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Cluster Assignment and Instruction Scheduling for

Partitioned Register-Set Machines

Jingsong He

Abstract

For half a century, computer architects have been striving to improve uniprocessor

computer performance. Many of their successful designs such as vliw and superscalar

machines use multiple functional units trying to exploit instruction level parallelism

in computer programs. As the number of functional units rises, another hardware

constraint enters the picture — the number of register-file ports needed grows directly

with the number of functional units. At some point, the multiplexing logic on register

ports can come to dominate the processor’s cycle time. A reasonable solution is to

partition the register file into independent sets and associate each functional unit

with a specific register set. Such partitioned register sets have appeared in a number

of commercial machines, such as Texas Instruments TMS320C6xxx dsp chips.

Partitioned register-set architectures present a new set of challenges to compiler

designers — the compiler must assign each operation to a specific clusters and co-

ordinate data movement between clusters. In this thesis, we investigate five instruc-

tion scheduling methods with different scopes to find a suitable one for partitioned

register-set architectures. Next, we examine previous algorithms for the combined

cluster assignment and scheduling problem and propose two new algorithms that im-

prove upon the prior art. Then we study the difficulties introduced by limited number

of registers and provide an approach to handle them. Finally we take several other

measurements of partitioned register-set architectures that may shed light on some

of the architectural decisions.
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Chapter 1

Introduction

For half a century, computer architects have been striving to improve uniprocessor

computer performance. Adding functional units is a natural way to increase the

potential peak performance of a processor. Many successful architecture designs such

as vliw and superscalar machines feature multiple functional units. For example,

the Texas Instruments TMS320C6xxx has eight functional units [15].

To produce good code for these machines, the compiler must expose enough in-

struction level parallelism (ilp) to let the scheduler to keep the various functional

units busy. The scheduler must order the operations in a way that lets them execute

in parallel. Finally, the compiler must keep as many values in registers as possible,

since the memory interface is rarely wide enough or versatile enough to meet the need

for operands.

As the number of functional units rises, another constraint enters the picture —

the number of ports available on the register file. Because a typical functional unit

needs two register-based operands and produces one register-based result in each

cycle, the number of register-file ports needed grows directly with the number of

functional units. At some point, the ports require too much logic — the multiplexing

logic on register ports can come to dominate the processor’s cycle time.

This revelation is not new. In fact, the designers of the Multiflow Trace machines

noted that “. . . any reasonably large number of functional units requires an impossi-

bly large number of ports to the register file . . .The only reasonable implementation

compromise is to partition the register files . . . ” [7] To accomplish this, the architects

create independent register sets and associate each functional unit with a specific
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FU FU FU FU

Register   File

FU FU FU FU

Register   File

Figure 1.1 : A partitioned register-set machine

register file. Figure 1.1 depicts such a design, with two register files that each service

four functional units. We call each set of functional units and its associated regis-

ter file a cluster. To allow direct transfers between clusters (without going through

memory), an inter-cluster transfer mechanism is usually added. The figure depicts

this as an inter-cluster data path. Typically, the inter-cluster path can provide a

limited number of operands in each direction on each cycle.

Partitioned register sets appeared in a number of digital signal processors (dsps)

such as Texas Instruments TMS320C6xxx series. With increasing use of dsps in cars,

microwaves, cellular phones and other consumer electronics, we expect to see more

partitioned register-set architectures.

These partitioned register-set machines present a new set of challenges to compiler

designers. The compiler must place each operation in a specific cluster and then work

to ensure that its operands are either available in the local register file or available,

in a timely fashion, over the inter-cluster data path. These problems are complicated

by the latency and limited capacity of the inter-cluster data path.

In this thesis, we study the combined cluster assignment and instruction schedul-

ing problem for partitioned register-set machines. Chapter 2 provides the theoret-
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ical and experimental background. Chapter 3 compares five instruction scheduling

methods to select a suitable scheduling scope for partitioned register-set machines.

Chapter 4 examines previous algorithms for the cluster assignment and scheduling

problem, and proposes two new algorithms which produce better scheduled code.

Chapter 5 refines our algorithms to handle register sets of practical size. Chapter 6

takes several other measurements of partition register-set architectures that may shed

light on some of the architectural decisions. Chapter 7 reviews our contributions.
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Chapter 2

Background

In this chapter we describe the theoretical and experimental background for our

research work. First, we introduce the instruction scheduling problem and the list

scheduling algorithm. Second, we present the research compiler infrastructure that

our instruction scheduler builds on. Then, we describe the partitioned register-set

machine models and benchmark programs we tested. At last, we examine previous

work on partitioned register-set machines.

2.1 Instruction Scheduling Problem

Instruction scheduling is the process by which a compiler reorders the instructions

of a program in an attempt to decrease its running time, reduce its code size or

improve other aspects of the program. Figure 2.1 shows an example. Assume that

the processor has only one functional unit; memory access operations take three

cycles; and all other operations take one cycle. The original code on the left takes

8 cycles while the carefully scheduled code on the right only takes 5 cycles. The

nop operations denote the cycles in which the machine has to wait for results of

previous operations. The scheduled code effectively hides the latency of memory

access operations. Notice that the scheduled code must use more registers.

Vliw and superscalar machines use multiple functional units to increase their

peak performance. To produce good code for them, the compiler must expose enough

instruction level parallelism (ilp) to keep the various functional units busy. Consider

the code fragment in Figure 2.2(a). Assume that the machine has two identical

functional units; multiply takes two cycles; addition and subtraction take one cycle.
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LOAD  @a  =>  r0
NOP
NOP
ADD  r0  r0  =>  r2
LOAD  @b  =>  r1
NOP
NOP
ADD  r1  r2  =>  r3

LOAD  @a  =>  r0
LOAD  @b  =>  r1
NOP
ADD  r0  r0  =>  r2
ADD  r1  r2  =>  r3

(a) Before scheduling (b) After scheduling

Figure 2.1 : Instruction scheduling example

Instruction level parallelism is exploited by the scheduled code in Figure 2.2(b) —

when one functional unit is busy with a multiply, an addition and a subtraction are

issued to the other functional unit. The amount of ilp available is subject to data

dependence. For example, in Figure 2.2(b) we cannot move the last add into an

earlier cycle because it has to wait for the results of previous operations.

Since general instruction scheduling problem is np-complete [22], a number of

heuristic methods have been developed that give approximate solutions. Among them,

list scheduling [16, 14] is the dominant method. More advanced techniques, such as

trace scheduling and software pipelining, typically use list scheduling to perform the

actual assignment of operations into specific cycles.

List scheduling is a greedy algorithm driven by heuristics. To preserve program’s

correctness, the scheduler first builds a data precedence graph (dpg). Nodes in dpg

represent operations, edges represent data dependences. An edge from node A to

node B means operation B depends on operation A. The dpg for the code fragment

in Figure 2.2 is shown in Figure 2.3. Each operation is also assigned a priority

using some heuristics such as latency-weighted depth. After dpg is constructed the

scheduler picks ready operations in order of priority and fills them into the schedule

cycle by cycle.
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MUL  r1  r2  =>  r2   |   ADD  r0  r1  => r0  

SUB  r2  r5  =>  r2    |    NOP
ADD  r2  r0  => r3    |    NOP

(b) After scheduling

(a) Before scheduling

ADD  r0  r1  =>  r0
MUL  r1  r2  =>  r2
SUB  r0  r4  =>  r0

ADD  r2  r0  =>  r3
SUB  r2  r5  =>  r2

NOP                          |   SUB  r0  r4  =>  r0

Figure 2.2 : Instruction level parallelism

ADD
1

ADD

MUL

2

1
SUB SUB

2

Figure 2.3 : A data dependence graph
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2.2 Massively Scalar Compiler Project

Our instruction scheduler is part of the research compiler built and maintained by

the Massively Scalar Compiler Project [3] at Rice University. Figure 2.4 shows the

structure of the MSCP compiler. The front end of the compiler translates C or

Fortran code into an intermediate representation called iloc. Iloc is designed as

the assembly language for an abstract RISC-like architecture. The iloc code is then

passed through various optimization phases. Finally the back end generates C code

from iloc.

The instruction scheduler is a component of the back end. It reads in the archi-

tecture description file for a target machine then schedules the code according to the

specific architecture.

Different from commercial compilers, the back end of our research compiler pro-

duces C code instead of machine code. This C code can be instrumented to gather

various statistics such as static operation count and dynamic instruction count. It

is then compiled by standard C compilers and executed. By doing this, we are able

to simulate the compiled code on abstract architectures with desired properties and

evaluate quality of the code.

There are various optimization passes within the optimizer. All the benchmarks we

tested were heavily optimized prior to scheduling. The optimizations we used include

global value numbering, lazy code motion, algebraic reassociation, operator strength

reduction, constant propagation, peephole optimization and dead code elimination.

C and Fortran
Optimizer

Front
End

Back
End

CILOCILOC

Figure 2.4 : MSCP research compiler
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2.3 Architectural Models

Partitioned register sets appeared in a number of commercial machines from Mul-

tiflow Trace in the 1980’s to the TMS320C6xxx dsp chips developed by Texas

Instruments recently. Our hypothetical two cluster machine model is based on the

Texas Instruments TMS320C6xxx chips[15] which resemble the drawing in Figure 1.1.

It consists of two identical clusters and is able to issue eight operations each cycle.

Each cluster has four functional units, a register file, and an inter-cluster data bus

to reach the other cluster. The functional units execute operations from the iloc

instruction set [4]. The four functional units are an integer unit, a floating-point

unit, a control unit, and a memory access unit. To simplify the compiler, we assume

that each iloc operation is supported on exactly one of the four types of functional

unit. Operation latencies are as follows: Integer operations take a single cycle, except

for a two-cycle multiply. Floating point operations take three cycles, except for the

six cycle multiply. Inter-cluster copies take one cycle. Branches require six cycles,

while memory operations take five cycles. The odd iloc operations that represent

intrinsic functions (sin, log, sqrt, etc.) take thirty cycles. We also assume that all

functional units are fully pipelined, i.e. any functional unit can start a new operation

in any cycle.

Our initial experiments in Chapter 4 assume an unlimited number of registers.

Chapter 5 refines the results by restricting the register sets to practical size — each

cluster has 32 integer and 32 floating-point registers.

As a vliw machine, TMS320C6xxx requires nop operations to be inserted into

the scheduled code for cycles in which no operation starts. TMS320C6xxx has a

multiple-cycle nop operation which takes number of idle cycles as its only argument.

Use of this special multiple-cycle nop operation is reflected in our measurement of

code size in Section 3.4.

In Chapter 3 and Chapter 4 we will also evaluate various algorithms using a

four cluster architectural model. It is similar to the two cluster model but has four
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identical clusters and can issue 16 operations each cycle. Each cluster has a distinct

inter-cluster path to each other cluster.

2.4 Benchmarks

To evaluate various algorithms, we selected seven Fortran and C benchmark programs.

Table 2.1 presents some basic statistics of these programs. Doduc, fpppp, and tomcatv

are taken from the Spec ‘89 benchmark suite. Rkf45 and svd come from a library

of programs distributed with Forsythe, Malcolm, and Moler’s numerical algorithms

text [13]. Nsieve is the well-known Sieve of Eratosthenes benchmark written by Al

Aburto. Fft is a 3-D fast Fourier transform written in C.

doduc fpppp tomcatv rkf45 svd fft nsieve

Number of Routines 45 16 2 6 2 – –

Source Lines 5,354 2,620 210 690 382 1,037 326

ILOC Lines 36,728 12,821 1,359 1,527 2,427 2,754 733

Table 2.1 : Benchmark statistics

2.5 Previous Work

There are several previous algorithms for cluster assignment and instruction schedul-

ing for partitioned register-set machines.

The Bulldog [11] compiler is the first study of this problem. It uses a two-phase

approach — the first pass assigns each operation to a cluster, then the second pass

uses list scheduling to construct a schedule that respects the cluster assignments. The

Bottom-Up Greedy (bug) algorithm is used in the assignment phase. The idea is to

make a trial schedule focusing on the issue of minimizing the amount of data transfer

latency. bug does a depth first traversal of the dpg, starting at roots (representing
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output values) working towards leaves (representing input values), at each node the

best functional unit available at the time is chosen. The search is guided by the

latency-weighted depth of the nodes, so that a critical path of the computation is

always searched first.

The Multiflow Trace Scheduling Compiler [17] studied the ineffectiveness of bug

on highly parallel code and proposed a revised algorithm. The algorithm first parti-

tions code into components, each of which contains relatively little parallelism and a

relatively large amount of shared data. It then creates a partitioning of the compo-

nents into equivalence classes. Two components are in the same equivalence class if

one contains an operation whose result is read by other. During the assignment phase,

each time a functional unit is chosen for an operation, the equivalence class becomes

associated with the cluster containing the functional unit. When alternative func-

tional units are considered for an operation, a penalty is imposed if the operation’s

equivalence class has an associated cluster different from the given cluster.

In their study of Limited Connectivity vliw Architecture [5], Capitanio et al. gave

a methodology that first schedules the code using Percolation Scheduling [19] then di-

vides the code into substreams that minimize inter-cluster communication, and finally

inserts necessary copy operations and recompacts the code. Using this methodology,

they investigated different trade-offs in partitioned register set architecture design.

Özer et al. proposed an algorithm that brings together cluster assignment and

scheduling into a single unified phase. They call their method “unified assign and

schedule” (uas) [20]. To integrate cluster assignment into list scheduling, uas consid-

ers each possible cluster assignment for each ready operation. It checks the availability

of a functional unit for the operation; if a functional unit is available, it checks the

inter-cluster data paths to see if the necessary data-movement can be scheduled. It

chooses the first cluster where the operation and its inter-cluster data-motion fits.

They tested five priority functions for ordering the list of clusters and showed that

uas outperforms bug.
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Chapter 3

Scope of Instruction Scheduling

A good instruction scheduler for partitioned register-set machines must expose suf-

ficient instruction level parallelism to effectively utilize the parallel hardware. As

pointed out by the literature [11, 12, 17] only severely limited parallelism exists within

basic blocks. To keep wide machines busy, we need to find more ilp by looking across

basic block boundaries.

To select a suitable scheduling scope for our instruction scheduler, we investigated

five scheduling methods with different scopes: basic block scheduling, trace schedul-

ing, extended-basic-block scheduling without code duplication, extended-basic-block

scheduling with code duplication and superblock scheduling. A basic block is a

maximal length sequence of straight line code. Basic block scheduling simply applies

list scheduling to basic blocks. Trace, extended-basic-block and superblock schedul-

ing are described in the first three sections. Experimental results are presented and

analyzed in the last two sections.

3.1 Trace Scheduling

Fisher [12] first described an algorithm called trace scheduling (ts) which has become

a widely accepted instruction scheduling algorithm. Ts divides a program into traces.

A trace is a sequence of operations to be scheduled together. constructed.

When pickiol flow graph, the scheduler tries to pick a path that are most likely to

be executed. To do this, it uses profile data or estimates of how often each block exe-

cutes. The scheduler first finds the basic block with the highest estimated execution

count, then grows the trace forward and backward from this block.
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When growing the trace backward and forward, the same criteria are used for

picking the next “good” block to add to the trace. In either case, the “best” flow-

graph edge is chosen from a set of candidate edges: going forward, the candidate edges

are those leaving the current end of the trace; going backward, the candidate edges

are those entering the current beginning. An edge is best among all candidates if

the scheduler considers flow most likely to proceed along it. The trace stops growing

forward(backward) when there is no good successor(predecessor) or the chosen block

has already been scheduled within an earlier trace.

Because trace scheduling attempts to schedule earlier traces as fast as possible at

cost of making later traces longer, picking good traces is extremely important. Profile

information or estimate of execution frequency is used to guide the selection of traces.

Execution counts of each basic block and branch-taken frequencies are collected during

profile-gathering runs over typical data. If no typical data is available, we assume a

10l execution count for each basic block (l is the loop depth of the block) and a 50%

probability for each branch to be taken.

List scheduling as described in Section 2.1 is used to schedule each trace. The

scheduler reorders the trace, filling each cycle with operations from separate points

on the trace. Using latency-weighted depth priority heuristic, time critical operations

are usually scheduled early, while non-critical operations are often delayed.

Because of the movement of operations with respect to conditional jumps off

the trace (splits) and jumps into the trace (joins), the scheduler has to insert new

operations in front of off-trace successors or at the end of off-trace predecessors to

preserve correctness of the program. This process of inserting correctness-preserving

operations is called bookkeeping.

Figure 3.1 shows an example of bookkeeping at splits. Assume that the scheduler

picks B1, B2 and B3 to form a trace and schedules the trace as shown in (b). Notice

that two operations i = i + 1 and j = j − 1 have been moved below the split. The

program becomes incorrect. Copies of these two operations must be inserted on the
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off-trace edge of the split (as shown in (c)) to preserve correctness of the program.

Similarly we also need to do bookkeeping at joins. Figure 3.2 illustrates an example

of this.

To preserve correctness, there are some restrictions on movement of operations

respect to conditional jumps when scheduling a trace. Any operation that writes to

some live-in variable(s) of any off-trace successor cannot be moved above the split.

For example, the operation k = k ∗ k in Figure 3.1 is not allowed to move above

the split since k is a live-in variable of the off-trace block B4. Similarly operations

that write on variables live out of off-trace blocks cannot be moved down a join. For

example j = j − 1 in Figure 3.2 is not allowed to move down beyond the join. Such

restrictions are encoded into the dpg by adding “pseudo-dependence” edges. For

instance, a pseudo-dependence edge from the conditional branch in B1 to k = k ∗ k

must be added in the dpg for Figure 3.1(a) to prevent k = k ∗ k from moving above

the split. A trace can be scheduled just like a basic block after all restrictions have

been encoded into its dpg.

A more detailed description of trace scheduling algorithm can be found in Ellis’s

thesis [11].

3.2 Extended Basic Block Scheduling

An extended basic block (ebb) is a sequence of basic blocks, B1, B2, . . . , Bk such that

for 1 ≤ i < k, Bi is the only predecessor of Bi+1, and B1 does not have a unique

predecessor [1] [10]. Figure 3.3 shows a control flow graph (dpg) of 5 blocks. There

are several distinct ebbs: (B1, B2, B4), (B1, B3) and (B5). Since compiler cannot

schedule within one instance a block such as B1 in two conflicting ways, we must

form ebbs as disjoint sets of basic blocks for scheduling. One possible partition is

(B1, B2, B4), (B3) and (B5). Another feasible partition is (B1, B3), (B2, B4) and (B5).

Our ebb scheduler picks next ebb from the control flow graph in a similar way

to the trace scheduler picking next trace. It first finds the basic block with the
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k = k + i

k = k + i

i = i + 1
j = j  - 1

k = 5

k = k + i

(a) before scheduling

j = j  - 1
i = i + 1

k = 5

k = 5

i = i + 1

j = j  - 1 j = j  - 1
i = i + 1

(b) after scheduling

(c) after bookkeeping

B1

B

B

B

B1

B

B1

B

B B

k = k * k

k = k * k

k = k * k

i = i * k i = i * k

i = i * k

B2

1

B4 2

3

4

2

3 4

Figure 3.1 : Example of bookkeeping at split
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B4

(a) before scheduling (b) after scheduling

(c) after bookkeeping

B1

B

B

B

B1

B

B1

B

B

2

1

2

3

2

3

B4

B4

i = i + 1
j = j - 1

k = k * i

j = i + j

i = 1
j = 2

i = 5

j = 4

i = 1
j = 2

i = i + 1

j = j - 1
k = k * i

j = i + j

i = 1

j = 2

i = i + 1
k = k * i
j = j - 1 k = k * i

i = 5

j = 4

j = i + j

i = 5

j = 4

Figure 3.2 : Example of bookkeeping at join
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B2

B

B

B

3

4

5

B1

j = i + j

k = i * j

i = 4
j = j + 1

i = i *  2

j = j - 3

Figure 3.3 : EBB scheduling example

highest estimated execution count, then grows the ebb forward and backward from

this block. The ebb stops growing backward when the current block has more than

one predecessors or its only predecessor belongs to an already scheduled ebb. To

grow forward, the scheduler picks a “good” successor with the additional condition

that the chosen block has only one predecessor. The ebb stops growing forward when

there is no good predecessor or the chosen predecessor has already been scheduled.

There are a number of ebb construction heuristics different from ours, but Philip

Schielke’s thesis [21] suggests that none of these heuristics has any clear advantage

over others.

By definition, an ebb has no join inside it. We only need to worry about movement

of operations respect to splits. To preserve correctness, any operation which writes

on some live-in variable of any successor outside the ebb is not allowed to move up

beyond a split.

We tested two versions of ebb scheduling: ebb scheduling without code duplica-
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tion (ebb1) and ebb scheduling with code duplication (ebb2). ebb1 doesn’t allow

operations to move down a split, thus no bookkeeping is necessary.

As with trace scheduling, after the restrictions on code motion have been encoded

into dpg, an ebb can be scheduled just like a basic block.

3.3 Superblock Scheduling

Hwu etc.[18] proposed an algorithm called superblock scheduling (sb). A superblock

is a trace which has no side entrance. Control can only enter from the top but may

leave in the middle of a superblock. Superblocks are formed in two steps: first traces

are identified in exactly the same way as trace scheduling; second a copy is made of the

tail portion of the trace from the first side entrance to the end (tail duplication) then

all side entrances are moved to the corresponding duplicated basic blocks. Figure 3.4

shows an example.

Since there is no side entrance for a superblock, bookkeeping only need to be done

at splits. The restrictions are identical to those for an EBB, and they are handled

the same way. After restrictions of code movement have been encoded into dpg, a

superblock can be scheduled like a basic block.

3.4 Experimental Results

Experimental results for five scheduling algorithms are listed in Table 3.1 and Ta-

ble 3.2 in order of enlarging scope. The dynamic instruction count listed in

Table 3.2 is the total number of instructions executed in a run of scheduled code.

Here we make a distinction between operation and instruction: an instruction is

defined as a set of operations that begin in the same cycle on different functional units.

Therefore the dynamic instruction count represents the execution time of scheduled

code. The static operation count listed in Table 3.2 is the number of operations

in the scheduled code. It reflects the size of the scheduled code. Because of the use of
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Figure 3.4 : Example of tail duplication in superblock scheduling
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multiple-cycle nop operation in our hypothetical machine models, consecutive nop

operations are counted as one operation.

As shown in Table 3.1, enlarging the scope of scheduling reduces the execution time

of the scheduled code. Since ebb, ts and sb can schedule more than one basic blocks

a time, they are able to exploit more instruction level parallelism and produce faster

code than bb. Ebb2 can reorder operations more freely than ebb1 therefore it has

more chances to produce faster code than ebb1. Since branches are allowed out of and

into the middle of a trace, a trace could be much longer than an extended basic block,

therefore ts can find more ilp and produce faster code than ebb scheduling. Because

tail duplication allows later traces to be more freely scheduled without restrictions

from scheduling decisions of earlier traces, sb can produce faster code than ts. Sb

gives the fastest code overall, up to 36.6% faster than bb (for svd).

Table 3.2 shows the trend of increasing code size with scope of scheduling en-

larged. Because the bookkeeping process duplicates some operations, ebb2, ts and

sb produce larger code than bb and ebb1. Since sb also copies whole blocks during

tail duplication, it produces much longer code than other scheduling algorithms, up

to 283% larger than bb (for fpppp).

Although there is no code duplication by ebb1, Table 3.2 shows a slight increase

of code size from bb to ebb1. After reordering operations in an extended basic block,

sometimes the scheduler must insert some nops in front of the off-trace successor

block to let all operations before the split finish, otherwise the code would not be

correct. These nops make code produced by ebb1 slightly larger than that by bb.

3.5 Speed and Size Trade-off

For many years, compiler optimizations and scheduling techniques have been focused

on making code faster. With digital signal processors (dsps) being widely used in

embedded systems and network computing gaining popularity, the size of compiled

code becomes increasingly important. In embedded systems the compiled code is
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BB EBB1 EBB2 TS SB

# insts # insts % dec. # insts % dec. # insts % dec. # insts % dec.

doduc 13921893 11574599 16.9 11145406 19.9 9602784 31.0 9539988 31.5

fft 15482275 14736742 4.8 14601080 5.7 14995539 3.1 14753947 4.7

fpppp 144723232 135759328 6.2 134274304 7.2 130909008 9.5 130051760 10.1

nsieve 3810923264 3489669120 8.4 3489669120 8.4 3248780032 14.8 3248756480 14.8

rkf45 484847 423435 12.7 376374 22.4 358432 26.1 356804 26.4

svd 13195 10288 22.0 9211 30.2 8549 35.2 8363 36.6

tomcatv 403587456 379695200 5.9 349409184 13.4 331964192 17.7 331751456 17.8

Table 3.1 : Dynamic instruction counts after scheduling

BB EBB1 EBB2 TS SB

# insts # insts % inc. # insts % inc. # insts % inc. # insts % inc.

doduc 38038 38201 0.4 40465 6.4 55428 45.7 100431 164

fft 1982 2026 2.2 2138 7.9 2229 12.5 3000 51.4

fpppp 13723 13751 0.2 16223 18.2 21428 56.1 52497 283

nsieve 295 298 1.0 308 4.4 328 11.2 365 23.7

rkf45 1664 1660 -0.2 1771 6.4 2106 26.6 3927 136

svd 2523 2537 0.6 2648 5.0 4148 64.4 8425 234

tomcatv 1359 1383 1.8 1612 18.6 2407 77.1 4551 235

Table 3.2 : Static operation counts after scheduling
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often burnt into a read-only memory, or rom. Smaller code size can make the rom

smaller hence reduce overall system’s cost. In web applications, shorter code can

reduce user’s waiting time for code transmission. Some recent research work has

focused on reducing code size[8, 9].

Since partitioned register-set architecture appears in a number of dsp chips such as

Texas Instruments TMS320C6xxx series, we want to pick a base scheduling algorithm

which gives a good trade-off between code size and speed.

From comparison of all 5 scheduling algorithms we can see ts gives the best result.

It produces second fastest code, only 1% slower than sb in average, while the growth of

code size is much more moderate than sb, 42% larger than bb in average compared to

sb’s 161%. We will use trace scheduling through our study on partitioned register-set

machines, but similar results can be obtained with other scheduling algorithms.

It is worth noticing that ebb1 is the most attractive choice when code size is

critical. It produces code 11% faster than bb in average with negligible growth in

code size. Philip Schielke’s thesis includes work on global scheduling techniques that

do not replicate code[21]. Our numbers corroborate his results.

To address more about our concern of code size we also add an optional switch in

our implementation of the scheduler — when code growth exceeds a limit set by the

user, the switch will be turned on and sb, ts or ebb2 will degenerate to ebb1 for all

remaining code.
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Chapter 4

Assign and Schedule

In this chapter, we study cluster assignment and scheduling for partitioned register-

set machines assuming each register set has unlimited number of registers. Section 4.1

introduces the combined cluster assignment and instruction scheduling problem. Sec-

tion 4.2 and 4.3 describe two algorithms adapted from previous work on this problem.

Section 4.4 proposes two new algorithms. Experimental results are presented in Sec-

tion 4.5.

4.1 Introduction

The partitioned register-set machines present a new set of challenges to compiler

designers. The compiler must place each operation in a specific cluster and then work

to ensure that its operands are either available in the local register file or available,

in a timely fashion, over the inter-cluster data path. These problems are complicated

by the latency and limited capacity of the inter-cluster data path.

Figure 4.1 shows an example of cluster assignment and schedule. Assume that a

two cluster machine has one functional unit in each cluster; multiply takes 2 cycles;

memory access operations take three cycles; all other operations take one cycle; the

inter-cluster data buses support one read in each direction every cycle — one read

from Cluster 2 by Cluster 1 and one read from Cluster 1 by Cluster 2; the latency

of an inter-cluster copy is one. The code segment in (a) is assigned and scheduled

on one cluster only. It takes 10 cycles. These operations can be assigned to both

clusters as shown in (b). The resulting scheduled code only takes 8 cycles. Here we

assume that all live-in variables are initially stored in register file of Cluster 1 only
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Cluster 1

(a) using one cluster

Cluster 1 Cluster 2

(b) a good assignment on two clusters

 

LOAD  @a  =>  r3 

Cluster 1 Cluster 2

LOAD  @b  =>  r4
NOP

NOP
NOP

NOP

COPY  r0  =>  r0’
COPY  r1  =>  r1’
SUB  r1’  r0’  =>  r1’
COPY  r3  =>  r3’
MUL  r3’  r0’  =>  r3’

COPY  r1’  =>  r1

COPY  r2  =>  r2’
SUB  r3’  r1’  =>  r3’

COPY  r3’  =>  r3
COPY  r2’  =>  r2

NOP

ADD  r1  r2  =>  r2

COPY  r4  =>  r4’
ADD  r4’  r2’  =>  r4’
SUB  r4’  r1’  =>  r4’
ADD  r4’  r4’  =>  r4’

COPY  r4’  => r4
SUB  r3  r4  =>  r3

(c) a bad assignment on two clusters

LOAD  @a  =>  r3
LOAD  @b  =>  r4
SUB  r1  r0  =>  r1
MUL  r3  r0  =>  r3
ADD  r1  r2  =>  r2
SUB  r3  r1  =>  r3
ADD  r4  r2  =>  r4
SUB  r4  r1  =>  r4
ADD  r4  r4  =>  r4
SUB  r3  r4  =>  r3

LOAD @b  =>  r4’
COPY  r0  =>  r0’
COPY  r2  =>  r2’
ADD  r4’  r2’  =>  r4’
SUB  r4’  r0’  =>  r4’
ADD  r4’  r4’  =>  r4’
NOP
NOP

LOAD  @a  =>  r3
ADD  r1  r2  =>  r2
SUB  r1  r0  =>  r1
MUL  r3  r0  =>  r3
NOP
SUB  r3  r1  =>  r1
COPY  r4’  =>  r4
SUB  r3  r4  =>  r3

Figure 4.1 : Example of cluster assignment



24

and all live-out variables need to be present in Cluster 1 at the end of execution. Any

register name with a prime denotes a register in Cluster 2. Inter-cluster copies such

as COPY r2 => r2′ are carefully inserted into the code to ensure all operands are

available when an operation is executed.

Not all assignments over two clusters produce faster scheduled code than using

only one cluster. Figure 4.1 shows a bad assignment that produces code which needs

3 more cycles than the single cluster code.

From the example we can see that a good assignment attempts to exploit instruc-

tion level parallelism by distributing operations to all clusters. At the same time it

also places operations close to their operands to reduce the effect of inter-cluster copy

latency. On the other hand, a bad assignment puts too many operations in one cluster

and/or places operations far away from their operands. For example, in Figure 4.1(c),

assigning MUL r3 r0 => r3 to Cluster 2 requires the extra inter-cluster copy from

r3 to r3′ which causes a delay of one cycle.

If each cluster has multiple functional units, more off-cluster operands will appear

in the scheduled code than in our example. Ready operations have to compete for

the use of limited capacity inter-cluster data buses and some of them must wait for

the buses to be free. Again, closeness to operands, hence reduced inter-cluster data

communication, is preferred.

These observations are reflected in design of our algorithms in later sections.

4.2 Bottom-Up Close Algorithm

The Bottom-Up Close algorithm (buc) is adapted from Ellis’ Bottom-Up Greedy

algorithm (bug)[11]. Like bug, buc is a two-phase algorithm. The first pass assigns

each operation to a cluster. The second pass uses list scheduling to construct a

schedule that respects the cluster assignments. Buc extends bug by trying to balance

the load across functional units and clusters.

Figure 4.2 shows a high-level sketch of the recursive buc assignment algorithm.
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buc assign(dpg node, sibling locations)

{
operand locations = empty

foreach operand node op node of dpg node

buc assign(op node, operand locations)

dpg node.cluster = best cluster(operand locations, siblings locations, load)

update sibling locations

update load

}

Figure 4.2 : Cluster assignment in BUC

It starts with a depth first traversal of the dpg, starting at the roots (representing

output values) and working towards the leaves (representing input values). At each

level, the search chooses the node with the largest latency-weighted depth in the

the dpg. This focuses attention on the critical path through the computation. To

process an operation, the algorithm first recurses on its operands. After each operand

has a cluster assignment, the operation itself is assigned to the best cluster at the

time. The best cluster function picks the cluster closest to all the operands and any

of its siblings that have already been assigned. We call two nodes siblings if they

are both operands in the same operation. As the algorithm traverses the tree, it

records the cluster assignment for each operation and passes that information along

for any as-yet-unassigned siblings. The computation of closeness is a simple weighted

computation that takes into account inter-cluster transfer costs. It breaks ties in favor

of the cluster with fewer assigned operations and, thus, less load.

Because it uses depth-first search and a latency-weighted depth priority scheme,

buc tends to place operations on the critical path together. The load-guided tie-
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breaking heuristic tries to distribute the off-critical-path computations onto other

clusters in order to achieve a more balanced load.

4.3 Unified Assign and Schedule

Özer et al. proposed an algorithm that brings together cluster assignment and

scheduling into a single unified phase. They call their method “unified assign and

schedule” (uas) [20]. A high-level sketch of the uas algorithm is shown in figure 4.3.

The outer loop of the algorithm works in the same way as a list scheduler — ready

operations are filled into the schedule cycle by cycle. Once a cycle is scheduled, it

is never revisited. In the inner loop, to integrate cluster assignment into scheduling,

uas considers each possible cluster assignment for each operation it schedules. It

first forms a prioritized list of clusters on which the current operation can possibly

be scheduled. Then, in priority order, each cluster is examined to see if it has a free

functional unit for the operation; if a functional unit is available, the inter-cluster

data paths are checked to see if the necessary data-movement can be scheduled.

unified assign and schedule()

{
while(unscheduled operations exist)

form a list of data-ready operations

for each data-ready operation x in order of priority

create priority list of clusters on which x can potentially be scheduled

for each cluster c in the priority list

if(x can be scheduled on c and all required copy operations can be scheduled)

schedule x and all required copy operations

increment cycle counter

}

Figure 4.3 : UAS algorithm
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Özer et al. tested five priority functions for ordering the search of clusters. Their

experiments showed that uas with all priority functions except for random ordering

outperforms bug.

4.4 Top-Down First and Top-Down Close Algorithm

As pointed out by Özer et al., bug does not perform well because cluster assignment

is separated from scheduling; the assignment phase has trouble anticipating the actual

use of functional units and inter-cluster data buses. Inevitably, a few decisions made

by the assignment phase will keep functional units and inter-cluster buses unneces-

sarily idle in some cycles. Uas successfully solved this by integrating assignment and

scheduling into the same phase. Unfortunately it causes a new problem: the act of

assigning an operation to a specific cluster during scheduling can create the need for

inter-cluster copies that did not exist in the code presented to scheduler; because uas

moves monotonically forward in the schedule, it cannot put these copies into earlier

cycles where free slots are still available; unnecessary delays may be caused by late

copies.

Consider the code fragment in Figure 4.4(a). Assume that a two cluster machine

has one functional unit per cluster; multiply takes two cycles; memory access op-

erations take three cycles; all other operations take one cycle; live-in variables are

initially present in both clusters. The best schedule that uas can produce is shown

in Figure 4.4(b). Apparently if we move COPY r1′ => r1 to cycle 3 as shown in

Figure 4.4(c), a cycle can be saved. Uas cannot achieve this: the inter-cluster copy

did not exist when it scheduled cycle 3; when the scheduler finds out that a copy

operation is needed for the add operation at cycle 5, the best it can do is to schedule

the copy in the current cycle and the add operation to the next cycle. This suggests

that revisiting earlier cycles may be necessary. The better schedule in Figure 4.4(c)

can be easily achieved by revisiting: when the scheduler finds out a copy is needed

at cycle 5, it revisits all cycles after the latest write to r1 and finds out that the copy
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LOAD  @a  =>  r2
MUL  r1  r0  =>  r1
SUB  r3  r0  =>  r3
SUB  r2  r0  =>  r2
SUB  r3  r1  =>  r3
ADD  r2  r1  => r1

(a) unscheduled code

LOAD  @a  =>  r2
NOP
NOP
SUB  r2  r0  =>  r2
COPY  r1’  =>  r1
ADD  r2  r1  =>  r2

Cluster  1 Cluster  2

(b) schedule produced by UAS

MUL  r1  r0  =>  r1
NOP
SUB  r3  r0  =>  r3
ADD  r3  r1  =>  r3
NOP
NOP

LOAD  @a  =>  r2
NOP

SUB  r2  r0  =>  r2

Cluster  1 Cluster  2

MUL  r1  r0  =>  r1
NOP
SUB  r3  r0  =>  r3
ADD  r3  r1  =>  r3
NOP

COPY  r1’  =>  r1

ADD  r2  r1  =>  r2

(c) a better schedule by revisiting earlier cycles

Figure 4.4 : Example of revisit
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can be put into the free slot at cycle 3.

In above discussion we have not considered the possibility that in cycle 5 the

value r1 actually can be read directly over the inter-cluster data bus. The reason

is: In practice, each cluster usually has multiple functional units; the inter-cluster

data bus probably has already been taken by other operation(s). Even if the bus is

available, we still prefer inserting a copy in earlier cycles because (1) it may give other

operations the opportunity to be scheduled in the current cycle (2) the copied value

could be used by later operations.

We developed two related algorithms that not only combine assign and schedule

into the same phase but also revisit earlier cycles to insert inter-cluster copies. We

call them Top-Down First (tdf) and Top-Down Close (tdc). Figure 4.4 gives an

outline of tdc. It differs from buc in that buc traverses the dpg bottom-up (from

outputs to inputs), while tdc traverses the dpg top-down (from inputs to outputs).

At each cycle, the data-ready operations are considered in order of depth-weighted

latency. For an operation o, if all its operands reside in cluster c and the appropriate

functional unit in c is free, then o is assigned to c and scheduled into the current cycle.

If the operands reside on multiple clusters, tdc looks for a free functional unit to

execute o and then looks backward in the schedule for cycles where the needed inter-

cluster transfers can be placed. If copies can be inserted to make all of o’s operands

available on cluster b in the current cycle, it schedules o onto b in the current cycle.

If some of operands cannot be pre-copied, the algorithm checks to see if the inter-

cluster data buses are available in the current cycle to read them directly. Copying

is preferred over direct use because a copied value can be reused by other operations

in the same cluster. After an operation and any necessary inter-cluster copies are

scheduled, usage of resources such as functional units, inter-cluster data buses and

registers is updated.

Tdf is similar to tdc except for the order it uses to check the clusters. In tdc,

the clusters are scored by the closeness of operands and considered in closest-first
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tdc assign and schedule()

{
data ready set = all leaf nodes in dpg

running set = empty

while(data ready set or running set not empty)

foreach op in data ready set, ordered by latency-weighted depth

for each cluster c in order of closeness to operands of op

if(!resource conflict(op, c))

assign and schedule op to c

insert necessary inter-cluster copies

remove op from data ready set

add op to running set

update resource usage

break

increment cycle counter

remove finished operations from running set

add data ready operations to data ready set

}

resource conflict(op, assigned cluster)

{
if functional unit for op in assigned cluster is busy

return true

foreach operand x of op not present in assigned cluster

if a copy can be inserted in previous cycles to move x to assigned cluster

continue

else if x can be read directly from neighboring cluster in current cycle

continue

else

return true

return false

}

Figure 4.5 : TDC algorithm
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order. In tdf, clusters are considered in canonical order, with no preference given

for closeness.

Because they reconsider already scheduled cycles, both tdf and tdc can be more

expensive than uas. In practice, the size of scheduled blocks is often short, limiting

this effect. We can limit the amount of extra work by limiting the algorithm to

looking at the k previous cycles. Reasonably small values of k, such as 20 cycles,

should avoid the asymptotic problems while discovering most of the opportunities.

4.5 Experimental Results

To compare the performance, we implemented these four algorithms in our research

compiler and tested them on seven benchmarks against the two-cluster and four-

cluster machine models which are described in Section 2.3. Trace scheduling is used

in our experiments.

Our implementation of uas limits itself to scheduling operations where all the off-

cluster operands can be read directly from the remote register files. This excludes any

solution with inter-cluster copies. The published description of uas [20] states “. . . If

copies can be scheduled on their respective clusters, i.e. there are enough available

inter-cluster buses in the current cycle, in Step 6, the current operation and associated

copies are scheduled (in the current cycle) . . . ” This is incorrect because the copied

values cannot be used in the current cycle — there is a latency for inter-cluster copies.

Without revisiting earlier cycles, the closest thing an uas scheduler can do is to read

these off-cluster directly without copying. Of course the scheduler can also schedule

the copies in the current cycle and the current operation in the next cycle. But a

delay of one cycle is caused. Although it is not clear which approach gives better

performance, we believe our implementation (using the first approach) gives a good

approximation of what uas can achieve.

As suggested by Özer et al. [20], we use the Magnitude-Weighted Predecessor

(cwp) priority function to order the clusters in our implementation of uas.



32

BUC UAS TDF TDC Fully conn.

doduc 10,396,703 10,413,748 9,982,047 9,973,867 9,602,784

fft 15,506,968 17,273,368 15,324,780 15,324,779 14,995,539

fpppp 145,485,840 147,601,248 137,898,320 137,651,264 130,909,008

nsieve 3,266,130,176 3,929,078,784 3,248,809,472 3,248,809,472 3,248,780,032

rkf45 379,635 397,467 368,083 367,819 358,432

svd 9,311 10,407 9,040 9,042 8,549

tomcatv 355,516,224 351,897,504 332,085,504 332,085,536 331,964,192

Table 4.1 : Cycle counts for the two cluster machine model

BUC UAS TDF TDC Fully conn.

doduc 10,030,053 10,344,406 9,791,386 9,792,944 9,252,947

fft 15,290,297 18,225,168 15,239,198 15,240,086 14,744,885

fpppp 146,414,016 148,099,520 140,140,048 139,993,872 127,103,552

nsieve 3,266,147,840 4,277,894,144 3,248,827,136 3,248,827,136 3,248,780,032

rkf45 381,375 401,036 367,572 367,323 354,939

svd 9,320 10,646 9,247 9,255 8,448

tomcatv 355,438,848 353,349,088 329,423,936 329,424,000 329,315,808

Table 4.2 : Cycle counts for the four cluster machine model
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The results for the two-cluster machine are shown in Figure 4.1, while Figure 4.2

shows the results on the four-cluster machine. The final column in each table shows

the results for a fully-connected machine with the same number of functional units

as the partitioned machine. In a fully-connected machine, each functional unit can

access each register, thus no inter-cluster transfer is needed. Cluster assignment and

scheduling devolves into simple scheduling. This should provide a lower bound on

what can be achieved with a good assign and schedule algorithm.

As expected, buc does not perform well. Because cluster assignment is separated

from scheduling, the assignment has trouble anticipating the actual use of functional

units and inter-cluster data buses. This causes underuse of functional units and

inter-cluster data buses. Uas is also disappointing. Because it never revisits a cycle,

a significant amount of inter-cluster bandwidth is wasted. This leads to unnecessary

delay of inter-cluster data transfers and thus longer execution time. Both tdf and

tdc produce better code. This is due to the extra compile time that they spend

trying to insert data transfers into already scheduled cycles. Better utilization of

functional units and inter-cluster data buses is achieved as a result. Tdc and tdf

have similar performance; neither has a clear advantage over the other.
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Chapter 5

Handling Finite Register Sets

The results in last chapter assume that each cluster has an unlimited number of

registers. This assumption is unrealistic — real machines have relatively small register

sets. In this chapter, we first examine the difficulties introduced by finite register sets,

then we look for an approach to handle them.

5.1 Introduction

For fully connected (i.e., non-partitioned) machines, the problem of finite register

sets is usually solved by doing register allocation before or after instruction schedul-

ing. Unfortunately, instruction scheduling and register allocation often act against

each other. When register allocation is done before instruction scheduling, spuri-

ous anti-dependences are introduced when the allocator maps multiple values to the

same physical register. These anti-dependences lower the instruction level parallelism

available for the scheduler to exploit. When instruction scheduling is carried out first,

reordering of operations by the scheduler increases the demand for registers. This in-

creased register pressure causes additional spill code.

On a partitioned machine, the introduction of inter-cluster transfers by cluster

assignment complicates matters further. Performing allocation before tdc implicitly

ignores those transfers. If the allocation is tight — that is, it has few unused registers

— then tdc will be unable to duplicate values. Performing allocation after tdc

deprives the cluster assignment algorithm of knowledge that might affect its decisions

— the availability of registers on each cluster. If the allocation is tight, bad decisions

by tdc lead to extra spills.
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To find a good approach to handle finite register sets, we tested different schemes

combining tdc with register allocation. The results are given in next three sections.

In most of the experiments, we used a two cluster machine where each cluster has 32

integer and 32 floating-point registers.

For register allocation, we used a graph-coloring [6, 4] global register allocator

that performs both clean spilling [2] and rematerialization [4].

5.2 An Initial Approach

As an initial attack on the problem, we have the compiler allocate registers for a single

cluster’s register set before running tdc. This has the effect of reserving a register

for each enregistered value in each cluster. It provides tdc with maximal freedom,

since a value in register i of one cluster has the same space allocated for it in each of

the other clusters. On the other hand, the serious underallocation (only half of the

registers are used for allocation) may cause a large amount of extra spill code.

To assess the impact of this underallocation, we did register allocation for different

number of registers before trace scheduling on a fully connected machines. The results

are shown in Table 5.1. The second column shows the result given by allocation for

64 registers. It provides the lower bound on what can be achieved by our initial

strategy on a partitioned two cluster machine where each cluster has 64 registers. For

comparison, the third column shows the result given by allocation for 128 registers.

The final column shows the cycle counts for unlimited number of registers.

The impact of limiting the register set varies tremendously from example to ex-

ample. On fpppp, where demand for registers is quite high, allocation to 128 registers

more than doubles the cycle count. On svd and fft, the allocator does quite well.

The impact of moving from 128 registers to 64 registers is less dramatic, but signifi-

cant. With fpppp, the 64 register code takes 15% longer; on doduc, the loss is 9.5%.

In two cases, the 64 register code is actually faster than the 128 register code by 1% or

less. Experience with graph coloring allocators suggests that this arises from better
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64 registers 128 registers ∞ registers

doduc 19,625,586 17,759,936 9,602,784

fft 16,633,376 16,795,662 14,995,539

fpppp 309,889,312 263,669,072 130,909,008

nsieve 3,667,608,064 3,667,608,064 3,248,780,032

rkf45 421,147 424,060 358,432

svd 10,656 9,841 8,549

tomcatv 467,012,352 453,823,232 331,964,192

Table 5.1 : Cycle counts with different register allocation

spill code placement.

Apparently our initial approach is not suitable for programs with high register

pressure such as fpppp. The huge amount of spill code caused by underallocation

will overwhelm any gain from freedom for tdc to duplicate values. A method using

more registers for allocation is needed.

5.3 Using Copy Registers

As an alternative, consider the strategy of reserving a small pool of registers in each

cluster for use in inter-cluster copies. The graph coloring allocator handles the re-

maining registers. To assess the performance of this strategy, we ran the allocator

followed by tdc for a two-cluster machine with a pool of 52 registers (26 integer

and 26 floating-point) under the allocator’s control and the remaining 12 registers

reserved for inter-cluster copies. The final column of Table 5.2 shows the result of

this strategy. On doduc, fpppp, svd, and tomcatv, it produces results between those

of a fully-connected machine and those achieved by coloring for a single cluster. On

fft and nsieve, reserving registers for copies leads to worse results — this suggests

that the registers are better used for other purposes. Rkf45 is perplexing; the code

for 64 registers was faster than that for 128 registers due to spill placement. The code
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52/2 52/4 52/6 52/8 52/10 52/12

doduc 18,592,384 18,497,480 18,459,428 18,459,088 18,457,876 18,457,416

fft 17,055,576 16,983,284 16,880,086 16,910,808 16,937,688 16,930,008

fpppp 285,596,608 283,771,552 283,248,032 283,187,072 283,160,192 283,060,992

nsieve 3,918,767,360 3,747,920,128 3,747,920,128 3,747,920,128 3,747,920,128 3,747,920,128

rkf45 429,969 428,146 426,225 424,088 423,535 423,510

svd 10,122 10,058 10,039 10,033 10,027 10,027

tomcatv 461,932,000 455,338,784 455,228,576 451,342,336 451,337,248 451,337,248

Table 5.2 : Two cluster machine with varying number of copy registers, 52 registers under
allocator’s control

for the 52/12 scheme falls midway between them, but is still worse than the more

restrictive 64 register allocation. Spill code placement in coloring allocators often

produces unexpected results!

To show the sensitivity of the results to the number of copy registers, the earlier

columns in the table show results for the same 52 register allocation with different

numbers of copy registers. As expected, the general trend is toward slower code with

fewer copy registers. The improvement arises from two key effects:

1. The availability of additional copy registers makes it easier to insert inter-cluster

copies. This increases the likelihood that an operation with one or more off-

cluster operands can be scheduled promptly (without a delay waiting on regis-

ters).

2. The additional copy registers let more off-cluster operands be reused. With

fewer copy registers, these values get evicted because the register is needed as

the target for other inter-cluster copies.

As with most scheduling and allocation problems, some np-noise creeps into the

problem. On fft, the 52/6 combination produces better results than either more or

fewer copy registers.
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62/2 60/2 58/2 56/2 54/2 52/2

doduc 18,210,704 18,277,580 18,368,568 18,429,932 18,533,688 18,592,384

fft 17,067,856 17,075,532 17,062,216 17,063,258 17,055,578 17,055,576

fpppp 271,338,144 273,718,048 275,497,888 278,658,816 281,923,840 285,596,608

nsieve 3,918,767,360 3,918,767,360 3,918,767,360 3,918,767,360 3,918,767,360 3,918,767,360

rkf45 433,878 433,765 433,326 433,376 433,401 429,969

svd 10,077 10,081 10,188 10,180 10,157 10,122

tomcatv 467,111,776 467,127,040 460,634,688 461,901,536 461,911,008 461,932,000

Table 5.3 : Two cluster machine, two copy registers per cluster, varying number of registers
under allocator’s control

Of course, the 52/2 combination uses only 54 registers. The decrease in registers

available to the allocator should have an impact on the amount of spill code that

must be inserted. Table 5.3 shows the cycle counts for a configuration with 2 copy

registers and a varying number of general purpose registers. As expected, increasing

the pool of registers available to the allocator usually produces better code. Again,

minor perturbations in that trend arise from the complex nature of the problem. For

example, rkf45 has an anomaly for 56/2 and 54/2, and fft shows a slowdown from

58/2 to 60/2.

5.4 A Refined Approach

To improve the approaches in the last section, we designed a scheme to use a fixed

number of registers and vary the partition between copy registers and general purpose

registers. The algorithm is slightly more complex. It reserves k registers for dedicated

use as copy registers. It performs register allocation to a register set containing

(64−k)×n registers, where n is the number of clusters. Finally, it uses tdc to perform

cluster assignment and scheduling, but allows tdc to use any available register for

a copy. (After allocation, some registers under the allocator’s control are idle. This

version of tdc scavenges those resources and uses them for inter-cluster copies.)

Table 5.4 shows the experimental data using this approach. The results vary from
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62/2 60/4 58/6 56/8 54/10 52/12

doduc 18,094,468 18,146,608 18,228,172 18,284,976 18,388,556 18,458,584

fft 16,948,956 16,960,472 16,920,020 16,922,072 16,937,432 16,945,368

fpppp 271,222,656 272,135,424 273,040,352 276,028,096 279,092,832 283,059,008

nsieve 3,747,920,128 3,747,920,128 3,747,920,128 3,747,920,128 3,747,920,128 3,747,920,128

rkf45 426,930 427,395 427,420 427,445 427,470 423,510

svd 10027 10,041 10,064 10,058 10,049 10,027

tomcatv 457,958,304 457,886,080 450,072,640 451,345,664 451,331,744 451,331,724

Table 5.4 : 64 registers per cluster, with varying number of copy registers

code to code, as might be expected. For example, fft achieves the best results for

58/6. The results also show the non-linear variation seen in the other experiments.

Notice, for example, that rkf45 does best with 52/12, but that its second best result

is with 62/2. In between these two configurations, the code gets slower. Taken on av-

erage, the 62/2 configuration provides the best overall results. Since the configuration

is enforced completely in the compiler, it can be varied to suit the situation. For per-

formance critical applications, the compiler could try several different configurations

and keep the best result.
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Chapter 6

Other Measurements

In this chapter we take several other measurements of partitioned register-set ma-

chines. We hope they may provide some insights for architectural decisions. Section

6.1 examines the benefit of adding more clusters. Section 6.2 explores the use dedi-

cated functional units for inter-cluster copies.

6.1 Machines with More Clusters

The scalability of partitioned register set machines will depend on many factors,

including the amount of ilp that compilers can expose in real applications and the

ability of the compiler to use all the additional resources provided by more clusters.

The compiler issues will not dictate the answer to this question, but can certainly

provide some input.

To assess the benefit of adding clusters, we repeated our experiment for a series of

fully connected machines with one, two, four, and eight clusters. Each cluster had an

unlimited register set. The compiler used tdc to perform assign and schedule. The

resulting cycle counts are shown in Table 6.1. The improvement from four clusters to

eight clusters is very small. This may be a fundamental property of the benchmarks.

Alternatively, it may be a limitation of the ilp-exposing capabilities of our compiler.

Adding simple techniques such as loop-unrolling might improve this situation.

Going beyond eight clusters may add significant complexity to the assign and

schedule problem. Our work has assumed a complete set of inter-cluster data paths.

The cost of providing these connections rises with the number of clusters. At some

point, only schemes that provide partial connectivity will be cost-effective. This will
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1 Cluster 2 Cluster 4 Cluster 8 Cluster

doduc 10,802,426 9,602,784 9,252,947 9,180,027

fft 16,054,835 14,995,539 14,744,885 14,671,925

fpppp 144,909,760 130,909,008 127,103,552 126,994,624

nsieve 3,517,271,808 3,248,780,032 3,248,780,032 3,248,780,032

rkf45 370,306 358,432 354,939 354,939

svd 9,283 8,549 8,448 8,396

tomcatv 353,263,040 331,964,192 329,315,808 326,694,144

Table 6.1 : Cycle counts for machines with different number of clusters

require the coordination of multiple copies on multiple clusters to move off-cluster

operands into position. The problem begins to resemble the more general problem of

scheduling and assignment for large parallel processors; planning all data movement

in the same level of detail that tdc does becomes impractical.

6.2 Dedicated Copy Units

In Chapter 5, the experimental data shows that tdc with 2 reserved copy registers

can provide much of the performance of a fully-connected, two-cluster machine. There

remains, however, an execution time penalty from the insertion of inter-cluster copies

and from the need to wait for operands when transfers cannot be scheduled in a

timely fashion. Adding a functional unit that is dedicated to inter-cluster copies into

each cluster may improve overall performance. This should eliminate idle cycles on

the inter-cluster data paths that arise from lack of a functional unit that can execute

the copy operation.

To assess the viability of this idea, we tested three distinct configurations of a two

cluster, 64 register per cluster machine. The first has no copy units and a partitioned

register set. The second has one dedicated copy unit per cluster and a partitioned

register set. The final configuration is the fully connected machine, which needs no
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no CUs 1 CU/cluster Fully Conn. Penalty Cycles Saved Cycles

doduc 18,094,468 17,993,932 17,861,700 232,768 100,536

fft 16,948,956 16,852,372 16,795,664 153,292 96,584

fpppp 271,222,656 270,466,464 267,858,768 3,363,888 756,192

nsieve 3,747,920,128 3,747,920,128 3,667,608,064 80,312,064 0

rkf45 426,930 426,928 424,060 2,870 2

svd 10,027 9,930 9,846 181 97

tomcatv 457,958,304 457,813,920 453,823,232 4,135,072 144,402

Table 6.2 : Improved execution time by two cluster machine with dedicated copy units

copy units. Two registers in each cluster are reserved for copies. The scheme from

Section 5.4 is used for allocation, cluster assignment and scheduling. Table 6.2 shows

the results. Dedicated copy units help on most of the applications. The fifth column,

labeled Penalty Cycles shows the difference between the configuration with no copy

units and the fully connected machine. The last column shows the savings (in cycles)

from using the dedicated copy units. The dedicated copy units reduce the penalty

for partitioning on five of the seven benchmarks.
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Chapter 7

Contributions

This thesis makes following contributions:

1. In light of recent interest in code size from both industry and compiler commu-

nities, we evaluated five instruction scheduling algorithms with different scopes

by speed and size trade-off. Among them, trace scheduling gives the best re-

sult: It produces scheduled code significantly faster than that by basic block

scheduling or extended basic block scheduling, while the growth of code size is

moderate.

2. We developed two new algorithms which not only perform cluster assignment

and scheduling together but also revisit already scheduled cycles to insert inter-

cluster data transfer. They provide better results than previous algorithms in

our experiments.

3. Unlike previous works which stopped at unrealistic machine models with unlim-

ited number of registers, we studied the difficulties caused by relatively small

register sets. One of our algorithms, tdc, is used to explore the interaction

between register allocation and cluster assignment and scheduling. Our best

results came from dedicating a small number of registers to inter-cluster copies

and allowing the scheduler to scavenge other unused registers.

4. Finally, we made several other measurements on partitioned register-set ma-

chines, hoping to shed light on some of the architectural decisions. To asses

the benefit of adding more clusters, we tested machine models with different

number of clusters. We also explored the use of dedicated functional units for

inter-cluster copies.
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