsets
I ∈ {1, 2, . . . , n}. There exists at least one such subset with pI(X) 6= 0, and hence pI(Y) 6= 0. By an
appropriate change of bases we may assume that the column vectors of X and Y attached to the in-
dices I are for both matrices the standard basis vectors e1, e2, . . . , ed ∈ kd. As both basis changes are
induced by (possibly different) matrices with the same determinant, the relations pI(X) = pI(Y)
remain true for all subsets I ∈ {1, 2, . . . , n}. The d × d minors of X and Y and on columns
(I\{i}) ∪ {j} are equal to xij and yij, respectively, for all i ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . , n}.
We can conclude that X = Y and V = W.

On the contrary, the map φ is not surjective in general, but we can describe the image of
the map explicitly. To formulate a precise statement, let us introduce some notation. Let X ∈
Matd×n(k) be a matrix with rows x1, x2, . . . , xn ∈ kd. For a (not necessarily increasing) sequence
i = (i1, i2, . . . , id) of elements in {1, 2, . . . , n} let pi(X) be the determinant of the matrix with
columns xi1 , xi2 , . . . , xid . Of course, pi(X) is zero if it contains an element twice and it changes
the sign when we swap two elements. We extend this notation to arbitrary points in kN−1. Let
(pI) ∈ kN−1 and let i be a sequence of elements in {1, 2, . . . , n} of length d. In this situation we de-
fine pi to be zero, if the sequence contains an elements twice, and to be (−1)r pI , where I is the set
of elements in i and r is the numbers of swaps needed to transform i into an increasing sequence,
otherwise.

Now let I, J ⊆ {1, 2, . . . , n} be two subsets of size d− 1 and d + 1, respectively, with elements
i1 < i2 < . . . < id−1 and j1 < j2 < . . . < jd+1. For every natural number r ∈ {1, 2, . . . , d + 1} let
i(r) be the sequence (i1, i2, . . . , id−1, jr) and j(r) be the sequence (j1, j2, . . . , ĵr, . . . , jd+1).

Proposition 3.3.2 (Plücker relations). An element (pI) ∈ PN−1(k) lies in the image of the Plücker
embedding φ if and only if the alternating sum

d+1

∑
r=1

(−1)r pi(r)pj(r) = 0

vanishes for all subsets I, J ⊆ {1, 2, . . . , n} of size d− 1 and d + 1, respectively.

Proof. For the first direction we prove that the Plücker relations hold for all tuples (pI) in the image
of the map, i.e. they hold for all tuples (pI(X)) where X = (xi,j) ∈ Matd×n(k) is a matrix of full
rank. Write X = (x1, x2, . . . , xn) as a sequence of column vector. Suppose that i1 < i2 < . . . < id−1
and j1 < j2 < . . . < jd+1 are sequences as above. We want to show that

d+1

∑
r=1

(−1)r det(xi1 , xi2 , . . . , xid−1 , xjr)det(xj1 , xj2 , . . . , x̂jr , . . . , xjd+1) = 0.

We expand the determinant in the first factor of each summand along the last column according
to Laplace’s rule. Denote the (d− 1)× (d− 1) matrix obtained from (xi1 , xi2 , . . . , xid−1) by deleting

the s-th row by X(s)
i . Then the left hand side of the last equation is equal to

d+1

∑
r=1

d

∑
s=1

(−1)r+s+dxs,jr det(X(s)
i )det(xj1 , xj2 , . . . , x̂jr , . . . , xjd+1).
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Now switch the order of summation. The sum may be be seen as a Laplace expansion of the
(d + 1)× (d + 1) matrix X(s)

j that we obtain from (xj1 , xj2 , . . . , xjd+1) by adding a copy of the s-th
row vector on the top of the matrix. The determinant of this matrix vanishes, because it has two
equal rows. We conclude that the whole sum must be zero.

For the reverse direction, suppose that some element (pI) ∈ PN−1(k) satisfies the Plücker
relations. We construct a preimage. The subspace

V =

{
v = (vr) ∈ kn :

d+1

∑
r=1

(−1)r pj1,j2,..., ĵr ,...,jd+1
vir = 0 for all 1 ≤ j1 < j2 < . . . < jd+1 ≤ n

}

can be shown to have dimension d. By construction we have φ(V) = (pI).

For more detailed information on the Pücker embedding see Kleiman-Laksov [KL].

As a consequence, every Grassmannian Grd(kn) is a projective algebraic subvariety of the
projective space PN−1(k). Using the description of the Grassmannian as orbits of the action
of the group Gld(k) (of dimension d2) on the set of matrices of full rank (which form a dense
subset of the space Matd×n(k) of dimension dn) one can show that the dimension of Grd(kn) is
nd− d2 = (n− d)d.

3.3.2 Grassmannians and cluster algebras

Let n be a natural number. We consider the Grassmannian Gr2(kn+3) of planes in the space kn+1.
Then the Plücker coordinates are indexed by sequences 1 ≤ a < b ≤ n + 3 of length 2. We
will write Pab instead of P(a,b). Let us work out the Plücker relations explicitly. Possible subsets
I consist of one element, say I = {a} for some 1 ≤ a ≤ n + 3 and possible subsets I consist of
three elements, say J = {b, c, d} for some 1 ≤ b < c < d ≤ n + 3. The Plücker relation becomes
PabPcd − PacPbd + PadPbc = 0.

The set of relations is very redundant. We show that it suffices to impose the Plücker relations
with 1 ≤ a < b < c < d ≤ n + 3. Note that if a = b, then this relation becomes the trivial relations
PacPad = PacPad which we can neglect. The same is true for a = c or a = d. If a lies between b and
c, then the relation is essentially equal to the Plücker relation for I = {b} and J = {a, c, d}, so we
can neglect relations arising for these choices as well. The same is true when a lies between c and
d or when a is larger than d.

Let us specialize k = C. We conclude that the homogeneous coordinate ring C[Gr2(kn+3)] of
the Grassmannian is isomorphic to the algebra

A = C[Xab : 1 ≤ a, b ≤ n + 3]/(XabXcd − XacXbd + XadXbc : 1 ≤ a < b < c < d ≤ n + 3).

If we think of the element Xab of being attached to the segment Mab of the regular (n + 3)-gon
from Section 2.2.3 that connects the vertices a and b. Then Mab is a side of the polygon if a and b
are consecutive numbers and a diagonal otherwise. We deduce that the Plücker relation precisely
becomes the exchange relation for the cluster algebra attached to the quiver of the triangulation.
We deduce that the homogeneous coordinate ring C[Gr2(kn+3)] carries the structure of a cluster
algebra. Every triangulation T defines a quiver Q(T) with n mutable and n + 3 frozen vertices,
whose mutation class contains all quivers of type A. It also defines a collection of cluster and
frozen variables. Thus, it defines a seed and a cluster algebra. By the above discussion, the cluster
algebra is naturally isomorphic to the homogeneous coordinate ring of the Grassmannian.

Moreover, If we specialize all frozen variables to 1, we get a geometric model for the cluster
algebra of type A without frozen vertices.
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Figure 3.9: A quadrangle in a triangulation

Let us summarize the combinatorial model for the cluster algebra:

Cluster variables ↔ Diagonals
Frozen variables ↔ Sides
Clusters ↔ Triangulations
Mutations ↔ Flips
Exchange relations ↔ Plücker relations

In this context, the relations are also called Ptolemy relations. Ptolemy’s theorem is classical theorem
from Euclidean geometry. Assume that A, B, C, D are points in the Euclidean plane that lie in tis
order on a circle. The theorem asserts that |AC| · |BD| = |AB| · |CD|+ |AD| · |BC|. For a proof,
let us identify the Euclidean plane and the complex plane. For arbitrary complex numbers, the
identity (A− C)(B− D) = (A− B)(C − D) + (A− D)(B− C) holds. We deduce |AC| · |BD| ≤
|AB| · |CD|+ |AD| · |BC|. Equality holds if and only if the complex numbers 0, (A− B)(C − D)
and (A − D)(B − C) are collinear, i.e. the quotient of the numbers is a positive real number.
The quotient is known as the the cross ratio. We conclude that we have equality especially in the
case when A, B, C, D lie in this order on the circle, in which case the polar angles of the quotients
(A− B)/(A− D) and (C− D)/(B− C) are equal.

Unfortunately, Euclidean geometry yields no direct model of cluster algebras. If the points
A, B, C, D lie on a circle, then the distances also satisfy the relation |AB| · |BC| · |AC|+ |BC| · |CD| ·
|BD = |AB| · |DA| · |BD|+ |BC| · |CD| · |BD|. Fomin-Shapiro-Thurston [FST] and Fomin-Thurston
[FT] give a model via non-Euclidean geometry by the concept of lambda lengths.

3.3.3 Triangulations of polygons and Schiffler’s expansion formula

Ralf Schiffler gives an explicit formula for arbitrary cluster variables in this cluster algebra as
Laurent polynomials in an initial cluster. We wish to present the formula and follow Schiffler’s
article in our exposition.

Let n be a natural number. For the rest of the section we fix a triangulation {T1, T2, . . . , Tn}
of the regular polygon Pn+3 by n diagonals. Moreover, we denote the sides of the (n + 3)− gon
by Tn+1, Tn+2, . . . , T2n+3. We denote the set of all Ti with {1, 2, . . . , 2n + 3} by the letter T. Let us
extend the notion of crossing diagonals to side. We say that two sides or diagonals M and M′ of
Pn+3 are crossing if they are different and the intersection of M and M′ contains no point in the
interior of Pn+3. The fundamental definition is the following.

Definition 3.3.3 (Schiffler path). Let a and b be different vertices of Pn+3. A Schiffler path from a to
b is a sequence (a0, a1, . . . , ar) of vertices of Pn+3 such that the following properties hold:
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(T1) The path starts in a and ends in b, i.e. we have a0 = a and ar = b.

(T2) For every pair (ak−1, ak) with k ∈ {1, 2, . . . , r} of consecutive vertices there exists an Tik ∈ T
that connects ak−1 and ak.

(T3) No edge occurs twice, i.e. we have ij 6= ik if j 6= k.

(T4) The length r of the path is an odd number.

(T5) The element Tik crosses Mab if k is even.

(T6) If 1 ≤ j < k ≤ r and the elements Tij and Tik both cross the segment Mab, then the crossing
point of Tij with Mab is closer to a than the crossing point of Tij with Mab.

Definition 3.3.4 (Path monomials). With a Schiffler path α = (a0, a1, . . . , ar), that uses the edges
Ti1 , Ti2 , . . . , Tir , we associate the monomial

x(α) = ∏
k odd

xik ∏
k even

x−1
ik
∈ Z[x±1

1 , x±1
2 , . . . , x±1

2n+3].

Note that condition (T4) is superflous. For two different vertices a and b of Pn+3 we denote
the set of all Schiffler paths from a to b by the symbol P(a, b). Moreover, we define the element
X(a, b) ∈ Z[x±1

1 , x±1
2 , . . . , x±1

2n+3] to be the sum of the monomials X(α) for all Schiffler paths α from
vertex a to vertex b.

Example 3.3.5. (a) Let a and b be vertices of Pn+3 such that Mab ∈ T. As no element in T crosses
Mab, a Schiffler must have length 1. Thus, there is only one Schiffler path from a to b whose
only edge is the segment Mab itself.

(b) For a triangulation of a regular pentagon we obtain the following Schiffler paths. As we have
noticed above, there is only one Schiffler path from a to d, so that X(a, d) = x1. Similarly,
X(a, e) = x2 and the sides of the polygon yields the variables x3, x4, x5, x6, x7. What are the
Schiffler paths from b to d? There is no such path of length 1 as the segment Mbd does not
belong to the triangulation. The segment crosses only the element T2 ∈ T. So there are
two Schiffler paths, namely (b, c, a, d) with monomial x1x−1

2 x4 and (b, a, c, d) with monomial
x−1

2 x3x5. We conclude that X(b, d) = (x1x4 + x3x5)/x2 and similarly X(c, e) = (x2x6 +
x5x7)/x1. Finally, the Schiffler paths from b to e are (b, c, a, e), (b, a, d, e) and (b, a, c, d, a, e), so
that X(b, e) = (x1x4x7 + x2x3x6 + x3x5x7)/(x1x2).

a

e

b

c

d T7

T3
T4

T6

T5

T1

T2

(c) Let T be the following triangulation of an octogon. The Schiffler paths from b to f are
(b, a, d, f ), (b, a, c, d, g, f ), (b, c, a, g, d, f ) and (b, a, c, d, a, g, d, f ).



3.3. CLUSTER ALGEBRAS OF TYPE A 49

a b
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d
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Note that the definition s symmetric. More precisely, if (a0, a1, . . . , ar) is Schiffler path from a to
b, then (ar, ar−1, . . . , a0) is a Schiffler path from b to a. Especially, we deduce that X(a, b) = X(b, a)
for all different vertices a, b of Pn+3.

LetA be the homogeneous coordinate ring C[Grd(kn+3)] of the Grassmannian, which is a clus-
ter algebra. For every i ∈ {1, 2, . . . , 2n + 3}we identity the element Ti of the triangulation with the
corresponding vertex in the ice quiver Q(T). We view Q(T) as an initial ice quiver. If Ti connects
vertices a and b, then we identify the element xi (which is equal to X(a, b) by the example above)
with the cluster or frozen variable xab ∈ A.

Theorem 3.3.6 (Schiffler). For all different vertices a and b we have X(a, b) = Xab.

As corollaries, we obtain the Laurent phenomenon and the positivity of the coefficients. In
fact, all non-zero coefficients are equal to 1, as the following argument shows. Suppose that α and
β are Schiffler paths from vertex a to vertex b. We have to show that x(α) 6= x(β). Suppose that
x(α) 6= x(β). Comparing the denominators, we see the set of diagonals that cross Mab is the same
for both paths. By (T6) the crossing diagonals appear in the same order. But then the sequences
of vertices are the same for both paths, so that α = β.

Proof. We prove the theorem by mathematical induction on the number of elements Ti ∈ T that
cross the segment Mab. There are no such crossings if and only if the segment Mab belongs to T, in
which case the statement is true by the above discussion.

Now assume that the segment Mab crosses at least one element in T. Among all the diagonals
that cross Mab we consider the diagonal Ti ∈ T whose crossing point is closest to the vertex a. The
diagonal Ti connects two vertices, which we may call c and d. Note that the four vertices a, b, c, d
are pairwise different and hence form a quadrilateral. We introduce the abbreviations M = Mab,
L = Mbc and L′ = Mbd. Moreover, by m we denote the intersection point of the diagonals of the
quadrilateral abcd. Finally, we denote by Pa and Pb the two polygons that we obtain from Pn+3 by
cutting along Ti such that a ∈ Pa and b ∈ Pb.

We make a series of observations. Firstly, we claim that Mac and Mad belong to T. For a proof,
note that the diagonal Ti (as any diagonal) borders exactly two triangles of the triangulation, one
of which lies in Pa and one of which lies in Pb. The third vertex of the triangle in Pa must be a,
because otherwise we would get a crossing point of M and an element in T that is closer to a than
m. Therefore, Mad = Tj and Mac = Tj′ for some indices j, j′ ∈ {1, 2, . . . , 2n + 3}.

Secondly, every Tk ∈ T that crosses L must also cross M, because it cannot leave the triangle
bcm on the side mc. We conclude that the number of elements Tk ∈ T that cross the segment L
is smaller than the number of elements Tk ∈ T that cross the segment M. The same statement is
true for L′. By induction hypothesis we can assume that X(c, b) = Xcb and X(d, b) = Xdb. Thus it
suffices to prove X(a, b)xi = X(c, b)xj + X(d, b)xj′ .

Thirdly, the converse of the previous observation is false. There are diagonals Tk ∈ T that that
cross M, but do not cross L (as the diagonal Tj shows for example). However, every such diagonal



50 CHAPTER 3. EXAMPLES OF CLUSTER ALGEBRAS
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Figure 3.10: The crucial step in Schiffler’s proof

Tk is adjacent to vertex c. Similarly, every diagonal that crosses M, but does not cross L′, is adjacent
to vertex d.

Fourthly, every Schiffler path from a to b must start with the edge Tj or with the edge Tj′ . For
a proof, note that the first step Tk of a Schiffler path from a to b starts in part Pa and, as it does not
cross Ti, it completely lies in the interior or on the boundary of Pa. If the endpoint of Tk would
be different from c and d, then the second step would also completely lie in the interior or on the
boundary of Pa and could not cross the line M.

Fifthly, the Schiffler paths from a to b that start with the pair (Tj, Ti) are in bijection with the
Schiffler paths from c to b that do not use the edge Ti. If (a0, a1, . . . , ar) is a Schiffler path from c to
b that does not use Ti, then (a, d, c, a1, . . . , ar) is a Schiffler path from a to b, because condition (T5)
follows from the second observation and the other conditions follow by construction. Conversely,
if (a, d, c, a1, . . . , ar) is a Schiffler path from a to b, then (c, a1, . . . , ar) is a Schiffler path from c to b,
because by condition (T6) only the first step uses edge adjacent to c.

Sixthly, the Schiffler paths from a to b that start with the edge Tj and do not use the edge Ti are
in bijection with the Schiffler paths from c to b that do use the edge Ti. If (a0, a1, . . . , ar) is a Schiffler
path from c to b that uses Ti, then a0 = c and a1 = d and (a, a1, . . . , ar) is a Schiffler path from a
to b because of condition (T5). It does not contain the edge Ti. Conversely, if (a, d, a2, . . . , ar)
is a Schiffler path from a to b that starts with the edge Tj and does not use the edge Ti, then
(c, d, a2, . . . , ar) is a Schiffler path from c to b, because by condition (T6) only the first step uses
edge adjacent to c.

Seventhly, we conclude that the Schiffler paths from a to b that start with the edge Tj are in
bijection with the Schiffler paths from c to b. By construction, the sum of the corresponding mono-
mials taken over all these paths is X(c, b)xjx−1

i . Analogously, the Schiffler paths that start with the
edge Tj′ yield the term X(d, b)xj′x−1

i . We deduce that X(a, b)xi = X(c, b)xj + X(d, b)xj′ .

3.4 Exercises

Exercise 3.1. Let A(x, Q) be the Markov cluster algebra. In this exercise we want to show that the

invariant T =
x2

1+x2
2+x2

3
x1x2x3

∈ F does not lie in the cluster algebra.

(a) Prove that the Markov cluster algebra A(x, Q) becomes an N-graded algebra when we as-
sign each cluster variable the degree 1.

(b) Prove that T /∈ A(x, Q).

Exercise 3.2. Consider the following triangulation of the regular hexagon.
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(a) For all possible vertices a1, a2 ∈ {a, b, c, d, e, f } determine all Schiffler paths from a1 to a2.

(b) For all possible vertices a1, a2 ∈ {a, b, c, d, e, f } compute X(a1, a2).

(c) How are the results related to the cluster variables in Figure 2.14?
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Chapter 4

The Laurent phenomenon

4.1 The proof of the Laurent phenomenon

In this section we wish to prove Laurent phenomenon [FZ, Theorem 3.1]. In the literature there ex-
ist two different proofs. Next to Fomin-Zelevinsky’s original proof, Berenstein-Fomin-Zelevinsky
[BFZ3] provided a different proof via so-called lower and upper bounds. We will present the
original proof, as it works in greater generality and

For the setup, let m ≥ n ≥ 1 be natural numbers and let x = (x1, x . . . , xm) be an extended
cluster with cluster variables x1, x2, . . . , xn and frozen variables xn+1, xn+2, . . . , xm in an ambient
field F . Moreover, let B̃ be an m ∈ n exchange matrix. Then the pair (x, B) is a seed.

Theorem 4.1.1 (Fomin-Zelevinsky). Every cluster variable of A(x, B̃) is an element in the Laurent
polynomial ring Z[x±1

1 , x±1
2 , . . . , x±n , xn+1, xn+2, . . . , xm].

Especially, the two cluster algebras satisfyA(x, B̃) ⊆ k[x±1
1 , x±1

2 , . . . , x±n , xn+1, xn+2, . . . , xm] and
A(x, B̃)inv ⊆ k[x±1

1 , x±1
2 , . . . , x±1

m ]. As any mutation equivalent seed (y, B̃′) ∼ (x, B̃) defines the
same cluster algebra, every cluster variable is also a Laurent polynomial in the elements of an
arbitrary cluster y of A(x, B̃).

4.1.1 Warmups

In this section we wish to provide some motivation for the proof, which will become technical at
some point. The aim of the first proposition is to show the Laurent phenomenon fails as soon a
you begin to modify input data. So the class of dynamical systems that fulfill Laurentness is very
rigid (which might count as a retroactive justification for the definition of a cluster algebra at least
in rank 2).

Proposition 4.1.2. Assume that (an)n∈Z is a sequence of positive integers. Let x1 x2 algebraically
independent elements in an ambient field F . Define a sequence (xn)n∈Z of elements in F by the
recursion xn−1xn+1 = xan

n + 1. Then . . . = a−2 = a0 = a2 = a4 = . . . and . . . = a−1 = a1 = a3 = . . .

Proof. Suppose u, v, w, x, y are consecutive elements in the sequence (xn)n∈Z. By defintition, there
are positive integers a, b, c such that

w =
va + 1

u
, x =

wb + 1
v

=
(va + 1)b + ub

ubv
, y =

xc + 1
w

=

[
(va + 1)b + ub]c

+ ubcvc

ubc−1vb(va + 1)

By assumption, y ∈ Z[u±1, v±1]. This means that the polynomial va + 1 ∈ Z[u, v] must divide
the polynomial

[
(va + 1)b + ub]c

+ ubcvc. The binomial expansion only yields one term that is not

53



54 CHAPTER 4. THE LAURENT PHENOMENON

divisible by va + 1. We conclude that the polynomial ubc + ubcvc must be divisible by va + 1, so
that vc + 1 is divisible by vc + 1. Similarly, we can conclude that va + 1 is divisible by vc + 1 when
we write u as a rational expression in x and y. It follows that a = c, which implies the claim by an
easy inductive argument.

Second, the Laurent phenomenon clearly implies that we all cluster variables become integers
when we specialize all cluster and frozen variables in a single cluster to 1. As a toy model for the
whole prove we now prove integrality of the elements of the 4-Somos sequence from Section 3.1.5.
Recall that we have defined the 4-Somos sequence (xn)n∈N+ by initial values x1 = x2 = x3 = x4 =
1 and the recursion xn+4xn = xn+3xn+1 + x2

n+2 for n ≥ 1. The elements are specialized cluster
variables of the cluster algebra attached to the quiver in Figure 3.5. We follow Gale [Gal] in our
exposition.

Proposition 4.1.3. For all n ≥ 1 we have xn ∈ Z.

Proof. First, we claim that if a, b, c, d are consecutive members in the sequence, then a, b, c, d are
pairwise coprime. We prove the claim by mathematical induction. It it clearly true for the initial
four elements as they are all equal to 1. Now suppose that a, b, c, d, e are consecutive elements
such that a, b, c, d are pairwise coprime. We have to prove that b, c, d, e are pairwise coprime, i.e.
we have to show that gcd(b, e) = gcd(c, e) = gcd(d, e) = 1. The claim follows easily from the
exchange relation ae = bd + c2. If prime number p would divide both b and e, then it would also
divide c which is impossible. The other two claim follow similarly.

Now we provide a proof of the actual statement, which we also do by mathematical induction.
It is easy to see that the initial eight elements are integers as we only divide by 1. Suppose that
a, b, c, d, e, f , g, h, i are consecutive elements such that a, b, c, d, e, f , g, h are integers. We have to
prove that i is an integer. We consider the exchange relations ae = bd + c2, b f = ce + d2, cg =
d f + e2, dh = eg + f 2 and ei = f h + g2. In other words, we have to show that f h + g2 is divisible
by e. Let us reduce all numbers modulo e. By the above claim we know that b, c, d ∈ (Z/eZ)× are
invertible. Using the recursions we can now write f , g, h as expressions in b, c, d:

f ≡ d2

b
, g ≡ d3

bc
, h ≡ d3

b2 (mod e).

So we obtain the congruence f h + g2 ≡ d5

b3c2 (c2 + bd) (mod e). Surprisingly, the numerator c2 + bd
also appears in the equation ae = bd + c2, which implies that f h + g2 id divisible by e.

Readers who have understood the arguments in this section, will be able to understand the
whole proof. Cum grano salis, we replace the divisibility arguments over the integers in the
above proof by divisibility arguments in (Laurent) polynomial rings. An upshot of the proof is
the following:

(A) Cluster variables obtained from the cluster x by a sequence of mutations at pairwise different
indices are Laurent polynomials in x by construction (compare w and x in the first warmup
and e, f , g, h in the second warmup).

(B) The first cancellation happens when we mutate the cluster x by sequence that uses an index
twice (compare y in the first warmup and i in the second warmup). For instance, the first
non-trivial step in the proof is to show that the mutation (µiµjµi)(x) (for indices i 6= j)
produces Laurent polynomials.

(C) The Laurentness of (µiµjµi)(x) (for all indices i 6= j) implies Laurentness of all cluster vari-
ables by an induction argument. In the general case, when the cluster variables do not form
a sequence but are parametrized by a regular tree, we organize the induction by a so-called
caterpillar.
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(D) For the induction step we show certain coprimality results in the ring of (Laurent) polyno-
mials.

4.1.2 Divisibility in commutative algebra

For the second step in the proof we recollect some basic concepts from commutative algebra. Let
A be a commutative and unital k-algebra. Let us also assume that A is an integral domain.

We say that an element y ∈ A divides the element x ∈ A if there exists an element z ∈ A such
that x = yz. In this case, we also say that x is divisible by y. For example, every element is divisible
by 1 and by itself. A non-zero element p ∈ A is called a prime element if the following implication
holds: If p divides the product xy, then p divides x or p divides y. For example, a prime number
p is a prime element in the ring Z of integers.

An element x ∈ A is called a unit if there exists an element y ∈ A such that xy = 1. We denote
the set of all units by A×. Two elements x and y of A are called associated if there exists a unit
λ ∈ A× such that x = λy.

We call an element x ∈ A reducible if there exist two elements y, z ∈ A\A× such that x = yz.
It is called irreducible otherwise. Note that every prime element p ∈ A is irreducible: Assume that
p is a prime element and p = yz for some y, z ∈ A. Then p divides the product yz and hence p
divides y or p divides z. Without loss of generality suppose that p divides y. Then there exists
some x ∈ A such that y = px. In this case p = pxz. As the algebra A does not contain zero
divisors, the get 1 = xz, so that the factor z is a unit. The converse is not true.

The algebra A is called a unique factorization domain if the following implication holds: If
x1, x2, . . . , xr and y1, y2, . . . , ys are irreducible elements with x1x2 · · · xr = y1y2 · · · ys, then r = s
and there exists a permutation σ ∈ Sr such that xi = yσ(i) for all i ∈ {1, 2, . . . , r}. Gauß’s
Lemma asserts that the polynomial ring A = k[X1, X2, . . . , Xn] in n ≥ 1 variables is a unique
factorization domain. The units in this ring are A× = k× for all fields k. It follows that the
Laurent polynomial ring A = k[X±1

1 , X±1
2 , . . . , X±1

n ] is a unique factorization domain with units
A× = {Xa1

1 Xa2
2 · . . . · Xan

n : a = (a1, a2, . . . , an) ∈ Zn}. For a non-example, the ring A = Z[
√
−5] is

not a unique factorization domain, because 2 · 3 = (1 +
√
−5)(1−

√
−5) and A× = {±1}.

For the rest of the section assume that A is a unique factorization domain. Then every irre-
ducible element is also a prime element. An element d ∈ A is called a greatest common divisor
of x and y if d divides every element that divides both x and y. In a unique factorization do-
main, a greatest common divisor always exists and all greatest common divisors are associated to
each other. More precisely, if x1x2, · · · , xr are pairwise non-associated and irreducible elements,
then greatest common divisor of the monomials xa1

1 xa2
2 · . . . · xar

r and xb1
1 xb2

2 · . . . · xbr
r is equal to

xm1
1 xm2

2 · . . . · xmr
r where mi = min(ai, bi) for all i ∈ {1, 2, . . . , r}. We denote a greatest common di-

visor of two elements x, y ∈ A by gcd(x, y). Two elements x, y ∈ A are called coprime if a greatest
common is equal to 1.

4.1.3 Three mutations

Suppose that i and j are different mutable indices. We wish prove that the cluster (µi ◦ µj ◦ µj)(x)
consists of Laurent polynomials in the variables of the initial cluster. To avoid subindices, we
abbreviate u = xi, v = xj, w = µi(xi), x = (µj ◦ µi)(xj) and y = (µi ◦ µj ◦ µj)(xi). Then, the four
clusters x, µi(x), (µj ◦ µi)(x) and (µi ◦ µj ◦ µj)(x) all have n− 2 cluster variables and m− n frozen
variables in common, and the other two elements are (u, v), (v, w), (w, x) and (x, y), respectively.

Let L = k[x±1
r : 1 ≤ r ≤ m, r 6= i, j] be the Laurent polynomial ring in the common cluster

and frozen variables. We claim that w, x, y ∈ L[u±1, v±1]. The claim is obviously true for w and y.
The non-trivial step is to show that y ∈ L[u±1, v±1]. First of all, note that this is true if the entry
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bij (and hence also bji) is equal to zero, because in this case y = u. Without loss of generality we
may assume that bij < 0 (and hence bji > 0). For further arguments we also consider the mutation
B′ = µi(B). For brevity, we put b′ij = b and bji = −c. It follows that b and c are positive integers.

By the exchange relations, we have uw = vcL + M, vx = wbN + P and wy = xcR + S for some
monomials L, M, N, P, Q, R, S ∈ L×. Using the exchange relations we can express w, x and y as
rational functions in u and v with coefficients in L. Explicitly, we obtain

w =
vcL + M

u
,

x =
wbN + P

v
=

(vcL + M)bN + ubP
ubv

,

y =
xcQ + R

w
=

[
(vcL + M)bN + ubP

]c Q + Rubcvc

(vcL + M)ubc−1vc .

We see that w and x are automatically Laurent polynomials in L[u±1, v±1]. For the containedness
y ∈ L[u±1, v±1], it is enough to show that the polynomial vcL + M ∈ k[xk : 1 ≤ k ≤ m] divides the
polynomial in the numerator. We expand the term in the numerator via the binomial theorem. We
see that it is enough to show that the polynomial vcL+ M divides the polynomial ubcvcR+ ubcPcQ.
We conclude that it is enough to show that vcL + M divides vcR + PcQ. We claim that L divides R
(inside the polynomial ring k[xk : 1 ≤ k ≤ m]) and that the identity PcQL = MR holds. The claims
finish the argument.

To this end, we describe P, Q, L, M and R more explicitly. Let us partition the vertex set
Q0\{i, j} into four classes. More precisely, we put

D = {D ∈ Q0\{i, j} : b′D,i ≥ 0, b′D,j < 0}, E = {E ∈ Q0\{i, j} : b′E,i ≥ 0, b′E,j ≥ 0},
F = {F ∈ Q0\{i, j} : b′F,i < 0, b′F,j < 0}, G = {G ∈ Q0\{i, j} : b′G,i ≥ 0, b′G,j < 0}.

For an element D ∈ D we abbreviate d = |b′D,i| and d′ = |b′D,j|. For elements in E , F and G we
proceed analogously. Moreover, it will be convenient to refine the partition by setting G = G1 t G2
where G1 = {g ∈ G : g ≥ cg′} and G2 = {g ∈ G : g < cg′}. We can now read off the monomials
L, M and P from the quivers Q(B′). We have

L = ∏
D∈D

Dd ·∏
E∈E

Ee, M = ∏
F∈F

F f · ∏
G∈G

Gg, P = ∏
E∈E

Ee′ · ∏
G∈G

Gg′ .

To describe the monomials Q and R let us consider the quiver of the matrix µj(B̃′). The partition
of the vertex set enables us to describe the relevant entries in that matrix explicitly. We obtain

Q = ∏
F∈F

F f · ∏
G1∈G1

Gg1−cg′1
1 , R = ∏

D∈D
Dd ·∏

E∈E
Ee+ce′ ∏

G2∈G2

Gcg′2−g2
2 .

We conclude that L divides R and that the identity PcQL = MR holds.

4.1.4 The proof of the Laurent phenomenon

Now we combine the case of three mutations with coprimality statements to obtain a proof of
the Laurent phenomenon. The crucial step is to compute certain greatest common divisors. We
use the same notation as above and we suppose that b, c ≥ 1. Then we claim that inside the
Laurent polynomial ring L[u±1, v±1] we have gcd(w, x) = gcd(w, y) = 1. For the first claim note
that the elements u, ubv, ubP ∈ L[u±1, v±1] are actually units. Therefore, we can conclude that
gcd(w, x) = gcd(vcL + M, (vcL + M)bN + ubP) = gcd(VcL + M, ubP) = 1. For the second claim,
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Figure 4.1: Five kinds of vertices

let us investigate the quotient of the the polynomial in the numerator of y and the polynomial
vcL + M. If b > 1, then the quotient is equal to ubcRL−1 = ubcPcQM−1 plus a multiple of vcL + M.
In this case gcd(w, y) = gcd(wvcL + M, ubcRL−1) = 1, because ubcRL−1 ∈ L[u±1, v±1] is a unit.
For b = 1 we obtain gcd(w, y) = ubP + cN = 1, because a common divisor would be an element
in L but L and M are coprime in L.

4.2 Exercises

Exercise 4.1. Let Q be the quiver with vertices Q0 = {1, 2, 3} and arrows Q1 = {1 → 2, 2 →
3, 1 → 3}. In Section 3.1.4 we attached to Q the sequence (xn)n∈Z defined by the initial values
x1 = x2 = x3 = 1 and the recursion xn+3xn = 1 + xn+2xn+1 for n ≥ 1. Prove that all elements are
integers.
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Chapter 5

Solutions to exercises

Exercise 1.1. We verify the relation by direct computation. The vectors (r, s) ∈ R2 for the mono-
mials arbs (with r, s ≥ 0) are (1, 0), (1, 1), (2, 3), (1, 2), (1, 3) and (0, 1). These are precisely the
coordinates of the positive roots for G2 in the basis of simple roots, as shown in Figure 1.3.

(a, b)
(

b, b3+1
a

)

(
b3+1

a , a+b3+1
ab

)

(
a+b3+1

ab , a3+3a2+3a+1+2b3+3ab3+b6

a2b3

)(
a3+3a2+3a+1+2b3+3ab3+b6

a2b3 , a2+2a+1+b3

ab2

)

(
a2+2a+1+b3

ab2 , a3+3a2+3a+1+b3

ab3

)

(
a3+3a2+3a+1+b3

ab3 , a+1
b

) ( a+1
b , a

) F3

F1

F3

F1

F3

F1

F3 F1

Exercise 1.2. Define a sequence ( fk)k∈N by the initial elements f0 = f1 = 1 and the recursion
fk+1 = 3 fk − fk−1 for k ≥ 1. The following table lists the first elements of the sequence.

k 0 1 2 3 4 5 6
fk 1 1 2 5 13 34 89

Put M =
(

0 1
−1 3

)
and N =

(
1 1
1 2

)
. By an induction argument it is easy to see that for all k ≥ 0 we

have

Mk
(

1
1

)
=

(
fk

fk+1

)
, and thus Mk

(
1 1
1 2

)
=

(
fk fk+1

fk+1 fk+2

)
.

We conclude that fk fk+2 − f 2
k+1 = det(M)k det(N) = 1 which implies F2( fk, fk+1) = ( fk+1, fk+2)

for all k ≥ 0. By an induction argument it is easy to see that Fk
2 (1, 1) = ( fk, fk+1) for all k ≥ 0. As

the sequence ( fk)k∈N is strictly increasing, we have Fk
2 (1, 1) 6= (1, 1) for all k ≥ 1 which implies

Fk
2 6= id for all k ≥ 1. �

Remark: It is easy to see that the sequence ( fk)k∈N is every other Fibonacci number. The integrality
of the sequence is an instance of the Laurent phenomenon.

Exercise 2.1 (a) We compute µ2(Q) according to the mutation rules M1-M4. My M1 we reverse
the incoming arrow 1 → 2 and by M2 we reverse the two outgoing arrows 2 → 3 and 2 → 4. By
M3 the two paths 1 → 2 → 3 and 1 → 2 → 4 yield arrows 1 → 3 and 1 → 4. A cancellation of
2-cycles is not necessary. The result is the following quiver µ2(Q):
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3

4

1 2

(b) The set of isomorphism classes of the following six quivers is closed under mutation. Thus, it
is the mutation class of Q. Especially, the mutation class contains all isomorphism classes of the
23 = 8 orientations of the underlying diagram guaranteed by Proposition 2.2.8.

3

4

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3

4

1 2

Exercise 2.2 (a) We calculate µ1(Q) and µ2(Q) according to the mutation rules M1-M4 by parti-
tioning the arrows in direct predecessors and direct successors (which we colour blue), arrows
between direct predecessors and direct successors (which we colour red) and remaning arrows
(which we colour black). The results are the following two quivers.

µ1(Q) :

3 4

1 2

µ2(Q) :

3 4

1 2

By Proposition 2.2.3 we have an isomorphism µ2(µ2(Q)) ∼= Q, which we could also verify by a
direct computation.

(b) Surprisingly, we have µ1(Q) ∼= Q. Thus Q, µ1(Q) and µ2(µ2(Q)) are isomorphic to each other,
whereas µ2(Q) lies in a different isomorphism class.

Exercise 2.3. The regular pentagon admits C3 = 5 triangulations. Each triangulation consists
of two diagonals and thus we can mutate it at two places. The following graph indicates which
triangulations are related to each other by a flip. By chance, the graph is again a pentagon.
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Exercise 2.4 (a) Let B′′ = (b′′ij) be the n× n integer matrix with entries

b′′ij = bij +
1
2 (bik|bkj|+ |bik|bkj).

Note that the matrices B′ and B′′ have the same rank, because we can obtain one from the other by
a sign change in k-th row and column. So it is enough to prove that rank(B) = rank(B′′). But we
obtain B′′ from B by the following operation. In the first step, we add to every column vector cj =
(bij)i∈{1,2,...,n} ∈ Zn with j 6= i a scalar multiple of the k-th column vector ck = (bik)i∈{1,2,...,n} ∈ Zn.
Here, the scalar is equal to 1

2 |bkj|. These operations do change the rank of the matrix. Moreover,
these operations leave the k-th row vector rk = (bkj)j∈{1,2,...,n}i ∈ Zn invariant. In the second step,
we add a scalar multiple of rk =∈ Zn to every row vector rj = (bij)j∈{1,2,...,n}i ∈ Zn with j 6= i.
These operation leave the rank of the matrix invariant as well. �

Remark: In general, the matrix B is not of full rank. For instance, if n is odd, then by skew
symmetry det(B) = det(−BT) = (−1)n det(BT) = −det(B). So det(B) = 0 and B is not of full
rank in this case.

(b) Let j ∈ {1, 2, . . . , n} and let gj = gcd(bij : i ∈ {1, 2, . . . , n}) and g′j = gcd(b′ij : i ∈ {1, 2, . . . , n})
the greatest common divisors of the j-th column of B and B′, respectively. The definition readiliy
implies that gj|bij and gj|bikbkj for every i ∈ {1, 2, . . . , n}. We conclude that gj divides b′ij for every
i ∈ {1, 2, . . . , n} so that gj|g′j. We apply the same argument to the mutation B = µk(B′) to get g′j|gj.
Both relations can only hold when gj = g′j. �

Exercise 2.5. The mutation contains one other element, namely the isomorphism class of the
quiver Q′ = (Q′0, Q′1, s′, t′) with vertices Q′1 = {1, 2, 3} and one arrow 2→ 1, one arrow 3→ 2 and
two arrows 1⇒ 3. �

Exercise 2.6. As experiments with the applet show, a possible sequence of mutations is µ1(Q) in
the first case and (µ4 ◦ µ5 ◦ µ1 ◦ µ5 ◦ µ2)(Q) in the second case. �

Exercise 2.7 (a) The four elements u, v, w and t are trivially polynomial expression in themselves.
As a first step it is both easy to guess and to check that

x2 = uw− 1,
1 + x1x3

x2
= vt− 1,

(1 + x2)2 + x1x3

x1x2x3
= wt− 1.
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Using these expressions we can write the last two cluster variables as polynomial expressions:

1 + x2

x3
= tx2 − x1 = uwt− u− t,

1 + x2 + x1x3

x1x2
=

1 + x2

x1
· 1 + x1x3

x2
− x3 = vwt− v− w.

(b) The elements u, v, w in Q(x1, x2, x3) = Q(u, v, w) are algebraically independent over Q. The
element t ∈ Q(u, v, w) is equal to t = uw+uv

(uw−1)v . Therefore, we have an isomorphism A(x, Q) ∼=
Q[U, V, W, T]/(UVWT −UV −UW −VT).

Exercise 2.8. Suppose that B is skew symmetrizable. By definition, there exists a diagonal matrix
with positive integer diagonal entries such DB is skew-symmetric, i.e. DB = −(DB)T = −BTD.
Then we have BD−1 = −D−1BT. Let D′ be scalar multiple of the inverse D−1 that has positive
integer entries. Then BD′ is skew symmetric. The reverse direction follows similarly.

Exercise 3.1. All exchange relations between clusters (x, y, z) and (x′, y, z) are of the form xx′ =
y2 + z2, which is homogeneous of degree 2 when we assign each cluster variable the degree 1.
Hence this assignment induces a grading on the whole cluster algebra with index set N. Assume
that T ∈ A(x, Q). Then Tx1x2x3 = x2

1 + x3
2 + x2

3 is on the one hand a homogeneous element of
degree 2, on the other hand a linear combination of homogeneous elements of degree at least 3,
which is a contradiction. �

Exercise 3.2. For all vertices a1, a2 will get denote by X0(a1, a2) ∈ F the element that we obtain
from X(a1, a2) by specializing x4 = x5 = . . . = x9 = 1. For all vertices a1, a2 such that the segment
Ma1,a2 is equal to some Ti ∈ T we have X(a1, a2) = X0(a1, a2) = xi, as there can only one Schiffler
path. Especially, we have X(b, f ) = x1, X(b, e) = x2 and X(c, e) = x3. For the other pairs of
vertices we obtain:

P(a, e) = {(ab f e), (a f be)}, P(c, f ) = {(cbe f ), (ceb f )}, P(b, d) = {(bced), (becd)},

X(a, e) =
x4x8

x1
+

x2x9

x1
, X(c, f ) =

x5x8

x2
+

x1x3

x2
, X(b, d) =

x5x7

x3
+

x2x6

x3
,

X0(a, e) =
1 + x2

x1
, X0(c, f ) =

1 + x1x3

x2
, X0(b, d) =

1 + x2

x3
,

P(a, c) = {(abec), (a f bc), (ab f ebc)}, P(d, f ) = {(dce f ), (deb f ), (decbe f )},

X(a, c) =
x3x4

x2
+

x5x9

x1
+

x4x5x8

x1x2
, X(d, f ) =

x6x8

x3
+

x1x7

x2
+

x5x7x8

x2x3
,

X0(a, c) =
x1x3 + x2 + 1

x1x2
, X0(d, f ) =

x2 + x1x3 + 1
x2x3

P(a, d) = {(abed), (a f becd), (ab f ecd), (a f bced), (ab f ebced)},

X(a, d) =
x4x7

x2
+

x2x6x9

x1x3
+

x4x6x8

x1x3
+

x5x7x9

x1x3
+

x4x5x7x8

x1x2x3
,

X0(a, d) =
x1x3 + x2

2 + 2x2 + 1
x1x2x3

.

The specialized elements X0(a1, a2) ∈ F for different and non-adjacent vertices a1, a2 are the clus-
ter variables in Figure 2.14.

Remark: The set P(a, d) contains a Schiffer path, namely (a f becd), that also crosses the segment
Mad in an odd step. Thus, the converse of condition (T5) may fail. Moreover, it shows that
coefficients for the specialized cluster variables can be greater than 1.
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