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Overview: CLUSTER Procedure

The CLUSTER procedure hierarchically clusters the observations in a SAS data set by using one of 11
methods. The data can be coordinates or distances. If the data are coordinates, PROC CLUSTER computes
(possibly squared) Euclidean distances. If you want non-Euclidean distances, use the DISTANCE proce-
dure (see Chapter 33) to compute an appropriate distance data set that can then be used as input to PROC
CLUSTER.

The clustering methods are: average linkage, the centroid method, complete linkage, density linkage (in-
cluding Wong’s hybrid and kth-nearest-neighbor methods), maximum likelihood for mixtures of spherical
multivariate normal distributions with equal variances but possibly unequal mixing proportions, the flexible-
beta method, McQuitty’s similarity analysis, the median method, single linkage, two-stage density linkage,
and Ward’s minimum-variance method. Each method is described in the section “Clustering Methods” on
page 1825.

All methods are based on the usual agglomerative hierarchical clustering procedure. Each observation
begins in a cluster by itself. The two closest clusters are merged to form a new cluster that replaces the
two old clusters. Merging of the two closest clusters is repeated until only one cluster is left. The various
clustering methods differ in how the distance between two clusters is computed.

The CLUSTER procedure is not practical for very large data sets because the CPU time is roughly propor-
tional to the square or cube of the number of observations. The FASTCLUS procedure (see Chapter 35)
requires time proportional to the number of observations and thus can be used with much larger data sets
than PROC CLUSTER. If you want to cluster a very large data set hierarchically, use PROC FASTCLUS for
a preliminary cluster analysis to produce a large number of clusters. Then use PROC CLUSTER to cluster
the preliminary clusters hierarchically. This method is illustrated in Example 30.3.

PROC CLUSTER displays a history of the clustering process, showing statistics useful for estimating the
number of clusters in the population from which the data are sampled. It creates a dendrogram when
ODS Graphics is enabled. PROC CLUSTER also creates an output data set that can be used by the TREE
procedure to output the cluster membership at any desired level. For example, to obtain the six-cluster
solution, you could first use PROC CLUSTER with the OUTTREE= option, and then use this output data
set as the input data set to the TREE procedure. With PROC TREE, specify the NCLUSTERS=6 and the
OUT= options to obtain the six-cluster solution. For an example, see Example 94.1 in Chapter 94, “The
TREE Procedure.”

For coordinate data, Euclidean distances are computed from differences between coordinate values. The use
of differences has several important consequences:

� For differences to be valid, the variables must have an interval or stronger scale of measurement.
Ordinal or ranked data are generally not appropriate for cluster analysis.

� For Euclidean distances to be comparable, equal differences should have equal practical importance.
You might need to transform the variables linearly or nonlinearly to satisfy this condition. For exam-
ple, if one variable is measured in dollars and one in euros, you might need to convert to the same
currency. Or, if ratios are more meaningful than differences, take logarithms.

� Variables with large variances tend to have more effect on the resulting clusters than variables with
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small variances. If you consider all variables to be equally important, you can use the STD option
in PROC CLUSTER to standardize the variables to mean 0 and standard deviation 1. However,
standardization is not always appropriate. See Milligan and Cooper (1987) for a Monte Carlo study
on various methods of variable standardization. You should remove outliers before using PROC
CLUSTER with the STD option unless you specify the TRIM= option. The STDIZE procedure (see
Chapter 84) provides additional methods for standardizing variables and imputing missing values.

The ACECLUS procedure (see Chapter 23) is useful for linear transformations of the variables if any of the
following conditions hold:

� You have no idea how the variables should be scaled.

� You want to detect natural clusters regardless of whether some variables have more influence than
others.

� You want to use a clustering method designed for finding compact clusters, but you want to be able
to detect elongated clusters.

Agglomerative hierarchical clustering is discussed in all standard references on cluster analysis, such as
Anderberg (1973), Sneath and Sokal (1973), Hartigan (1975), Everitt (1980), and Spath (1980). An espe-
cially good introduction is given by Massart and Kaufman (1983). Anyone considering doing a hierarchical
cluster analysis should study the Monte Carlo results of Milligan (1980), Milligan and Cooper (1985), and
Cooper and Milligan (1988).

Other essential, though more advanced, references on hierarchical clustering include Hartigan (1977, pp.
60–68; 1981), Wong (1982), Wong and Schaack (1982), and Wong and Lane (1983). See Blashfield and
Aldenderfer (1978) for a discussion of the confusing terminology in hierarchical cluster analysis.

Getting Started: CLUSTER Procedure

This example shows how you can use the CLUSTER procedure to compute hierarchical clusters of obser-
vations in a SAS data set.

Suppose you want to determine whether national figures for birth rates, death rates, and infant death rates
can be used to categorize countries. Previous studies indicate that the clusters computed from this type of
data can be elongated and elliptical. Thus, you need to perform a linear transformation on the raw data
before the cluster analysis.

The following data1 from Rouncefield (1995) are birth rates, death rates, and infant death rates for 97
countries. The DATA step creates the SAS data set Poverty:

data Poverty;
input Birth Death InfantDeath Country $20. @@;

1 These data have been compiled from the United Nations Demographic Yearbook 1990 (United Nations publications, Sales
No. E/F.91.XII.1, copyright 1991, United Nations, New York) and are reproduced with the permission of the United Nations.
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datalines;
24.7 5.7 30.8 Albania 12.5 11.9 14.4 Bulgaria
13.4 11.7 11.3 Czechoslovakia 12 12.4 7.6 Former E. Germany
11.6 13.4 14.8 Hungary 14.3 10.2 16 Poland

... more lines ...

41.7 10.3 66 Zimbabwe
;

The data set Poverty contains the character variable Country and the numeric variables Birth, Death, and
InfantDeath, which represent the birth rate per thousand, death rate per thousand, and infant death rate per
thousand. The $20. in the INPUT statement specifies that the variable Country is a character variable with
a length of 20. The double trailing at sign (@@) in the INPUT statement holds the input line for further
iterations of the DATA step, specifying that observations are input from each line until all values are read.

Because the variables in the data set do not have equal variance, you must perform some form of scaling or
transformation. One method is to standardize the variables to mean zero and variance one. However, when
you suspect that the data contain elliptical clusters, you can use the ACECLUS procedure to transform the
data such that the resulting within-cluster covariance matrix is spherical. The procedure obtains approximate
estimates of the pooled within-cluster covariance matrix and then computes canonical variables to be used
in subsequent analyses.

The following statements perform the ACECLUS transformation by using the SAS data set Poverty. The
OUT= option creates an output SAS data set called Ace that contains the canonical variable scores:

proc aceclus data=Poverty out=Ace p=.03 noprint;
var Birth Death InfantDeath;

run;

The P= option specifies that approximately 3% of the pairs are included in the estimation of the within-
cluster covariance matrix. The NOPRINT option suppresses the display of the output. The VAR statement
specifies that the variables Birth, Death, and InfantDeath are used in computing the canonical variables.

The following statements invoke the CLUSTER procedure, using the SAS data set Ace created in the previ-
ous PROC ACECLUS run:

ods graphics on;

proc cluster data=Ace method=ward ccc pseudo print=15 out=tree
plots=den(height=rsq);
var can1-can3;
id country;

run;

ods graphics off;
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The ODS GRAPHICS ON statement enables ODS Graphics. Ward’s minimum-variance clustering method
is specified by the METHOD= option. The CCC option displays the cubic clustering criterion, and the
PSEUDO option displays pseudo F and t2 statistics. The PRINT=15 option displays only the last 15 gen-
erations of the cluster history. By default, when ODS Graphics is enabled, a dendrogram displaying the
semipartial R square is displayed on the X axis. The option PLOTS=DEN(HEIGHT=RSQ) requests a den-
drogram with R square displayed instead.

The VAR statement specifies that the canonical variables computed in the ACECLUS procedure are used in
the cluster analysis. The ID statement selects the variable Country as the Y axis variable in the dendrogram
and also specifies that Country should be added to the Tree output data set.

PROC CLUSTER first displays the table of eigenvalues of the covariance matrix (Figure 30.1). These
eigenvalues are used in the computation of the cubic clustering criterion. The first two columns list each
eigenvalue and the difference between the eigenvalue and its successor. The last two columns display the
individual and cumulative proportion of variation associated with each eigenvalue.

Figure 30.1 Table of Eigenvalues of the Covariance Matrix

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 64.5500051 54.7313223 0.8091 0.8091
2 9.8186828 4.4038309 0.1231 0.9321
3 5.4148519 0.0679 1.0000

Root-Mean-Square Total-Sample Standard Deviation 5.156987

Root-Mean-Square Distance Between Observations 12.63199

Figure 30.2 displays the last 15 generations of the cluster history. First listed are the number of clusters and
the names of the clusters joined. The observations are identified either by the ID value or by CLn, where
n is the number of the cluster. Next, PROC CLUSTER displays the number of observations in the new
cluster and the semipartial R square. The latter value represents the decrease in the proportion of variance
accounted for by joining the two clusters.
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Figure 30.2 Cluster History

Cluster History
T
i

NCL --------Clusters Joined-------- Freq SpRSq RSq ERSq CCC Ps F PsT2 e

15 Oman CL37 5 0.0039 .957 .933 6.03 132 12.1
14 CL31 CL22 13 0.0040 .953 .928 5.81 131 9.7
13 CL41 CL17 32 0.0041 .949 .922 5.70 131 13.1
12 CL19 CL21 10 0.0045 .945 .916 5.65 132 6.4
11 CL39 CL15 9 0.0052 .940 .909 5.60 134 6.3
10 CL76 CL27 6 0.0075 .932 .900 5.25 133 18.1
9 CL23 CL11 15 0.0130 .919 .890 4.20 125 12.4
8 CL10 Afghanistan 7 0.0134 .906 .879 3.55 122 7.3
7 CL9 CL25 17 0.0217 .884 .864 2.26 114 11.6
6 CL8 CL20 14 0.0239 .860 .846 1.42 112 10.5
5 CL14 CL13 45 0.0307 .829 .822 0.65 112 59.2
4 CL16 CL7 28 0.0323 .797 .788 0.57 122 14.8
3 CL12 CL6 24 0.0323 .765 .732 1.84 153 11.6
2 CL3 CL4 52 0.1782 .587 .613 -.82 135 48.9
1 CL5 CL2 97 0.5866 .000 .000 0.00 . 135

Next listed is the squared multiple correlation, R square, which is the proportion of variance accounted for
by the clusters. Figure 30.2 shows that, when the data are grouped into three clusters, the proportion of
variance accounted for by the clusters (R square) is just under 77%. The approximate expected value of R
square is given in the ERSq column. This expectation is approximated under the null hypothesis that the
data have a uniform distribution instead of forming distinct clusters.

The next three columns display the values of the cubic clustering criterion (CCC), pseudo F (PSF), and t2

(PST2) statistics. These statistics are useful for estimating the number of clusters in the data.

The final column in Figure 30.2 lists ties for minimum distance; a blank value indicates the absence of a tie.
A tie means that the clusters are indeterminate and that changing the order of the observations might change
the clusters. See Example 30.4 for ways to investigate the effects of ties.

Figure 30.3 plots the three statistics for estimating the number of clusters. Peaks in the plot of the cubic
clustering criterion with values greater than 2 or 3 indicate good clusters; peaks with values between 0 and
2 indicate possible clusters. Large negative values of the CCC can indicate outliers. In Figure 30.3, there
is a local peak of the CCC when the number of clusters is three. The CCC drops at four clusters and then
steadily increases, leveling off at eleven clusters.

Another method of judging the number of clusters in a data set is to look at the pseudo F statistic (PSF).
Relatively large values indicate good numbers of clusters. In Figure 30.3, the pseudo F statistic suggests
three clusters or eleven clusters.
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Figure 30.3 Plot of Statistics for Estimating the Number of Clusters

To interpret the values of the pseudo t2 statistic, look down the column or look at the plot from right to left
until you find the first value that is markedly larger than the previous value, then move back up the column or
to the right in the plot by one step in the cluster history. In Figure 30.3, you can see possibly good clustering
levels at eleven clusters, six clusters, three clusters, and two clusters.

Considered together, these statistics suggest that the data can be clustered into eleven clusters or three
clusters. The following statements examine the results of clustering the data into three clusters.

Figure 30.4 displays the dendrogram. The figure provides a graphical view of the information in Figure 30.2.
As the number of branches grows to the left from the root, the R square approaches 1; the first three clusters
(branches of the tree) account for over half of the variation (about 77%, from Figure 30.4). In other words,
only three clusters are necessary to explain over three-fourths of the variation.
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Figure 30.4 Dendrogram of Clusters versus R-Square Values



Getting Started: CLUSTER Procedure F 1811

You can use PROC TREE and the output data set from PROC CLUSTER to create a new data set that
contains information about cluster membership as follows:

proc tree data=Tree out=New nclusters=3 noprint;
height _rsq_;
copy can1 can2;
id country;

run;

The SAS data set Tree is input. The OUT= option creates an output SAS data set named New that contains
information about cluster membership. The NCLUSTERS= option specifies the number of clusters desired
in the data set New. The results can be displayed in a scatter plot.

The following statements use the SGPLOT procedure to display the results that are in the SAS data set New:

proc sgplot data=New;
scatter y=can2 x=can1 / group=cluster;

run;

The SCATTER statement requests a plot of the two canonical variables, using the value of the variable
cluster, which is produced by PROC TREE as the identification variable. The results are displayed in
Figure 30.5.

Figure 30.5 Plot of Canonical Variables and Cluster for Three Clusters

The statistics in Figure 30.2 and Figure 30.3, the dendrogram in Figure 30.4, and the plot of the canonical
variables in Figure 30.5 assist in the estimation of the number of clusters in the data. There seems to be
reasonable separation in the clusters. However, you must use this information, along with experience and
knowledge of the field, to help in deciding the correct number of clusters.
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Syntax: CLUSTER Procedure

The following statements are available in the CLUSTER procedure:

PROC CLUSTER METHOD= name < options > ;
BY variables ;
COPY variables ;
FREQ variable ;
ID variable ;
RMSSTD variable ;
VAR variables ;

Only the PROC CLUSTER statement is required, except that the FREQ statement is required when the
RMSSTD statement is used; otherwise the FREQ statement is optional. Usually only the VAR statement
and possibly the ID and COPY statements are needed in addition to the PROC CLUSTER statement. The
rest of this section provides detailed syntax information for each of the preceding statements, beginning
with the PROC CLUSTER statement. The remaining statements are covered in alphabetical order.

PROC CLUSTER Statement

PROC CLUSTER METHOD= name < options > ;

The PROC CLUSTER statement starts the CLUSTER procedure, specifies a clustering method, and option-
ally specifies details for clustering methods, data sets, data processing, and displayed output.

Table 30.1 summarizes the options in the PROC CLUSTER statement.

Table 30.1 PROC CLUSTER Statement Options

Option Description

Specify input and output data sets
DATA= Specifies input data set
OUTTREE= Creates output data set

Specify clustering methods
BETA= Specifies beta value for flexible beta method
HYBRID Specifies Wong’s hybrid clustering method
METHOD= Specifies clustering method
MODE= Specifies the minimum number of members for modal clusters
PENALTY= Specifies the penalty coefficient for maximum likelihood

Control data processing prior to clustering
NOEIGEN Suppresses computation of eigenvalues
NONORM Suppresses normalizing of distances
NOSQUARE Suppresses squaring of distances
STANDARD Standardizes variables
TRIM= Omits points with low probability densities
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Table 30.1 continued

Option Description

Control density estimation
K= Specifies number of neighbors for kth-nearest-neighbor density estimation
R= Specifies radius of sphere of support for uniform-kernel density estimation

Ties
NOTIE Suppresses checking for ties

Control display of the cluster history
CCC Displays cubic clustering criterion
NOID Suppresses display of ID values
PRINT= Specifies number of generations to display
PSEUDO Displays pseudo F and t2 statistics
RMSSTD Displays root mean square standard deviation
RSQUARE Displays R square and semipartial R square

Control other aspects of output
NOPRINT Suppresses display of all output
PLOTS= Specifies ODS graphics details
SIMPLE Displays simple summary statistics

METHOD=name
The METHOD= specification determines the clustering method used by the procedure. Any one of
the following 11 methods can be specified for name:

AVERAGE | AVE requests average linkage (group average, unweighted pair-group method
using arithmetic averages, UPGMA). Distance data are squared unless you
specify the NOSQUARE option.

CENTROID | CEN requests the centroid method (unweighted pair-group method using cen-
troids, UPGMC, centroid sorting, weighted-group method). Distance data
are squared unless you specify the NOSQUARE option.

COMPLETE | COM requests complete linkage (furthest neighbor, maximum method, diameter
method, rank order typal analysis). To reduce distortion of clusters by
outliers, the TRIM= option is recommended.

DENSITY | DEN requests density linkage, which is a class of clustering methods using non-
parametric probability density estimation. You must also specify either
the K=, R=, or HYBRID option to indicate the type of density estimation
to be used. See also the MODE= and DIM= options in this section.

EML requests maximum-likelihood hierarchical clustering for mixtures of
spherical multivariate normal distributions with equal variances but possi-
bly unequal mixing proportions. Use METHOD=EML only with coordi-
nate data. See the PENALTY= option for details. The NONORM option
does not affect the reported likelihood values but does affect other unre-
lated criteria. The EML method is much slower than the other methods in
the CLUSTER procedure.
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FLEXIBLE | FLE requests the Lance-Williams flexible-beta method. See the BETA= option
in this section.

MCQUITTY | MCQ requests McQuitty’s similarity analysis (weighted average linkage,
weighted pair-group method using arithmetic averages, WPGMA).

MEDIAN | MED requests Gower’s median method (weighted pair-group method using
centroids, WPGMC). Distance data are squared unless you specify the
NOSQUARE option.

SINGLE | SIN requests single linkage (nearest neighbor, minimum method, connected-
ness method, elementary linkage analysis, or dendritic method). To reduce
chaining, you can use the TRIM= option with METHOD=SINGLE.

TWOSTAGE | TWO requests two-stage density linkage. You must also specify the K=, R=, or
HYBRID option to indicate the type of density estimation to be used. See
also the MODE= and DIM= options in this section.

WARD | WAR requests Ward’s minimum-variance method (error sum of squares, trace
W). Distance data are squared unless you specify the NOSQUARE option.
To reduce distortion by outliers, the TRIM= option is recommended. See
the NONORM option.

The following list provides details about the other options.

BETA=n
specifies the beta parameter for METHOD=FLEXIBLE. The value of n should be less than 1, usually
between 0 and �1. By default, BETA=�0:25. Milligan (1987) suggests a somewhat smaller value,
perhaps �0:5, for data with many outliers.

CCC
displays the cubic clustering criterion and approximate expected R square under the uniform null hy-
pothesis (Sarle 1983). The statistics associated with the RSQUARE option, R square and semipartial
R square, are also displayed. The CCC option applies only to coordinate data. The CCC option is not
appropriate with METHOD=SINGLE because of the method’s tendency to chop off tails of distribu-
tions. Computation of the CCC requires the eigenvalues of the covariance matrix. If the number of
variables is large, computing the eigenvalues requires much computer time and memory.

DATA=SAS-data-set
names the input data set that contains observations to be clustered. By default, the procedure uses
the most recently created SAS data set. If the data set is TYPE=DISTANCE, the data are interpreted
as a distance matrix; the number of variables must equal the number of observations in the data
set or in each BY group. The distances are assumed to be Euclidean, but the procedure accepts
other types of distances or dissimilarities. If the data set is not TYPE=DISTANCE, the data are
interpreted as coordinates in a Euclidean space, and Euclidean distances are computed. For more
about TYPE=DISTANCE data sets, see Chapter A, “Special SAS Data Sets.”

Data set types (such as TYPE=DISTANCE) do not persist when you copy or modify a data set. You
must specify the TYPE= data set option for the new data set, as in the following example:

data dist2(type=distance);
set dist;
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run;

If you do not specify the TYPE=DISTANCE data set option, the new data set is the default
TYPE=DATA. If you use the new data set in a procedure that accepts both TYPE=DATA or
TYPE=DISTANCE data sets (such as PROC CLUSTER or PROC MODECLUS), the results will
be incorrect.

You cannot use a TYPE=CORR data set as input to PROC CLUSTER, since the procedure uses dis-
similarity measures. Instead, you can use a DATA step or the IML procedure to extract the correlation
matrix from a TYPE=CORR data set and transform the values to dissimilarities such as 1�r or 1�r2,
where r is the correlation.

All methods produce the same results when used with coordinate data as when used with Euclidean
distances computed from the coordinates. However, the DIM= option must be used with distance
data if you specify METHOD=TWOSTAGE or METHOD=DENSITY or if you specify the TRIM=
option.

Certain methods that are most naturally defined in terms of coordinates require squared Eu-
clidean distances to be used in the combinatorial distance formulas (Lance and Williams 1967).
For this reason, distance data are automatically squared when used with METHOD=AVERAGE,
METHOD=CENTROID, METHOD=MEDIAN, or METHOD=WARD. If you want the combinato-
rial formulas to be applied to the (unsquared) distances with these methods, use the NOSQUARE
option.

DIM=n
specifies the dimensionality used when computing density estimates with the TRIM= option,
METHOD=DENSITY, or METHOD=TWOSTAGE. The values of n must be greater than or equal
to 1. The default is the number of variables if the data are coordinates; the default is 1 if the data are
distances.

HYBRID
requests the Wong (1982) hybrid clustering method in which density estimates are computed from
a preliminary cluster analysis using the k-means method. The DATA= data set must contain means,
frequencies, and root mean square standard deviations of the preliminary clusters (see the FREQ and
RMSSTD statements). To use HYBRID, you must use either a FREQ statement or a DATA= data set
that contains a _FREQ_ variable, and you must also use either an RMSSTD statement or a DATA=
data set that contains an _RMSSTD_ variable.

The MEAN= data set produced by the FASTCLUS procedure is suitable for input to the CLUSTER
procedure for hybrid clustering. Since this data set contains _FREQ_ and _RMSSTD_ variables, you
can use it as input and then omit the FREQ and RMSSTD statements.

You must specify either METHOD=DENSITY or METHOD=TWOSTAGE with the HYBRID op-
tion. You cannot use this option in combination with the TRIM=, K=, or R= option.

K=n
specifies the number of neighbors to use for kth-nearest-neighbor density estimation (Silverman 1986,
pp. 19–21 and 96–99). The number of neighbors (n) must be at least two but less than the number of
observations. See the MODE= option, which follows.

Density estimation is used with the TRIM=, METHOD=DENSITY, and METHOD=TWOSTAGE
options.
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MODE=n
specifies that, when two clusters are joined, each must have at least n members in order for either
cluster to be designated a modal cluster. If you specify MODE=1, each cluster must also have a
maximum density greater than the fusion density in order for either cluster to be designated a modal
cluster.

Use the MODE= option only with METHOD=DENSITY or METHOD=TWOSTAGE. With
METHOD=TWOSTAGE, the MODE= option affects the number of modal clusters formed. With
METHOD=DENSITY, the MODE= option does not affect the clustering process but does determine
the number of modal clusters reported on the output and identified by the _MODE_ variable in the
output data set.

If you specify the K= option, the default value of MODE= is the same as the value of K= because the
use of kth-nearest-neighbor density estimation limits the resolution that can be obtained for clusters
with fewer than k members. If you do not specify the K= option, the default is MODE=2.

If you specify MODE=0, the default value is used instead of 0.

If you specify a FREQ statement or if a _FREQ_ variable appears in the input data set, the MODE=
value is compared with the number of actual observations in the clusters being joined, not with the
sum of the frequencies in the clusters.

NOEIGEN
suppresses computation of the eigenvalues of the covariance matrix and substitutes the variances of the
variables for the eigenvalues when computing the cubic clustering criterion. The NOEIGEN option
saves time if the number of variables is large, but it should be used only if the variables are nearly
uncorrelated. If you specify the NOEIGEN option and the variables are highly correlated, the cubic
clustering criterion might be very liberal. The NOEIGEN option applies only to coordinate data.

NOID
suppresses the display of ID values for the clusters joined at each generation of the cluster history.

NONORM
prevents the distances from being normalized to unit mean or unit root mean square with most meth-
ods. With METHOD=WARD, the NONORM option prevents the between-cluster sum of squares
from being normalized by the total sum of squares to yield a squared semipartial correlation. The
NONORM option does not affect the reported likelihood values with METHOD=EML, but it does
affect other unrelated criteria, such as the _DIST_ variable.

NOPRINT
suppresses the display of all output. Note that this option temporarily disables the Output Delivery
System (ODS). For more information, see Chapter 20, “Using the Output Delivery System.”
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NOSQUARE
prevents input distances from being squared with METHOD=AVERAGE,
METHOD=CENTROID, METHOD=MEDIAN, or METHOD=WARD.

If you specify the NOSQUARE option with distance data, the data are assumed to be squared Eu-
clidean distances for computing R-square and related statistics defined in a Euclidean coordinate
system.

If you specify the NOSQUARE option with coordinate data with METHOD=CENTROID,
METHOD=MEDIAN, or METHOD=WARD, then the combinatorial formula is applied to unsquared
Euclidean distances. The resulting cluster distances do not have their usual Euclidean interpretation
and are therefore labeled “False” in the output.

NOTIE
prevents PROC CLUSTER from checking for ties for minimum distance between clusters at each gen-
eration of the cluster history. If your data are measured with such precision that ties are unlikely, then
you can specify the NOTIE option to reduce slightly the time and space required by the procedure.
See the section “Ties” on page 1836 for more information.

OUTTREE=SAS-data-set
creates an output data set that can be used by the TREE procedure to draw a tree diagram. You
must give the data set a two-level name to save it in a permanent SAS data set. See SAS Language
Reference: Concepts for a discussion of permanent data sets. If you omit the OUTTREE= option, the
data set is named by using the DATAn convention and is not permanently saved. If you do not want to
create an output data set, use OUTTREE=_NULL_.

PENALTY=p
specifies the penalty coefficient used with METHOD=EML. See the section “Clustering Methods” on
page 1825 for more information. Values for p must be greater than zero. By default, PENALTY=2.

PLOTS < (global-plot-options) > < = plot-request >

PLOTS < (global-plot-options) > < = (plot-request < ... plot-request >) >
controls the plots produced through ODS Graphics.

ODS Graphics must be enabled before requesting plots. For example:

ods graphics on;

proc cluster method=ward plots=all;
run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

By default, PROC CLUSTER produces a dendrogram. PROC CLUSTER can also produce plots of
the cubic clustering criterion, the pseudo F statistic, and the pseudo t2 statistic from the cluster history
table. These statistics are useful for estimating the number of clusters. Each statistic is plotted against
the number of clusters. You can request that PROC CLUSTER create these graphs by specifying the
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CCC or PSEUDO options, or by specifying the statistics in a plot-request in the PLOT option. PROC
CLUSTER might be unable to compute the statistics in some cases; for details, see the CCC and
PSEUDO options. If a statistic cannot be computed, it cannot be plotted. PROC CLUSTER plots all
of these statistics that are computed unless you tell it specifically what to plot using PLOTS=.

PROC CLUSTER has a CCC and PSEUDO option as well as CCC and PSEUDO plot requests. All
four options are illustrated in the following step:

ods graphics on;

proc cluster ccc pseudo plots=(ccc pseudo);
run;

ods graphics off;

The maximum number of clusters shown in all the plots is the minimum of the following quantities:

� the number of observations

� the value of the PRINT= option, if that option is specified

� the maximum number of clusters for which CCC is computed, if the CCC is plotted

The global-plot-options apply to all plots generated by the CLUSTER procedure. The global-plot-
options are as follows:

MAXCLUS=n
right-truncates the CCC, PSF, and PST2 plots at the n value. This prevents these plots from
losing resolution when a large number of clusters are plotted. The default is MAXCLUS=200.

MAXPOINTS=n

MAXPTS=n
suppresses the dendrogram when the number of clusters exceeds the n value. This prevents an
unreadable plot from being produced. The default is MAXPOINTS=200.

UNPACKPANEL

UNPACK
breaks a plot that is otherwise paneled into separate plots for each statistic.

ONLY
suppresses the default plots. Only plots specifically requested are displayed.

The following plot-requests can be specified:

ALL
generates all possible plots. The CCC and PSEUDO options must be specified to obtain the
CCC, PSF and PST2 plots in addition to the dendrogram.

CCC
implicitly specifies the CCC option and, if possible, plots the cubic clustering criterion against
the number of clusters.
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DENDROGRAM < ( dendrogram-options ) >
requests a dendrogram and specifies dendrogram-options. A dendrogram is created by default
unless the ONLY global-plot-option is requested.

Unlike most graphs, the size of the dendrogram can vary as a function of the number of objects
that appear in the dendrogram. You can specify the following dendrogram-options to control
the size and appearance of the dendrogram:

COMPUTEHEIGHT=a b

CH=a b
specifies the constants for computing the height of the dendrogram. For n points being
clustered, intercept a, and slope b, the height is based in part on aC bn. For a horizontal
dendrogram, the default (given in pixels) is COMPUTEHEIGHT=100 12, the default
height in pixels is max(100C 12n, 480), the default height in inches is max(1:04167C

0:125n, 5), and the default height in centimeters is max(2:64583C 0:3175n, 12.7). For a
vertical dendrogram, the default height is 480 pixels. The default unit is pixels, and you
can use the UNIT= dendrogram-option to change the unit to inches or centimeters for
this option. Inches equals pixels divided by 96, and centimeters equals inches times 2.54.

COMPUTEWIDTH=a b

CW=a b
specifies the constants for computing the width of the dendrogram. For n points being
clustered, intercept a, and slope b, the width is based in part on aCbn. For a vertical den-
drogram, the default (given in pixels) is COMPUTEWIDTH=100 12, the default width
in pixels is max(100C 12n, 640), the default width in inches is max(1:04167C 0:125n,
6.66667), and the default width in centimeters is max(2:64583C 0:3175n, 16.933). For
a horizontal dendrogram, the default width is 640 pixels. The default unit is pixels, and
you can use the UNIT= dendrogram-option to change the unit to inches or centimeters
for this option. Inches equals pixels divided by 96, and centimeters equals inches times
2.54.

HEIGHT=HEIGHT | MODE | NCL | RSQ

H=H | M | N | R
specifies the method for drawing the height of the dendrogram. HEIGHT=HEIGHT is
the default.

HEIGHT=HEIGHT specifies the distance or similarity between the last clusters joined,
as defined in the section “Clustering Methods” on page 1825.

HEIGHT=MODE pertains to the modal clusters. With METHOD=DENSITY, the
mode indicates the number of modal clusters contained by the current cluster. With
METHOD=TWOSTAGE, the mode gives the maximum density in each modal cluster
and the fusion density, d�, for clusters containing two or more modal clusters; for clus-
ters that contain no modal clusters, that value of the _MODE_ variable is missing.

HEIGHT=NCL specifies that the number of clusters is used.

HEIGHT=RSQ specifies that the squared multiple correlation is used.
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HORIZONTAL | VERTICAL
specifies either a horizontal dendrogram with the objects on the vertical axis (HORIZON-
TAL) or a vertical dendrogram with the objects on the horizontal axis (VERTICAL). The
default is HORIZONTAL.

SETHEIGHT=height

SH=height
specifies the height of the dendrogram. By default, the height is based on the COMPUTE-
HEIGHT= option. The default unit is pixels, and you can use the UNIT= dendrogram-
option to change the unit to inches or centimeters for this dendrogram-option.

SETWIDTH=width

SW=width
specifies the width of the dendrogram. By default, the width is based on the COM-
PUTEWIDTH= option. The default unit is pixels, and you can use the UNIT=
dendrogram-option to change the unit to inches or centimeters for this dendrogram-
option.

UNIT=PX | IN | CM
specifies the unit (pixels, inches, or centimeters) for the SETHEIGHT=, SETWIDTH=,
COMPUTEHEIGHT=, and COMPUTEWIDTH= dendrogram-options.

NONE
suppresses all plots.

PSEUDO
implicitly specifies the PSEUDO option and, if possible, plots the pseudo F statistic and the
pseudo t2 statistic against the number of clusters.

PSF
implicitly specifies the PSEUDO option and, if possible, plots the pseudo F statistic against the
number of clusters.

PST2
implicitly specifies the PSEUDO option and, if possible, plots the pseudo t2 statistic against the
number of clusters.

You can specify one or more of the plot requests in the same PLOT option. For example, all of the
following are valid:

proc cluster plots=(ccc pst2);
proc cluster plots=(psf);
proc cluster plots=psf;

The first statement plots both the cubic clustering criterion and the pseudo t2 statistic, while the
second and third statements plot the pseudo F statistic only. When you specify only one plot request,
you can omit the parentheses around the plot request. When you specify more than one plot request,
you must specify parentheses. Otherwise the second and subsequent plot requests are options. Since
CCC and PSEUDO are both options as well as plot requests, the following three statements are valid,
but they are not equivalent:
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proc cluster plots(only)=ccc pseudo;
proc cluster plots(only)=pseudo ccc;
proc cluster plots(only)=(ccc pseudo);

The first two examples have one plot request and one procedure option. The third example has two
plot requests.

The names of the graphs that PROC CLUSTER generates are listed in Table 30.5, along with the
required statements and options.

PRINT=n | P=n
specifies the number of generations of the cluster history to display. The PRINT= option displays the
latest n generations; for example, PRINT=5 displays the cluster history from one cluster through five
clusters. The value of PRINT= must be a nonnegative integer. The default is to display all generations.
Specify PRINT=0 to suppress the cluster history.

PSEUDO
displays pseudo F and t2 statistics. This option is effective only when the data are coordinates or
when METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD is specified. See the
section “Miscellaneous Formulas” on page 1833 for more information. The PSEUDO option is not
appropriate with METHOD=SINGLE because of the method’s tendency to chop off tails of distribu-
tions.

R=n
specifies the radius of the sphere of support for uniform-kernel density estimation (Silverman 1986,
pp. 11–13 and 75–94).

The value of R= must be greater than zero.

Density estimation is used with the TRIM=, METHOD=DENSITY, and METHOD=TWOSTAGE
options.

RMSSTD
displays the root mean square standard deviation of each cluster. This option is effective
only when the data are coordinates or when METHOD=AVERAGE, METHOD=CENTROID, or
METHOD=WARD is specified.

See the section “Miscellaneous Formulas” on page 1833 for more information.

RSQUARE | RSQ
displays the R square and semipartial R square. This option is effective only when the data are
coordinates or when METHOD=AVERAGE or METHOD=CENTROID is specified. The R square
and semipartial R square statistics are always displayed with METHOD=WARD. See the section
“Miscellaneous Formulas” on page 1833 for more information..

SIMPLE | S
displays means, standard deviations, skewness, kurtosis, and a coefficient of bimodality. The SIMPLE
option applies only to coordinate data. See the section “Miscellaneous Formulas” on page 1833 for
more information.
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STANDARD | STD
standardizes the variables to mean 0 and standard deviation 1. The STANDARD option applies only
to coordinate data.

TRIM=p
omits points with low estimated probability densities from the analysis. Valid values for the TRIM=
option are 0 � p < 100. If p < 1, then p is the proportion of observations omitted. If p � 1, then
p is interpreted as a percentage. A specification of TRIM=10, which trims 10% of the points, is a
reasonable value for many data sets. Densities are estimated by the kth-nearest-neighbor or uniform-
kernel method. Trimmed points are indicated by a negative value of the _FREQ_ variable in the
OUTTREE= data set.

You must use either the K= or R= option when you use TRIM=. You cannot use the HYBRID option
in combination with TRIM=, so you might want to use the DIM= option instead. If you specify the
STANDARD option in combination with TRIM=, the variables are standardized both before and after
trimming.

The TRIM= option is useful for removing outliers and reducing chaining. Trimming is highly recom-
mended with METHOD=WARD or METHOD=COMPLETE because clusters from these methods
can be severely distorted by outliers. Trimming is also valuable with METHOD=SINGLE since
single linkage is the method most susceptible to chaining. Most other methods also benefit from trim-
ming. However, trimming is unnecessary with METHOD=TWOSTAGE or METHOD=DENSITY
when kth-nearest-neighbor density estimation is used.

Use of the TRIM= option can spuriously inflate the cubic clustering criterion and the pseudo F and t2

statistics. Trimming only outliers improves the accuracy of the statistics, but trimming saddle regions
between clusters yields excessively large values.

BY Statement

BY variables ;

You can specify a BY statement with PROC CLUSTER to obtain separate analyses on observations in
groups that are defined by the BY variables. When a BY statement appears, the procedure expects the input
data set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last
one specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the CLUSTER proce-
dure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).
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For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures
Guide.

COPY Statement

COPY variables ;

The variables in the COPY statement are copied from the input data set to the OUTTREE= data set. Obser-
vations in the OUTTREE= data set that represent clusters of more than one observation from the input data
set have missing values for the COPY variables.

FREQ Statement

FREQ variable ;

If one variable in the input data set represents the frequency of occurrence for other values in the observation,
specify the variable’s name in a FREQ statement. PROC CLUSTER then treats the data set as if each
observation appeared n times, where n is the value of the FREQ variable for the observation. Noninteger
values of the FREQ variable are truncated to the largest integer less than the FREQ value.

If you omit the FREQ statement but the DATA= data set contains a variable called _FREQ_, then frequencies
are obtained from the _FREQ_ variable. If neither a FREQ statement nor an _FREQ_ variable is present,
each observation is assumed to have a frequency of one.

If each observation in the DATA= data set represents a cluster (for example, clusters formed by PROC
FASTCLUS), the variable specified in the FREQ statement should give the number of original observations
in each cluster.

If you specify the RMSSTD statement, a FREQ statement is required. A FREQ statement or _FREQ_
variable is required when you specify the HYBRID option.

With most clustering methods, the same clusters are obtained from a data set with a FREQ variable as from
a similar data set without a FREQ variable, if each observation is repeated as many times as the value of
the FREQ variable in the first data set. The FLEXIBLE method can yield different results due to the nature
of the combinatorial formula. The DENSITY and TWOSTAGE methods are also exceptions because two
identical observations can be absorbed one at a time by a cluster with a higher density. If you are using a
FREQ statement with either the DENSITY or TWOSTAGE method, see the MODE=option for details.

ID Statement

ID variable ;
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The values of the ID variable identify observations in the displayed cluster history and in the OUTTREE=
data set. If the ID statement is omitted, each observation is denoted by OBn, where n is the observation
number.

RMSSTD Statement

RMSSTD variable ;

If the coordinates in the DATA= data set represent cluster means (for example, formed by the FAST-
CLUS procedure), you can obtain accurate statistics in the cluster histories for METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD if the data set contains both of the following:

� a variable giving the number of original observations in each cluster (see the discussion of the FREQ
statement earlier in this chapter)

� a variable giving the root mean squared standard deviation of each cluster

Specify the name of the variable containing root mean squared standard deviations in the RMSSTD state-
ment. If you specify the RMSSTD statement, you must also specify a FREQ statement.

If you omit the RMSSTD statement but the DATA= data set contains a variable called _RMSSTD_, then the
root mean squared standard deviations are obtained from the _RMSSTD_ variable.

An RMSSTD statement or _RMSSTD_ variable is required when you specify the HYBRID option.

A data set created by PROC FASTCLUS, using the MEAN= option, contains _FREQ_ and _RMSSTD_
variables, so you do not have to use FREQ and RMSSTD statements when using such a data set as input to
the CLUSTER procedure.

VAR Statement

VAR variables ;

The VAR statement lists numeric variables to be used in the cluster analysis. If you omit the VAR statement,
all numeric variables not listed in other statements are used.



Details: CLUSTER Procedure F 1825

Details: CLUSTER Procedure

Clustering Methods

The following notation is used, with lowercase symbols generally pertaining to observations and uppercase
symbols pertaining to clusters:

n number of observations

v number of variables if data are coordinates

G number of clusters at any given level of the hierarchy

xi or xi ith observation (row vector if coordinate data)

CK Kth cluster, subset of f1; 2; : : : ; ng

NK number of observations in CK

Nx sample mean vector

NxK mean vector for cluster CK

kxk Euclidean length of the vector x—that is, the square root of the sum of the squares of the
elements of x

T
Pn

iD1 kxi � Nxk2

WK

P
i2Ck
kxi � NxKk

2

PG

P
WJ , where summation is over the G clusters at the Gth level of the hierarchy

BKL WM �WK �WL if CM D CK [ CL

d.x; y/ any distance or dissimilarity measure between observations or vectors x and y

DKL any distance or dissimilarity measure between clusters CK and CL

The distance between two clusters can be defined either directly or combinatorially (Lance and Williams
1967)—that is, by an equation for updating a distance matrix when two clusters are joined. In all of the
following combinatorial formulas, it is assumed that clusters CK and CL are merged to form CM , and the
formula gives the distance between the new cluster CM and any other cluster CJ .

For an introduction to most of the methods used in the CLUSTER procedure, see Massart and Kaufman
(1983).

Average Linkage

The following method is obtained by specifying METHOD=AVERAGE. The distance between two clusters
is defined by

DKL D
1

NKNL

X
i2CK

X
j2CL

d.xi ; xj /
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If d.x; y/ D kx � yk2, then

DKL D kNxK � NxLk
2
C

WK

NK
C

WL

NL

The combinatorial formula is

DJM D
NKDJK CNLDJL

NM

In average linkage the distance between two clusters is the average distance between pairs of observations,
one in each cluster. Average linkage tends to join clusters with small variances, and it is slightly biased
toward producing clusters with the same variance.

Average linkage was originated by Sokal and Michener (1958).

Centroid Method

The following method is obtained by specifying METHOD=CENTROID. The distance between two clusters
is defined by

DKL D kNxK � NxLk
2

If d.x; y/ D kx � yk2, then the combinatorial formula is

DJM D
NKDJK CNLDJL

NM
�

NKNLDKL

N 2
M

In the centroid method, the distance between two clusters is defined as the (squared) Euclidean distance
between their centroids or means. The centroid method is more robust to outliers than most other hierarchi-
cal methods but in other respects might not perform as well as Ward’s method or average linkage (Milligan
1980).

The centroid method was originated by Sokal and Michener (1958).

Complete Linkage

The following method is obtained by specifying METHOD=COMPLETE. The distance between two clus-
ters is defined by

DKL D max
i2CK

max
j2CL

d.xi ; xj /

The combinatorial formula is

DJM D max.DJK ; DJL/

In complete linkage, the distance between two clusters is the maximum distance between an observation in
one cluster and an observation in the other cluster. Complete linkage is strongly biased toward producing
clusters with roughly equal diameters, and it can be severely distorted by moderate outliers (Milligan 1980).

Complete linkage was originated by Sorensen (1948).



Clustering Methods F 1827

Density Linkage

The phrase density linkage is used here to refer to a class of clustering methods that use nonparametric
probability density estimates (for example, Hartigan 1975, pp. 205–212; Wong 1982; Wong and Lane
1983). Density linkage consists of two steps:

1. A new dissimilarity measure, d�, based on density estimates and adjacencies is computed. If xi

and xj are adjacent (the definition of adjacency depends on the method of density estimation), then
d�.xi ; xj / is the reciprocal of an estimate of the density midway between xi and xj ; otherwise,
d�.xi ; xj / is infinite.

2. A single linkage cluster analysis is performed using d�.

The CLUSTER procedure supports three types of density linkage: the kth-nearest-neighbor method, the
uniform-kernel method, and Wong’s hybrid method. These are obtained by using METHOD=DENSITY
and the K=, R=, and HYBRID options, respectively.

kth-Nearest-Neighbor Method

The kth-nearest-neighbor method (Wong and Lane 1983) uses kth-nearest-neighbor density estimates. Let
rk.x/ be the distance from point x to the kth-nearest observation, where k is the value specified for the K=
option. Consider a closed sphere centered at x with radius rk.x/. The estimated density at x, f .x/, is the
proportion of observations within the sphere divided by the volume of the sphere. The new dissimilarity
measure is computed as

d�.xi ; xj / D

8<:
1
2

�
1

f .xi /
C

1
f .xj /

�
if d.xi ; xj / � max.rk.xi /; rk.xj //

1 otherwise

Wong and Lane (1983) show that kth-nearest-neighbor density linkage is strongly set consistent for high-
density (density-contour) clusters if k is chosen such that k=n ! 0 and k= ln.n/ ! 1 as n ! 1. Wong
and Schaack (1982) discuss methods for estimating the number of population clusters by using kth-nearest-
neighbor clustering.

Uniform-Kernel Method

The uniform-kernel method uses uniform-kernel density estimates. Let r be the value specified for the R=
option. Consider a closed sphere centered at point x with radius r. The estimated density at x, f .x/, is the
proportion of observations within the sphere divided by the volume of the sphere. The new dissimilarity
measure is computed as

d�.xi ; xj / D

8<:
1
2

�
1

f .xi /
C

1
f .xj /

�
if d.xi ; xj / � r

1 otherwise



1828 F Chapter 30: The CLUSTER Procedure

Wong’s Hybrid Method

The Wong (1982) hybrid clustering method uses density estimates based on a preliminary cluster analysis
by the k-means method. The preliminary clustering can be done by the FASTCLUS procedure, by using the
MEAN= option to create a data set containing cluster means, frequencies, and root mean squared standard
deviations. This data set is used as input to the CLUSTER procedure, and the HYBRID option is specified
with METHOD=DENSITY to request the hybrid analysis. The hybrid method is appropriate for very large
data sets but should not be used with small data sets—say, than those with fewer than 100 observations in
the original data. The term preliminary cluster refers to an observation in the DATA= data set.

For preliminary cluster CK , NK and WK are obtained from the input data set, as are the cluster means or
the distances between the cluster means. Preliminary clusters CK and CL are considered adjacent if the
midpoint between NxK and NxL is closer to either NxK or NxL than to any other preliminary cluster mean or,
equivalently, if d2.NxK ; NxL/ < d2.NxK ; NxM /C d2.NxL; NxM / for all other preliminary clusters CM , M ¤ K

or L. The new dissimilarity measure is computed as

d�.NxK ; NxL/ D

8<: .WKCWLC
1
4

.NKCNL/d2.NxK ;NxL//
v
2

.NKCNL/
1C v

2
if CK and CL are adjacent

1 otherwise

Using the K= and R= Options

The values of the K= and R= options are called smoothing parameters. Small values of K= or R= produce
jagged density estimates and, as a consequence, many modes. Large values of K= or R= produce smoother
density estimates and fewer modes. In the hybrid method, the smoothing parameter is the number of clusters
in the preliminary cluster analysis. The number of modes in the final analysis tends to increase as the number
of clusters in the preliminary analysis increases. Wong (1982) suggests using n0:3 preliminary clusters,
where n is the number of observations in the original data set. There is no rule of thumb for selecting K=
values. For all types of density linkage, you should repeat the analysis with several different values of the
smoothing parameter (Wong and Schaack 1982).

There is no simple answer to the question of which smoothing parameter to use (Silverman 1986, pp. 43–61,
84–88, and 98–99). It is usually necessary to try several different smoothing parameters. A reasonable first
guess for the R= option in many coordinate data sets is given by"

2vC2.v C 2/�.v
2
C 1/

nv2

# 1
vC4

vuut vX
lD1

s2
l

where s2
l

is the standard deviation of the lth variable. The estimate for R= can be computed in a DATA
step by using the GAMMA function for � . This formula is derived under the assumption that the data are
sampled from a multivariate normal distribution and tends, therefore, to be too large (oversmooth) if the true
distribution is multimodal. Robust estimates of the standard deviations can be preferable if there are outliers.
If the data are distances, the factor

P
s2
l

can be replaced by an average (mean, trimmed mean, median, root
mean square, and so on) distance divided by

p
2. To prevent outliers from appearing as separate clusters,

you can also specify K=2, or more generally K=m, m � 2, which in most cases forces clusters to have at
least m members.

If the variables all have unit variance (for example, if the STANDARD option is used), Table 30.2 can be
used to obtain an initial guess for the R= option.
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Since infinite d� values occur in density linkage, the final number of clusters can exceed one when there
are wide gaps between the clusters or when the smoothing parameter results in little smoothing.

Density linkage applies no constraints to the shapes of the clusters and, unlike most other hierarchical
clustering methods, is capable of recovering clusters with elongated or irregular shapes. Since density
linkage uses less prior knowledge about the shape of the clusters than do methods restricted to compact
clusters, density linkage is less effective at recovering compact clusters from small samples than are methods
that always recover compact clusters, regardless of the data.

Table 30.2 Reasonable First Guess for the R= Option for Standardized Data

Number of Number of Variables
Observations 1 2 3 4 5 6 7 8 9 10

20 1.01 1.36 1.77 2.23 2.73 3.25 3.81 4.38 4.98 5.60

35 0.91 1.24 1.64 2.08 2.56 3.08 3.62 4.18 4.77 5.38

50 0.84 1.17 1.56 1.99 2.46 2.97 3.50 4.06 4.64 5.24

75 0.78 1.09 1.47 1.89 2.35 2.85 3.38 3.93 4.50 5.09

100 0.73 1.04 1.41 1.82 2.28 2.77 3.29 3.83 4.40 4.99

150 0.68 0.97 1.33 1.73 2.18 2.66 3.17 3.71 4.27 4.85

200 0.64 0.93 1.28 1.67 2.11 2.58 3.09 3.62 4.17 4.75

350 0.57 0.85 1.18 1.56 1.98 2.44 2.93 3.45 4.00 4.56

500 0.53 0.80 1.12 1.49 1.91 2.36 2.84 3.35 3.89 4.45

750 0.49 0.74 1.06 1.42 1.82 2.26 2.74 3.24 3.77 4.32

1000 0.46 0.71 1.01 1.37 1.77 2.20 2.67 3.16 3.69 4.23

1500 0.43 0.66 0.96 1.30 1.69 2.11 2.57 3.06 3.57 4.11

2000 0.40 0.63 0.92 1.25 1.63 2.05 2.50 2.99 3.49 4.03

EML

The following method is obtained by specifying METHOD=EML. The distance between two clusters is
given by

DKL D nv ln
�

1C
BKL

PG

�
� 2 .NM ln.NM / �NK ln.NK/ �NL ln.NL//

The EML method joins clusters to maximize the likelihood at each level of the hierarchy under the following
assumptions:

� multivariate normal mixture

� equal spherical covariance matrices

� unequal sampling probabilities
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The EML method is similar to Ward’s minimum-variance method but removes the bias toward equal-sized
clusters. Practical experience has indicated that EML is somewhat biased toward unequal-sized clusters.
You can specify the PENALTY= option to adjust the degree of bias. If you specify PENALTY=p, the
formula is modified to

DKL D nv ln
�

1C
BKL

PG

�
� p .NM ln.NM / �NK ln.NK/ �NL ln.NL//

The EML method was derived by W. S. Sarle of SAS Institute from the maximum likelihood formula
obtained by Symons (1981, p. 37, Equation 8) for disjoint clustering. There are currently no other published
references on the EML method.

Flexible-Beta Method

The following method is obtained by specifying METHOD=FLEXIBLE. The combinatorial formula is

DJM D .DJK CDJL/
1 � b

2
CDKLb

where b is the value of the BETA= option, or �0:25 by default.

The flexible-beta method was developed by Lance and Williams (1967); see also Milligan (1987).

McQuitty’s Similarity Analysis

The following method is obtained by specifying METHOD=MCQUITTY. The combinatorial formula is

DJM D
DJK CDJL

2

The method was independently developed by Sokal and Michener (1958) and McQuitty (1966).

Median Method

The following method is obtained by specifying METHOD=MEDIAN. If d.x; y/ D kx � yk2, then the
combinatorial formula is

DJM D
DJK CDJL

2
�

DKL

4

The median method was developed by Gower (1967).

Single Linkage

The following method is obtained by specifying METHOD=SINGLE. The distance between two clusters is
defined by

DKL D min
i2CK

min
j2CL

d.xi ; xj /
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The combinatorial formula is

DJM D min.DJK ; DJL/

In single linkage, the distance between two clusters is the minimum distance between an observation in
one cluster and an observation in the other cluster. Single linkage has many desirable theoretical properties
(Jardine and Sibson 1971; Fisher and Van Ness 1971; Hartigan 1981) but has fared poorly in Monte Carlo
studies (for example, Milligan 1980). By imposing no constraints on the shape of clusters, single linkage
sacrifices performance in the recovery of compact clusters in return for the ability to detect elongated and
irregular clusters. You must also recognize that single linkage tends to chop off the tails of distributions
before separating the main clusters (Hartigan 1981). The notorious chaining tendency of single linkage can
be alleviated by specifying the TRIM= option (Wishart 1969, pp. 296–298).

Density linkage and two-stage density linkage retain most of the virtues of single linkage while performing
better with compact clusters and possessing better asymptotic properties (Wong and Lane 1983).

Single linkage was originated by Florek et al. (1951b, a) and later reinvented by McQuitty (1957) and Sneath
(1957).

Two-Stage Density Linkage

If you specify METHOD=DENSITY, the modal clusters often merge before all the points in the tails have
clustered. The option METHOD=TWOSTAGE is a modification of density linkage that ensures that all
points are assigned to modal clusters before the modal clusters are permitted to join. The CLUSTER
procedure supports the same three varieties of two-stage density linkage as of ordinary density linkage:
kth-nearest neighbor, uniform kernel, and hybrid.

In the first stage, disjoint modal clusters are formed. The algorithm is the same as the single linkage algo-
rithm ordinarily used with density linkage, with one exception: two clusters are joined only if at least one
of the two clusters has fewer members than the number specified by the MODE= option. At the end of the
first stage, each point belongs to one modal cluster.

In the second stage, the modal clusters are hierarchically joined by single linkage. The final number of
clusters can exceed one when there are wide gaps between the clusters or when the smoothing parameter is
small.

Each stage forms a tree that can be plotted by the TREE procedure. By default, the TREE procedure plots
the tree from the first stage. To obtain the tree for the second stage, use the option HEIGHT=MODE in the
PROC TREE statement. You can also produce a single tree diagram containing both stages, with the number
of clusters as the height axis, by using the option HEIGHT=N in the PROC TREE statement. To produce an
output data set from PROC TREE containing the modal clusters, use _HEIGHT_ for the HEIGHT variable
(the default) and specify LEVEL=0.

Two-stage density linkage was developed by W. S. Sarle of SAS Institute. There are currently no other
published references on two-stage density linkage.
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Ward’s Minimum-Variance Method

The following method is obtained by specifying METHOD=WARD. The distance between two clusters is
defined by

DKL D BKL D
kNxK � NxLk

2

1
NK
C

1
NL

If d.x; y/ D 1
2
kx � yk2, then the combinatorial formula is

DJM D
.NJ CNK/DJK C .NJ CNL/DJL �NJ DKL

NJ CNM

In Ward’s minimum-variance method, the distance between two clusters is the ANOVA sum of squares be-
tween the two clusters added up over all the variables. At each generation, the within-cluster sum of squares
is minimized over all partitions obtainable by merging two clusters from the previous generation. The sums
of squares are easier to interpret when they are divided by the total sum of squares to give proportions of
variance (squared semipartial correlations).

Ward’s method joins clusters to maximize the likelihood at each level of the hierarchy under the following
assumptions:

� multivariate normal mixture

� equal spherical covariance matrices

� equal sampling probabilities

Ward’s method tends to join clusters with a small number of observations, and it is strongly biased to-
ward producing clusters with roughly the same number of observations. It is also very sensitive to outliers
(Milligan 1980).

Ward (1963) describes a class of hierarchical clustering methods including the minimum variance method.
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Miscellaneous Formulas

The root mean squared standard deviation of a cluster CK is

RMSSTD D

s
WK

v.NK � 1/

The R-square statistic for a given level of the hierarchy is

R2
D 1 �

PG

T

The squared semipartial correlation for joining clusters CK and CL is

semipartial R2
D

BKL

T

The bimodality coefficient is

b D
m2

3 C 1

m4 C
3.n�1/2

.n�2/.n�3/

where m3 is skewness and m4 is kurtosis. Values of b greater than 0.555 (the value for a uniform population)
can indicate bimodal or multimodal marginal distributions. The maximum of 1.0 (obtained for the Bernoulli
distribution) is obtained for a population with only two distinct values. Very heavy-tailed distributions have
small values of b regardless of the number of modes.

Formulas for the cubic-clustering criterion and approximate expected R square are given in Sarle (1983).

The pseudo F statistic for a given level is

pseudo F D

T�PG

G�1
PG

n�G

The pseudo t2 statistic for joining CK and CL is

pseudo t2
D

BKL

WKCWL

NKCNL�2

The pseudo F and t2 statistics can be useful indicators of the number of clusters, but they are not distributed
as F and t2 random variables. If the data are independently sampled from a multivariate normal distribution
with a scalar covariance matrix and if the clustering method allocates observations to clusters randomly
(which no clustering method actually does), then the pseudo F statistic is distributed as an F random variable
with v.G � 1/ and v.n � G/ degrees of freedom. Under the same assumptions, the pseudo t2 statistic is
distributed as an F random variable with v and v.NK C NL � 2/ degrees of freedom. The pseudo t2

statistic differs computationally from Hotelling’s T 2 in that the latter uses a general symmetric covariance
matrix instead of a scalar covariance matrix. The pseudo F statistic was suggested by Calinski and Harabasz
(1974). The pseudo t2 statistic is related to the Je.2/=Je.1/ statistic of Duda and Hart (1973) by

Je.2/

Je.1/
D

WK CWL

WM
D

1

1C t2

NKCNL�2
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See Milligan and Cooper (1985) and Cooper and Milligan (1988) regarding the performance of these statis-
tics in estimating the number of population clusters. Conservative tests for the number of clusters using the
pseudo F and t2 statistics can be obtained by the Bonferroni approach (Hawkins, Muller, and ten Krooden
1982, pp. 337–340).

Ultrametrics

A dissimilarity measure d.x; y/ is called an ultrametric if it satisfies the following conditions:

� d.x; x/ D 0 for all x

� d.x; y/ � 0 for all x, y

� d.x; y/ D d.y; x/ for all x, y

� d.x; y/ � max .d.x; z/; d.y; z// for all x, y, and z

Any hierarchical clustering method induces a dissimilarity measure on the observations—say, h.xi ; xj /.
Let CM be the cluster with the fewest members that contains both xi and xj . Assume CM was formed by
joining CK and CL. Then define h.xi ; xj / D DKL.

If the fusion of CK and CL reduces the number of clusters from g to g � 1, then define D.g/ D DKL.
Johnson (1967) shows that if

0 � D.n/ � D.n�1/ � � � � � D.2/

then h.�; �/ is an ultrametric. A method that always satisfies this condition is said to be a monotonic or
ultrametric clustering method. All methods implemented in PROC CLUSTER except CENTROID, EML,
and MEDIAN are ultrametric (Milligan 1979; Batagelj 1981).

Algorithms

Anderberg (1973) describes three algorithms for implementing agglomerative hierarchical clustering: stored
data, stored distance, and sorted distance. The algorithms used by PROC CLUSTER for each method are
indicated in Table 30.3. For METHOD=AVERAGE, METHOD=CENTROID, or METHOD=WARD, either
the stored data or the stored distance algorithm can be used. For these methods, if the data are distances
or if you specify the NOSQUARE option, the stored distance algorithm is used; otherwise, the stored data
algorithm is used.
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Table 30.3 Three Algorithms for Implementing Agglomerative Hierarchical Clustering

Algorithm
Clustering Stored Stored Sorted
Method Data Distance Distance
AVERAGE x x
CENTROID x x
COMPLETE x
DENSITY x
EML x
FLEXIBLE x
MCQUITTY x
MEDIAN x
SINGLE x
TWOSTAGE x
WARD x x
Note: All of the hierarchical methods accept coordinate
data. Methods that require stored or sorted distances auto-
matically calculate distances from the coordinates.

Computational Resources

The CLUSTER procedure stores the data (including the COPY and ID variables) in memory or, if necessary,
on disk. If eigenvalues are computed, the covariance matrix is stored in memory. If the stored distance or
sorted distance algorithm is used, the distances are stored in memory or, if necessary, on disk.

With coordinate data, the increase in CPU time is roughly proportional to the number of variables. The VAR
statement should list the variables in order of decreasing variance for greatest efficiency.

For both coordinate and distance data, the dominant factor determining CPU time is the number of observa-
tions. For density methods with coordinate data, the asymptotic time requirements are somewhere between
n ln.n/ and n2, depending on how the smoothing parameter increases. For other methods except EML, time
is roughly proportional to n2. For the EML method, time is roughly proportional to n3.

PROC CLUSTER runs much faster if the data can be stored in memory and, when the stored distance
algorithm is used, if the distance matrix can be stored in memory as well. To estimate the bytes of memory
needed for the data, use the following formula and round up to the nearest multiple of d.
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n.vd C 8d C i

C i if density estimation or the
sorted distance algorithm is used

C 3d if stored data algorithm is used

C 3d if density estimation is used

C max(8, length of ID variable) if ID variable is used

C length of ID variable if ID variable is used

C sum of lengths of COPY variables) if COPY variables is used

where

n is the number of observations

v is the number of variables
d is the size of a C variable of type double. For most computers, d D 8.

i is the size of a C variable of type int. For most computers, i D 4.

The number of bytes needed for the distance matrix is dn.nC 1/=2.

Missing Values

If the data are coordinates, observations with missing values are excluded from the analysis. If the data are
distances, missing values are not permitted in the lower triangle of the distance matrix. The upper triangle
is ignored. For more about TYPE=DISTANCE data sets, see Chapter A, “Special SAS Data Sets.”

Ties

At each level of the clustering algorithm, PROC CLUSTER must identify the pair of clusters with the
minimum distance. Sometimes, usually when the data are discrete, there can be two or more pairs with the
same minimum distance. In such cases the tie must be broken in some arbitrary way. If there are ties, then
the results of the cluster analysis depend on the order of the observations in the data set. The presence of ties
is reported in the SAS log and in the column of the cluster history labeled “Tie” unless the NOTIE option is
specified.

PROC CLUSTER breaks ties as follows. Each cluster is identified by the smallest observation number
among its members. For each pair of clusters, there is a smaller identification number and a larger identifi-
cation number. If two or more pairs of clusters are tied for minimum distance between clusters, the pair that
has the minimum larger identification number is merged. If there is a tie for minimum larger identification
number, the pair that has the minimum smaller identification number is merged.

A tie means that the level in the cluster history at which the tie occurred and possibly some of the subsequent
levels are not uniquely determined. Ties that occur early in the cluster history usually have little effect on
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the later stages. Ties that occur in the middle part of the cluster history are cause for further investigation.
Ties that occur late in the cluster history indicate important indeterminacies.

The importance of ties can be assessed by repeating the cluster analysis for several different random per-
mutations of the observations. The discrepancies at a given level can be examined by crosstabulating the
clusters obtained at that level for all of the permutations. See Example 30.4 for details.

Size, Shape, and Correlation

In some biological applications, the organisms that are being clustered can be at different stages of growth.
Unless it is the growth process itself that is being studied, differences in size among such organisms are
not of interest. Therefore, distances among organisms should be computed in such a way as to control for
differences in size while retaining information about differences in shape.

If coordinate data are measured on an interval scale, you can control for size by subtracting a measure of
the overall size of each observation from each data item. For example, if no other direct measure of size is
available, you could subtract the mean of each row of the data matrix, producing a row-centered coordinate
matrix. An easy way to subtract the mean of each row is to use PROC STANDARD on the transposed
coordinate matrix:

proc transpose data= coordinate-datatype;
run;

proc standard m=0;
run;

proc transpose out=row-centered-coordinate-data;
run;

Another way to remove size effects from interval-scale coordinate data is to do a principal component
analysis and discard the first component (Blackith and Reyment 1971).

If the data are measured on a ratio scale, you can control for size by dividing each observation by a measure
of overall size; in this case, the geometric mean is a more natural measure of size than the arithmetic
mean. However, it is often more meaningful to analyze the logarithms of ratio-scaled data, in which case
you can subtract the arithmetic mean after taking logarithms. You must also consider the dimensions of
measurement. For example, if you have measures of both length and weight, you might need to cube the
measures of length or take the cube root of the weights. Various other complications can also arise in real
applications, such as different growth rates for different parts of the body (Sneath and Sokal 1973).

Issues of size and shape are pertinent to many areas besides biology (for example, Hamer and Cunningham
1981). Suppose you have data consisting of subjective ratings made by several different raters. Some
raters tend to give higher overall ratings than other raters. Some raters also tend to spread out their ratings
over more of the scale than other raters. If it is impossible for you to adjust directly for rater differences,
then distances should be computed in such a way as to control for differences both in size and variability.
For example, if the data are considered to be measured on an interval scale, you can subtract the mean
of each observation and divide by the standard deviation, producing a row-standardized coordinate matrix.
With some clustering methods, analyzing squared Euclidean distances from a row-standardized coordinate
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matrix is equivalent to analyzing the matrix of correlations among rows, since squared Euclidean distance
is an affine transformation of the correlation (Hartigan 1975, p. 64).

If you do an analysis of row-centered or row-standardized data, you need to consider whether the columns
(variables) should be standardized before centering or standardizing the rows, after centering or standard-
izing the rows, or both before and after. If you standardize the columns after standardizing the rows, then
strictly speaking you are not analyzing shape because the profiles are distorted by standardizing the columns;
however, this type of double standardization might be necessary in practice to get reasonable results. It is
not clear whether iterating the standardization of rows and columns can be of any benefit.

The choice of distance or correlation measure should depend on the meaning of the data and the purpose of
the analysis. Simulation studies that compare distance and correlation measures are useless unless the data
are generated to mimic data from your field of application. Conclusions drawn from artificial data cannot be
generalized, because it is possible to generate data such that distances that include size effects work better
or such that correlations work better.

You can standardize the rows of a data set by using a DATA step or by using the TRANSPOSE and
STANDARD procedures. You can also use PROC TRANSPOSE and then have PROC CORR create a
TYPE=CORR data set containing a correlation matrix. If you want to analyze a TYPE=CORR data set with
PROC CLUSTER, you must use a DATA step to perform the following steps:

1. Set the data set TYPE= to DISTANCE.

2. Convert the correlations to dissimilarities by computing 1�r ,
p

1 � r , 1�r2, or some other decreasing
function.

3. Delete observations for which the variable _TYPE_ does not have the value ’CORR’.

Output Data Set

The OUTTREE= data set contains one observation for each observation in the input data set, plus one
observation for each cluster of two or more observations (that is, one observation for each node of the
cluster tree). The total number of output observations is usually 2n � 1, where n is the number of input
observations. The density methods can produce fewer output observations when the number of clusters
cannot be reduced to one.

The label of the OUTTREE= data set identifies the type of cluster analysis performed and is automatically
displayed when the TREE procedure is invoked.

The variables in the OUTTREE= data set are as follows:

� the BY variables, if you use a BY statement

� the ID variable, if you use an ID statement

� the COPY variables, if you use a COPY statement
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� _NAME_, a character variable giving the name of the node. If the node is a cluster, the name is CLn,
where n is the number of the cluster. If the node is an observation, the name is OBn, where n is
the observation number. If the node is an observation and the ID statement is used, the name is the
formatted value of the ID variable.

� _PARENT_, a character variable giving the value of _NAME_ of the parent of the node

� _NCL_, the number of clusters

� _FREQ_, the number of observations in the current cluster

� _HEIGHT_, the distance or similarity between the last clusters joined, as defined in the section “Clus-
tering Methods” on page 1825. The variable _HEIGHT_ is used by the TREE procedure as the default
height axis. The label of the _HEIGHT_ variable identifies the between-cluster distance measure. For
METHOD=TWOSTAGE, the _HEIGHT_ variable contains the densities at which clusters joined in
the first stage; for clusters formed in the second stage, _HEIGHT_ is a very small negative number.

If the input data set contains coordinates, the following variables appear in the output data set:

� the variables containing the coordinates used in the cluster analysis. For output observations that
correspond to input observations, the values of the coordinates are the same in both data sets except
for some slight numeric error possibly introduced by standardizing and unstandardizing if the STAN-
DARD option is used. For output observations that correspond to clusters of more than one input
observation, the values of the coordinates are the cluster means.

� _ERSQ_, the approximate expected value of R square under the uniform null hypothesis

� _RATIO_, equal to (1 � _ERSQ_) / (1 � _RSQ_)

� _LOGR_, natural logarithm of _RATIO_

� _CCC_, the cubic clustering criterion

The variables _ERSQ_, _RATIO_, _LOGR_, and _CCC_ have missing values when the number of clusters
is greater than one-fifth the number of observations.

If the input data set contains coordinates and METHOD=AVERAGE, METHOD=CENTROID, or
METHOD=WARD, then the following variables appear in the output data set:

� _DIST_, the Euclidean distance between the means of the last clusters joined

� _AVLINK_, the average distance between the last clusters joined

If the input data set contains coordinates or METHOD=AVERAGE, METHOD=CENTROID, or
METHOD=WARD, then the following variables appear in the output data set:

� _RMSSTD_, the root mean squared standard deviation of the current cluster



1840 F Chapter 30: The CLUSTER Procedure

� _SPRSQ_, the semipartial squared multiple correlation or the decrease in the proportion of variance
accounted for due to joining two clusters to form the current cluster

� _RSQ_, the squared multiple correlation

� _PSF_, the pseudo F statistic

� _PST2_, the pseudo t2 statistic

If METHOD=EML, then the following variable appears in the output data set:

� _LNLR_, the log-likelihood ratio

If METHOD=TWOSTAGE or METHOD=DENSITY, the following variable appears in the output data set:

� _MODE_, pertaining to the modal clusters. With METHOD=DENSITY, the _MODE_ variable indi-
cates the number of modal clusters contained by the current cluster. With METHOD=TWOSTAGE,
the _MODE_ variable gives the maximum density in each modal cluster and the fusion density, d�, for
clusters containing two or more modal clusters; for clusters containing no modal clusters, _MODE_
is missing.

If nonparametric density estimates are requested (when METHOD=DENSITY or METHOD=TWOSTAGE
and the HYBRID option is not used; or when any of the TRIM=, K= or R= options are used), the output
data set contains the following:

� _DENS_, the maximum density in the current cluster

Displayed Output

If you specify the SIMPLE option and the data are coordinates, PROC CLUSTER produces simple descrip-
tive statistics for each variable:

� the Mean

� the standard deviation, Std Dev

� the Skewness

� the Kurtosis

� a coefficient of Bimodality

If the data are coordinates and you do not specify the NOEIGEN option, PROC CLUSTER displays the
following:
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� the Eigenvalues of the Correlation or Covariance Matrix

� the Difference between successive eigenvalues

� the Proportion of variance explained by each eigenvalue

� the Cumulative proportion of variance explained

If the data are coordinates, PROC CLUSTER displays the Root Mean Squared Total-Sample Standard De-
viation of the variables

If the distances are normalized, PROC CLUSTER displays one of the following, depending on whether
squared or unsquared distances are used:

� the Root Mean Squared Distance Between Observations

� the Mean Distance Between Observations

For the generations in the clustering process specified by the PRINT= option, PROC CLUSTER displays
the following:

� the Number of Clusters or NCL

� the names of the Clusters Joined. The observations are identified by the formatted value of the ID
variable, if any; otherwise, the observations are identified by OBn, where n is the observation number.
The CLUSTER procedure displays the entire value of the ID variable in the cluster history instead
of truncating at 16 characters. Long ID values might be split onto several lines. Clusters of two or
more observations are identified as CLn, where n is the number of clusters existing after the cluster in
question is formed.

� the number of observations in the new cluster, Frequency of New Cluster or FREQ

If you specify the RMSSTD option and the data are coordinates, or if you specify METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD, then PROC CLUSTER displays the root mean squared
standard deviation of the new cluster, RMS Std of New Cluster or RMS Std.

PROC CLUSTER displays the following items if you specify METHOD=WARD. It also displays them if
you specify the RSQUARE option and either the data are coordinates or you specify METHOD=AVERAGE
or METHOD=CENTROID.

� the decrease in the proportion of variance accounted for resulting from joining the two clusters, Semi-
partial R-Squared or SPRSQ. This equals the between-cluster sum of squares divided by the corrected
total sum of squares.

� the squared multiple correlation, R-Squared or RSQ. R square is the proportion of variance accounted
for by the clusters.

If you specify the CCC option and the data are coordinates, PROC CLUSTER displays the following:
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� Approximate Expected R-Squared or ERSQ, the approximate expected value of R square under the
uniform null hypothesis

� the Cubic Clustering Criterion or CCC. The cubic clustering criterion and approximate expected R
square are given missing values when the number of clusters is greater than one-fifth the number of
observations.

If you specify the PSEUDO option and the data are coordinates, or if you specify METHOD=AVERAGE,
METHOD=CENTROID, or METHOD=WARD, then PROC CLUSTER displays the following:

� Pseudo F or PSF, the pseudo F statistic measuring the separation among all the clusters at the current
level

� Pseudo t2 or PST2, the pseudo t2 statistic measuring the separation between the two clusters most
recently joined

If you specify the NOSQUARE option and METHOD=AVERAGE, PROC CLUSTER displays the (Nor-
malized) Average Distance or (Norm) Aver Dist, the average distance between pairs of objects in the two
clusters joined with one object from each cluster.

If you do not specify the NOSQUARE option and METHOD=AVERAGE, PROC CLUSTER displays the
(Normalized) RMS Distance or (Norm) RMS Dist, the root mean squared distance between pairs of objects
in the two clusters joined with one object from each cluster.

If METHOD=CENTROID, PROC CLUSTER displays the (Normalized) Centroid Distance or (Norm) Cent
Dist, the distance between the two cluster centroids.

If METHOD=COMPLETE, PROC CLUSTER displays the (Normalized) Maximum Distance or (Norm)
Max Dist, the maximum distance between the two clusters.

If METHOD=DENSITY or METHOD=TWOSTAGE, PROC CLUSTER displays the following:

� Normalized Fusion Density or Normalized Fusion Dens, the value of d� as defined in the section
“Clustering Methods” on page 1825

� the Normalized Maximum Density in Each Cluster joined, including the Lesser or Min, and the
Greater or Max, of the two maximum density values

If METHOD=EML, PROC CLUSTER displays the following:

� Log Likelihood Ratio or LNLR

� Log Likelihood or LNLIKE

If METHOD=FLEXIBLE, PROC CLUSTER displays the (Normalized) Flexible Distance or (Norm) Flex
Dist, the distance between the two clusters based on the Lance-Williams flexible formula.

If METHOD=MEDIAN, PROC CLUSTER displays the (Normalized) Median Distance or (Norm) Med
Dist, the distance between the two clusters based on the median method.
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If METHOD=MCQUITTY, PROC CLUSTER displays the (Normalized) McQuitty’s Similarity or (Norm)
MCQ, the distance between the two clusters based on McQuitty’s similarity method.

If METHOD=SINGLE, PROC CLUSTER displays the (Normalized) Minimum Distance or (Norm) Min
Dist, the minimum distance between the two clusters.

If you specify the NONORM option and METHOD=WARD, PROC CLUSTER displays the Between-
Cluster Sum of Squares or BSS, the ANOVA sum of squares between the two clusters joined.

If you specify neither the NOTIE option nor METHOD=TWOSTAGE or METHOD=DENSITY, PROC
CLUSTER displays Tie, where a T in the column indicates a tie for minimum distance and a blank indicates
the absence of a tie.

After the cluster history, if METHOD=TWOSTAGE or METHOD=DENSITY, PROC CLUSTER displays
the number of modal clusters.

ODS Table Names

PROC CLUSTER assigns a name to each table it creates. You can use these names to reference the table
when using the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 30.4. For more information about ODS, see Chapter 20, “Using the Output Delivery System.”

Table 30.4 ODS Tables Produced by PROC CLUSTER

ODS Table Name Description Statement Option
ClusterHistory Observation or clusters joined,

frequencies and other cluster
statistics

PROC default

SimpleStatistics Simple statistics, before or after
trimming

PROC SIMPLE

EigenvalueTable Eigenvalues of the CORR or
COV matrix

PROC default

RMSStd Root mean square total sample
standard deviation

PROC default

AvDist Root mean square distance be-
tween observations

PROC default

ODS Graphics

Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”
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Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling
and Disabling ODS Graphics” on page 609 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 608 in Chapter 21,
“Statistical Graphics Using ODS.”

PROC CLUSTER can produce plots of the cubic clustering criterion, pseudo F, and pseudo t2 statistics, and
a dendrogram. To plot a statistic, you must ask for it to be computed via one or more of the CCC, PSEUDO,
or PLOT options.

You can reference every graph produced through ODS Graphics with a name. The names of the graphs that
PROC CLUSTER generates are listed in Table 30.5, along with the required statements and options.

Table 30.5 Graphs Produced by PROC CLUSTER

ODS Graph Name Plot Description Statement & Option

CubicClusCritPlot Cubic clustering criterion
for the number of clusters

PROC CLUSTER PLOTS=CCC

PseudoFPlot Pseudo F criterion for the
number of clusters

PROC CLUSTER PLOTS=PSF

PseudoTSqPlot Pseudo t2 criterion for the
number of clusters

PROC CLUSTER PLOTS=PST2

CccAndPsTSqPlot Cubic clustering criterion
and pseudo t2

PROC CLUSTER PLOTS=(CCC PST2)

CccAndPsfPlot Cubic clustering criterion
and pseudo F

PROC CLUSTER PLOTS=(CCC PSF)

CccPsfAndPsTSqPlot Cubic clustering criterion,
pseudo F, and pseudo t2

PROC CLUSTER PLOTS=ALL

Dendrogram Dendrogram
(tree diagram)

PROC CLUSTER
PLOTS=DENDROGRAM

Examples: CLUSTER Procedure

Example 30.1: Cluster Analysis of Flying Mileages between 10 American
Cities

This example clusters 10 American cities based on the flying mileages between them. Six clustering meth-
ods are shown with corresponding dendrograms. The EML method cannot be used because it requires
coordinate data. The other omitted methods produce the same clusters, although not the same distances
between clusters, as one of the illustrated methods: complete linkage and the flexible-beta method yield
the same clusters as Ward’s method, McQuitty’s similarity analysis produces the same clusters as average
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linkage, and the median method corresponds to the centroid method.

All of the methods suggest a division of the cities into two clusters along the east-west dimension. There
is disagreement, however, about which cluster Denver should belong to. Some of the methods indicate a
possible third cluster that contains Denver and Houston.

The following step displays the city mileage SAS data set, which is available in the Sashelp library and is
designated as a TYPE=DISTANCE data set when it is used by PROC CLUSTER:

proc print noobs data=sashelp.mileages;
run;

Output 30.1.1 City Mileage Data Set

Los New San Washington
Atlanta Chicago Denver Houston Angeles Miami York Francisco Seattle DC City

0 . . . . . . . . . Atlanta
587 0 . . . . . . . . Chicago

1212 920 0 . . . . . . . Denver
701 940 879 0 . . . . . . Houston

1936 1745 831 1374 0 . . . . . Los Angeles
604 1188 1726 968 2339 0 . . . . Miami
748 713 1631 1420 2451 1092 0 . . . New York

2139 1858 949 1645 347 2594 2571 0 . . San Francisco
2182 1737 1021 1891 959 2734 2408 678 0 . Seattle
543 597 1494 1220 2300 923 205 2442 2329 0 Washington D.C.

A partial listing from the following statements include Output 30.1.2 and Output 30.1.3:

title 'Cluster Analysis of Flying Mileages Between 10 American Cities';
ods graphics on;

title2 'Using METHOD=AVERAGE';
proc cluster data=sashelp.mileages(type=distance) method=average pseudo;

id City;
run;
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Output 30.1.2 Cluster History Using METHOD=AVERAGE

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=AVERAGE

The CLUSTER Procedure
Average Linkage Cluster Analysis

Cluster History
Norm T
RMS i

NCL -------Clusters Joined------- Freq Ps F PsT2 Dist e

9 New York Washington 2 66.7 . 0.1297
D.C.

8 Los Angeles San Francisco 2 39.2 . 0.2196
7 Atlanta Chicago 2 21.7 . 0.3715
6 CL7 CL9 4 14.5 3.4 0.4149
5 CL8 Seattle 3 12.4 7.3 0.5255
4 Denver Houston 2 13.9 . 0.5562
3 CL6 Miami 5 15.5 3.8 0.6185
2 CL3 CL4 7 16.0 5.3 0.8005
1 CL2 CL5 10 . 16.0 1.2967

Output 30.1.3 Dendrogram Using METHOD=AVERAGE
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A partial listing from the following statements include Output 30.1.4 and Output 30.1.5:

title2 'Using METHOD=CENTROID';
proc cluster data=sashelp.mileages(type=distance) method=centroid pseudo;

id City;
run;

Output 30.1.4 Cluster History Using METHOD=CENTROID

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=CENTROID

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Cluster History
Norm T
Cent i

NCL -------Clusters Joined------- Freq Ps F PsT2 Dist e

9 New York Washington 2 66.7 . 0.1297
D.C.

8 Los Angeles San Francisco 2 39.2 . 0.2196
7 Atlanta Chicago 2 21.7 . 0.3715
6 CL7 CL9 4 14.5 3.4 0.3652
5 CL8 Seattle 3 12.4 7.3 0.5139
4 Denver CL5 4 12.4 2.1 0.5337
3 CL6 Miami 5 14.2 3.8 0.5743
2 CL3 Houston 6 22.1 2.6 0.6091
1 CL2 CL4 10 . 22.1 1.173

Output 30.1.5 Dendrogram Using METHOD=CENTROID
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A partial listing from the following statements include Output 30.1.6 and Output 30.1.7:

title2 'Using METHOD=DENSITY K=3';
proc cluster data=sashelp.mileages(type=distance) method=density k=3;

id City;
run;

Output 30.1.6 Cluster History Using METHOD=DENSITY K=3

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=DENSITY K=3

The CLUSTER Procedure
Density Linkage Cluster Analysis

Cluster History
Maximum Density

Normalized in Each Cluster T
Fusion i

NCL -------Clusters Joined------- Freq Density Lesser Greater e

9 Atlanta Washington 2 96.106 92.5043 100.0
D.C.

8 CL9 Chicago 3 95.263 90.9548 100.0
7 CL8 New York 4 86.465 76.1571 100.0
6 CL7 Miami 5 74.079 58.8299 100.0 T
5 CL6 Houston 6 74.079 61.7747 100.0
4 Los Angeles San Francisco 2 71.968 65.3430 80.0885
3 CL4 Seattle 3 66.341 56.6215 80.0885
2 CL3 Denver 4 63.509 61.7747 80.0885
1 CL5 CL2 10 61.775 * 80.0885 100.0

Output 30.1.7 Dendrogram Using METHOD=DENSITY K=3
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A partial listing from the following statements include Output 30.1.8 and Output 30.1.9:

title2 'Using METHOD=SINGLE';
proc cluster data=sashelp.mileages(type=distance) method=single;

id City;
run;

Output 30.1.8 Cluster History Using METHOD=SINGLE

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=SINGLE

The CLUSTER Procedure
Single Linkage Cluster Analysis

Cluster History
Number Norm

of Minimum
Clusters ---------Clusters Joined---------- Freq Distance Tie

9 New York Washington D.C. 2 0.1447
8 Los Angeles San Francisco 2 0.2449
7 Atlanta CL9 3 0.3832
6 CL7 Chicago 4 0.4142
5 CL6 Miami 5 0.4262
4 CL8 Seattle 3 0.4784
3 CL5 Houston 6 0.4947
2 Denver CL4 4 0.5864
1 CL3 CL2 10 0.6203

Output 30.1.9 Dendrogram Using METHOD=SINGLE
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A partial listing from the following statements include Output 30.1.10 and Output 30.1.11:

title2 'Using METHOD=TWOSTAGE K=3';
proc cluster data=sashelp.mileages(type=distance) method=twostage k=3;

id City;
run;

Output 30.1.10 Cluster History Using METHOD=TWOSTAGE K=3

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=TWOSTAGE K=3

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Cluster History
Maximum Density

Normalized in Each Cluster T
Fusion i

NCL -------Clusters Joined------- Freq Density Lesser Greater e

9 Atlanta Washington 2 96.106 92.5043 100.0
D.C.

8 CL9 Chicago 3 95.263 90.9548 100.0
7 CL8 New York 4 86.465 76.1571 100.0
6 CL7 Miami 5 74.079 58.8299 100.0 T
5 CL6 Houston 6 74.079 61.7747 100.0
4 Los Angeles San Francisco 2 71.968 65.3430 80.0885
3 CL4 Seattle 3 66.341 56.6215 80.0885
2 CL3 Denver 4 63.509 61.7747 80.0885
1 CL5 CL2 10 61.775 80.0885 100.0

Output 30.1.11 Dendrogram Using METHOD=TWOSTAGE K=3
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A partial listing from the following statements include Output 30.1.12 and Output 30.1.13:

title2 'Using METHOD=WARD';
proc cluster data=sashelp.mileages(type=distance) method=ward pseudo;

id City;
run;

Output 30.1.12 Cluster History Using METHOD=WARD

Cluster Analysis of Flying Mileages Between 10 American Cities
Using METHOD=WARD

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Cluster History
T
i

NCL ------Clusters Joined------ Freq SpRSq RSq Ps F PsT2 e

9 New York Washington 2 0.0019 .998 66.7 .
D.C.

8 Los Angeles San Francisco 2 0.0054 .993 39.2 .
7 Atlanta Chicago 2 0.0153 .977 21.7 .
6 CL7 CL9 4 0.0296 .948 14.5 3.4
5 Denver Houston 2 0.0344 .913 13.2 .
4 CL8 Seattle 3 0.0391 .874 13.9 7.3
3 CL6 Miami 5 0.0586 .816 15.5 3.8
2 CL3 CL5 7 0.1488 .667 16.0 5.3
1 CL2 CL4 10 0.6669 .000 . 16.0

Output 30.1.13 Dendrogram Using METHOD=WARD
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Example 30.2: Crude Birth and Death Rates

This example uses the SAS data set Poverty created in the section “Getting Started: CLUSTER Procedure”
on page 1805. The data, from Rouncefield (1995), are birth rates, death rates, and infant death rates for 97
countries. Six cluster analyses are performed with eight methods. Scatter plots showing cluster membership
at selected levels are produced instead of tree diagrams.

Each cluster analysis is performed by a macro called ANALYZE. The macro takes two arguments. The first,
&METHOD, specifies the value of the METHOD= option to be used in the PROC CLUSTER statement. The
second, &NCL, must be specified as a list of integers, separated by blanks, indicating the number of clusters
desired in each scatter plot. For example, the first invocation of ANALYZE specifies the AVERAGE method
and requests plots of three and eight clusters. When two-stage density linkage is used, the K= and R= options
are specified as part of the first argument.

The ANALYZE macro first invokes the CLUSTER procedure with METHOD=&METHOD, where
&METHOD represents the value of the first argument to ANALYZE. This part of the macro produces the
PROC CLUSTER output shown.

The %DO loop processes &NCL, the list of numbers of clusters to plot. The macro variable &K is a counter
that indexes the numbers within &NCL. The %SCAN function picks out the kth number in &NCL, which
is then assigned to the macro variable &N. When &K exceeds the number of numbers in &NCL, %SCAN
returns a null string. Thus, the %DO loop executes while &N is not equal to a null string. In the %WHILE
condition, a null string is indicated by the absence of any nonblank characters between the comparison
operator (NE) and the right parenthesis that terminates the condition.

Within the %DO loop, the TREE procedure creates an output data set containing &N clusters. The SGPLOT
procedure then produces a scatter plot in which each observation is identified by the number of the cluster to
which it belongs. The TITLE2 statement uses double quotes so that &N and &METHOD can be used within
the title. At the end of the loop, &K is incremented by 1, and the next number is extracted from &NCL by
%SCAN.

title 'Cluster Analysis of Birth and Death Rates';
ods graphics on;

%macro analyze(method,ncl);
proc cluster data=poverty outtree=tree method=&method print=15 ccc pseudo;

var birth death;
title2;

run;

%let k=1;
%let n=%scan(&ncl,&k);
%do %while(&n NE);

proc tree data=tree noprint out=out ncl=&n;
copy birth death;

run;
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proc sgplot;
scatter y=death x=birth / group=cluster;
title2 "Plot of &n Clusters from METHOD=&METHOD";

run;

%let k=%eval(&k+1);
%let n=%scan(&ncl,&k);

%end;
%mend;

The following statement produces Output 30.2.1, Output 30.2.3, and Output 30.2.4:

%analyze(average, 3 8)

For average linkage, the CCC has peaks at three, eight, ten, and twelve clusters, but the three-cluster peak is
lower than the eight-cluster peak. The pseudo F statistic has peaks at three, eight, and twelve clusters. The
pseudo t2 statistic drops sharply at three clusters, continues to fall at four clusters, and has a particularly
low value at twelve clusters. However, there are not enough data to seriously consider as many as twelve
clusters. Scatter plots are given for three and eight clusters. The results are shown in Output 30.2.1 through
Output 30.2.4. In Output 30.2.4, the eighth cluster consists of the two outlying observations, Mexico and
Korea.

Output 30.2.1 Cluster Analysis for Birth and Death Rates: METHOD=AVERAGE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Average Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.127

Root-Mean-Square Distance Between Observations 20.25399
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Output 30.2.1 continued

Cluster History
Norm T
RMS i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 Dist e

15 CL27 CL20 18 0.0035 .980 .975 2.61 292 18.6 0.2325
14 CL23 CL17 28 0.0034 .977 .972 1.97 271 17.7 0.2358
13 CL18 CL54 8 0.0015 .975 .969 2.35 279 7.1 0.2432
12 CL21 CL26 8 0.0015 .974 .966 2.85 290 6.1 0.2493
11 CL19 CL24 12 0.0033 .971 .962 2.78 285 14.8 0.2767
10 CL22 CL16 12 0.0036 .967 .957 2.84 284 17.4 0.2858
9 CL15 CL28 22 0.0061 .961 .951 2.45 271 17.5 0.3353
8 OB23 OB61 2 0.0014 .960 .943 3.59 302 . 0.3703
7 CL25 CL11 17 0.0098 .950 .933 3.01 284 23.3 0.4033
6 CL7 CL12 25 0.0122 .938 .920 2.63 273 14.8 0.4132
5 CL10 CL14 40 0.0303 .907 .902 0.59 225 82.7 0.4584
4 CL13 CL6 33 0.0244 .883 .875 0.77 234 22.2 0.5194
3 CL9 CL8 24 0.0182 .865 .827 2.13 300 27.7 0.735
2 CL5 CL3 64 0.1836 .681 .697 -.55 203 148 0.8402
1 CL2 CL4 97 0.6810 .000 .000 0.00 . 203 1.3348

Output 30.2.2 Criteria for the Number of Clusters: METHOD=AVERAGE
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Output 30.2.3 Plot of Three Clusters: METHOD=AVERAGE

Output 30.2.4 Plot of Eight Clusters: METHOD=AVERAGE



1856 F Chapter 30: The CLUSTER Procedure

The following statement produces Output 30.2.5 and Output 30.2.7:

%analyze(complete, 3)

Complete linkage shows CCC peaks at three, eight and twelve clusters. The pseudo F statistic peaks at three
and twelve clusters. The pseudo t2 statistic indicates three clusters.

The scatter plot for three clusters is shown.

Output 30.2.5 Cluster History for Birth and Death Rates: METHOD=COMPLETE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Complete Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.127

Mean Distance Between Observations 17.13099

Cluster History
Norm T
Max i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 Dist e

15 CL22 CL33 8 0.0015 .983 .975 3.80 329 6.1 0.4092
14 CL56 CL18 8 0.0014 .981 .972 3.97 331 6.6 0.4255
13 CL30 CL44 8 0.0019 .979 .969 4.04 330 19.0 0.4332
12 OB23 OB61 2 0.0014 .978 .966 4.45 340 . 0.4378
11 CL19 CL24 24 0.0034 .974 .962 4.17 327 24.1 0.4962
10 CL17 CL28 12 0.0033 .971 .957 4.18 325 14.8 0.5204
9 CL20 CL13 16 0.0067 .964 .951 3.38 297 25.2 0.5236
8 CL11 CL21 32 0.0054 .959 .943 3.44 297 19.7 0.6001
7 CL26 CL15 13 0.0096 .949 .933 2.93 282 28.9 0.7233
6 CL14 CL10 20 0.0128 .937 .920 2.46 269 27.7 0.8033
5 CL9 CL16 30 0.0237 .913 .902 1.29 241 47.1 0.8993
4 CL6 CL7 33 0.0240 .889 .875 1.38 248 21.7 1.2165
3 CL5 CL12 32 0.0178 .871 .827 2.56 317 13.6 1.2326
2 CL3 CL8 64 0.1900 .681 .697 -.55 203 167 1.5412
1 CL2 CL4 97 0.6810 .000 .000 0.00 . 203 2.5233
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Output 30.2.6 Criteria for the Number of Clusters: METHOD=COMPLETE

Output 30.2.7 Plot of Clusters for METHOD=COMPLETE
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The following statement produces Output 30.2.8 and Output 30.2.10:

%analyze(single, 7 10)

The CCC and pseudo F statistics are not appropriate for use with single linkage because of the method’s
tendency to chop off tails of distributions. The pseudo t2 statistic can be used by looking for large values
and taking the number of clusters to be one greater than the level at which the large pseudo t2 value is
displayed. For these data, there are large values at levels 6 and 9, suggesting seven or ten clusters.

The scatter plots for seven and ten clusters are shown.

Output 30.2.8 Cluster History for Birth and Death Rates: METHOD=SINGLE

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Single Linkage Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.127

Mean Distance Between Observations 17.13099

Cluster History
Norm T
Min i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 Dist e

15 CL37 CL19 8 0.0014 .968 .975 -2.3 178 6.6 0.1331
14 CL20 CL23 15 0.0059 .962 .972 -3.1 162 18.7 0.1412
13 CL14 CL16 19 0.0054 .957 .969 -3.4 155 8.8 0.1442
12 CL26 OB58 31 0.0014 .955 .966 -2.7 165 4.0 0.1486
11 OB86 CL18 4 0.0003 .955 .962 -1.6 183 3.8 0.1495
10 CL13 CL11 23 0.0088 .946 .957 -2.3 170 11.3 0.1518
9 CL22 CL17 30 0.0235 .923 .951 -4.7 131 45.7 0.1593 T
8 CL15 CL10 31 0.0210 .902 .943 -5.8 117 21.8 0.1593
7 CL9 OB75 31 0.0052 .897 .933 -4.7 130 4.0 0.1628
6 CL7 CL12 62 0.2023 .694 .920 -15 41.3 223 0.1725
5 CL6 CL8 93 0.6681 .026 .902 -26 0.6 199 0.1756
4 CL5 OB48 94 0.0056 .021 .875 -24 0.7 0.5 0.1811 T
3 CL4 OB67 95 0.0083 .012 .827 -15 0.6 0.8 0.1811
2 OB23 OB61 2 0.0014 .011 .697 -13 1.0 . 0.4378
1 CL3 CL2 97 0.0109 .000 .000 0.00 . 1.0 0.5815
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Output 30.2.9 Criteria for the Number of Clusters: METHOD=SINGLE

Output 30.2.10 Plot of Clusters for METHOD=SINGLE
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Output 30.2.10 continued

The following statements produce Output 30.2.11 through Output 30.2.14:

%analyze(two k=10, 3)

%analyze(two k=18, 2)

For kth-nearest-neighbor density linkage, the number of modes as a function of k is as follows (not all of
these analyses are shown):

k modes
3 13
4 6

5-7 4
8-15 3
16-21 2
22+ 1

Thus, there is strong evidence of three modes and an indication of the possibility of two modes. Uniform-
kernel density linkage gives similar results. For K=10 (10th-nearest-neighbor density linkage), the scatter
plot for three clusters is shown; and for K=18, the scatter plot for two clusters is shown.
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Output 30.2.11 Cluster History for Birth and Death Rates: METHOD=TWOSTAGE K=10

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

K = 10

Root-Mean-Square Total-Sample Standard Deviation 10.127

Cluster History
Maximum Density

Normalized in Each Cluster T
Fusion i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 Density Lesser Greater e

15 CL16 OB94 22 0.0015 .921 .975 -11 68.4 1.4 9.2234 6.7927 15.3069
14 CL19 OB49 28 0.0021 .919 .972 -11 72.4 1.8 8.7369 5.9334 33.4385
13 CL15 OB52 23 0.0024 .917 .969 -10 76.9 2.3 8.5847 5.9651 15.3069
12 CL13 OB96 24 0.0018 .915 .966 -9.3 83.0 1.6 7.9252 5.4724 15.3069
11 CL12 OB93 25 0.0025 .912 .962 -8.5 89.5 2.2 7.8913 5.4401 15.3069
10 CL11 OB78 26 0.0031 .909 .957 -7.7 96.9 2.5 7.787 5.4082 15.3069
9 CL10 OB76 27 0.0026 .907 .951 -6.7 107 2.1 7.7133 5.4401 15.3069
8 CL9 OB77 28 0.0023 .904 .943 -5.5 120 1.7 7.4256 4.9017 15.3069
7 CL8 OB43 29 0.0022 .902 .933 -4.1 138 1.6 6.927 4.4764 15.3069
6 CL7 OB87 30 0.0043 .898 .920 -2.7 160 3.1 4.932 2.9977 15.3069
5 CL6 OB82 31 0.0055 .892 .902 -1.1 191 3.7 3.7331 2.1560 15.3069
4 CL22 OB61 37 0.0079 .884 .875 0.93 237 10.6 3.1713 1.6308 100.0
3 CL14 OB23 29 0.0126 .872 .827 2.60 320 10.4 2.0654 1.0744 33.4385
2 CL4 CL3 66 0.2129 .659 .697 -1.3 183 172 12.409 33.4385 100.0
1 CL2 CL5 97 0.6588 .000 .000 0.00 . 183 10.071 15.3069 100.0

3 modal clusters have been formed.
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Output 30.2.12 Cluster History for Birth and Death Rates: METHOD=TWOSTAGE K=18

Cluster Analysis of Birth and Death Rates

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 189.106588 173.101020 0.9220 0.9220
2 16.005568 0.0780 1.0000

K = 18

Root-Mean-Square Total-Sample Standard Deviation 10.127

Cluster History
Maximum Density

Normalized in Each Cluster T
Fusion i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 Density Lesser Greater e

15 CL16 OB72 46 0.0107 .799 .975 -21 23.3 3.0 10.118 7.7445 23.4457
14 CL15 OB94 47 0.0098 .789 .972 -21 23.9 2.7 9.676 7.1257 23.4457
13 CL14 OB51 48 0.0037 .786 .969 -20 25.6 1.0 9.409 6.8398 23.4457 T
12 CL13 OB96 49 0.0099 .776 .966 -19 26.7 2.6 9.409 6.8398 23.4457
11 CL12 OB76 50 0.0114 .764 .962 -19 27.9 2.9 8.8136 6.3138 23.4457
10 CL11 OB77 51 0.0021 .762 .957 -18 31.0 0.5 8.6593 6.0751 23.4457
9 CL10 OB78 52 0.0103 .752 .951 -17 33.3 2.5 8.6007 6.0976 23.4457
8 CL9 OB43 53 0.0034 .748 .943 -16 37.8 0.8 8.4964 5.9160 23.4457
7 CL8 OB93 54 0.0109 .737 .933 -15 42.1 2.6 8.367 5.7913 23.4457
6 CL7 OB88 55 0.0110 .726 .920 -13 48.3 2.6 7.916 5.3679 23.4457
5 CL6 OB87 56 0.0120 .714 .902 -12 57.5 2.7 6.6917 4.3415 23.4457
4 CL20 OB61 39 0.0077 .707 .875 -9.8 74.7 8.3 6.2578 3.2882 100.0
3 CL5 OB82 57 0.0138 .693 .827 -5.0 106 3.0 5.3605 3.2834 23.4457
2 CL3 OB23 58 0.0117 .681 .697 -.54 203 2.5 3.2687 1.7568 23.4457
1 CL2 CL4 97 0.6812 .000 .000 0.00 . 203 13.764 23.4457 100.0

2 modal clusters have been formed.
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Output 30.2.13 Plot of Clusters for METHOD=TWOSTAGE K=10

Output 30.2.14 Plot of Clusters for METHOD=TWOSTAGE K=18
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In summary, most of the clustering methods indicate three or eight clusters. Most methods agree at the
three-cluster level, but at the other levels, there is considerable disagreement about the composition of the
clusters. The presence of numerous ties also complicates the analysis; see Example 30.4.

Example 30.3: Cluster Analysis of Fisher’s Iris Data

The iris data published by Fisher (1936) have been widely used for examples in discriminant analysis and
cluster analysis. The sepal length, sepal width, petal length, and petal width are measured in millimeters
on 50 iris specimens from each of three species, Iris setosa, I. versicolor, and I. virginica. Mezzich and
Solomon (1980) discuss a variety of cluster analyses of the iris data.

The following step displays the iris SAS data set, which is available in the Sashelp library:

title 'Cluster Analysis of Fisher (1936) Iris Data';

proc print data=sashelp.iris;
run;

The results of this step are not shown.

This example analyzes the iris data by using Ward’s method and two-stage density linkage and then illus-
trates how the FASTCLUS procedure can be used in combination with PROC CLUSTER to analyze large
data sets.

The following macro, SHOW, is used in the subsequent analyses to display cluster results. It invokes the
FREQ procedure to crosstabulate clusters and species. The CANDISC procedure computes canonical vari-
ables for discriminating among the clusters, and the first two canonical variables are plotted to show cluster
membership. See Chapter 28, “The CANDISC Procedure,” for a canonical discriminant analysis of the iris
species.

/*--- Define macro show ---*/
%macro show;

proc freq;
tables cluster*species / nopercent norow nocol plot=none;

run;

proc candisc noprint out=can;
class cluster;
var petal: sepal:;

run;

proc sgplot data=can;
scatter y=can2 x=can1 / group=cluster;

run;
%mend;

The first analysis clusters the iris data by using Ward’s method (see Output 30.3.1) and plots the CCC and
pseudo F and t2 statistics (see Output 30.3.2). The CCC has a local peak at three clusters but a higher peak
at five clusters. The pseudo F statistic indicates three clusters, while the pseudo t2 statistic suggests three
or six clusters.
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The TREE procedure creates an output data set containing the three-cluster partition for use by the SHOW
macro. The FREQ procedure reveals 16 misclassifications. The results are shown in Output 30.3.3.

title2 'By Ward''s Method';
ods graphics on;

proc cluster data=sashelp.iris method=ward print=15 ccc pseudo;
var petal: sepal:;
copy species;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: species;

run;

%show;

Output 30.3.1 Cluster Analysis of Fisher’s Iris Data: PROC CLUSTER with METHOD=WARD

Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 422.824171 398.557096 0.9246 0.9246
2 24.267075 16.446125 0.0531 0.9777
3 7.820950 5.437441 0.0171 0.9948
4 2.383509 0.0052 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Root-Mean-Square Distance Between Observations 30.24221
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Output 30.3.1 continued

Cluster History
T
i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 e

15 CL24 CL28 15 0.0016 .971 .958 5.93 324 9.8
14 CL21 CL53 7 0.0019 .969 .955 5.85 329 5.1
13 CL18 CL48 15 0.0023 .967 .953 5.69 334 8.9
12 CL16 CL23 24 0.0023 .965 .950 4.63 342 9.6
11 CL14 CL43 12 0.0025 .962 .946 4.67 353 5.8
10 CL26 CL20 22 0.0027 .959 .942 4.81 368 12.9
9 CL27 CL17 31 0.0031 .956 .936 5.02 387 17.8
8 CL35 CL15 23 0.0031 .953 .930 5.44 414 13.8
7 CL10 CL47 26 0.0058 .947 .921 5.43 430 19.1
6 CL8 CL13 38 0.0060 .941 .911 5.81 463 16.3
5 CL9 CL19 50 0.0105 .931 .895 5.82 488 43.2
4 CL12 CL11 36 0.0172 .914 .872 3.99 515 41.0
3 CL6 CL7 64 0.0301 .884 .827 4.33 558 57.2
2 CL3 CL4 100 0.1110 .773 .697 3.83 503 116
1 CL5 CL2 150 0.7726 .000 .000 0.00 . 503

Output 30.3.2 Criteria for the Number of Clusters with METHOD=WARD
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Output 30.3.3 Crosstabulation of Clusters for METHOD=WARD

Cluster Analysis of Fisher (1936) Iris Data
By Ward's Method

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species(Iris Species)

Frequency|Setosa |Versicol|Virginic| Total
| |or |a |

---------+--------+--------+--------+
1 | 0 | 49 | 15 | 64

---------+--------+--------+--------+
2 | 50 | 0 | 0 | 50

---------+--------+--------+--------+
3 | 0 | 1 | 35 | 36

---------+--------+--------+--------+
Total 50 50 50 150

Output 30.3.4 Scatter Plot of Clusters for METHOD=WARD

The second analysis uses two-stage density linkage. The raw data suggest two or six modes instead of three:
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k modes
3 12
4-6 6
7 4
8 3
9-50 2
51+ 1

The following analysis uses K=8 to produce three clusters for comparison with other analyses. There are
only six misclassifications. The results are shown in Output 30.3.5 and Output 30.3.6.

title2 'By Two-Stage Density Linkage';
ods graphics on;

proc cluster data=sashelp.iris method=twostage k=8 print=15 ccc pseudo;
var petal: sepal:;
copy species;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: species;

run;

%show;

Output 30.3.5 Cluster Analysis of Fisher’s Iris Data: PROC CLUSTER with METHOD=TWOSTAGE

Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 422.824171 398.557096 0.9246 0.9246
2 24.267075 16.446125 0.0531 0.9777
3 7.820950 5.437441 0.0171 0.9948
4 2.383509 0.0052 1.0000

K = 8

Root-Mean-Square Total-Sample Standard Deviation 10.69224
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Output 30.3.5 continued

Cluster History
Maximum Density

Normalized in Each Cluster T
Fusion i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 Density Lesser Greater e

15 CL17 OB144 44 0.0025 .916 .958 -11 105 3.4 0.3903 0.2066 3.5156
14 CL16 OB44 50 0.0023 .913 .955 -11 110 5.6 0.3637 0.1837 100.0
13 CL15 OB127 45 0.0029 .910 .953 -10 116 3.7 0.3553 0.2130 3.5156
12 CL28 OB66 46 0.0036 .907 .950 -8.0 122 5.2 0.3223 0.1736 8.3678 T
11 CL12 OB73 47 0.0036 .903 .946 -7.6 130 4.8 0.3223 0.1736 8.3678
10 CL11 OB79 48 0.0033 .900 .942 -7.1 140 4.1 0.2879 0.1479 8.3678
9 CL13 OB112 46 0.0037 .896 .936 -6.5 152 4.4 0.2802 0.2005 3.5156
8 CL10 OB113 49 0.0019 .894 .930 -5.5 171 2.2 0.2699 0.1372 8.3678
7 CL8 OB91 50 0.0035 .891 .921 -4.5 194 4.0 0.2586 0.1372 8.3678
6 CL9 OB120 47 0.0042 .886 .911 -3.3 225 4.6 0.1412 0.0832 3.5156
5 CL6 OB118 48 0.0049 .882 .895 -1.7 270 5.0 0.107 0.0605 3.5156
4 CL5 OB110 49 0.0049 .877 .872 0.35 346 4.7 0.0969 0.0541 3.5156
3 CL4 OB135 50 0.0047 .872 .827 3.28 500 4.1 0.0715 0.0370 3.5156
2 CL7 CL3 100 0.0993 .773 .697 3.83 503 91.9 2.6277 3.5156 8.3678

3 modal clusters have been formed.

Output 30.3.6 Criteria for the Number of Clusters with METHOD=TWOSTAGE
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Output 30.3.7 Crosstabulation of Clusters for METHOD=TWOSTAGE

Cluster Analysis of Fisher (1936) Iris Data
By Two-Stage Density Linkage

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species(Iris Species)

Frequency|Setosa |Versicol|Virginic| Total
| |or |a |

---------+--------+--------+--------+
1 | 50 | 0 | 0 | 50

---------+--------+--------+--------+
2 | 0 | 47 | 3 | 50

---------+--------+--------+--------+
3 | 0 | 3 | 47 | 50

---------+--------+--------+--------+
Total 50 50 50 150

Output 30.3.8 Scatter Plot of Clusters for METHOD=TWOSTAGE

The CLUSTER procedure is not practical for very large data sets because, with most methods, the CPU time
is roughly proportional to the square or cube of the number of observations. The FASTCLUS procedure
requires time proportional to the number of observations and can therefore be used with much larger data
sets than PROC CLUSTER. If you want to hierarchically cluster a very large data set, you can use PROC
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FASTCLUS for a preliminary cluster analysis to produce a large number of clusters and then use PROC
CLUSTER to hierarchically cluster the preliminary clusters.

FASTCLUS automatically creates the variables _FREQ_ and _RMSSTD_ in the MEAN= output data set.
These variables are then automatically used by PROC CLUSTER in the computation of various statistics.

The following SAS code uses the iris data to illustrate the process of clustering clusters. In the preliminary
analysis, PROC FASTCLUS produces ten clusters, which are then crosstabulated with species. The data
set containing the preliminary clusters is sorted in preparation for later merges. The results are shown in
Output 30.3.9 and Output 30.3.10.

title2 'Preliminary Analysis by FASTCLUS';
proc fastclus data=sashelp.iris summary maxc=10 maxiter=99 converge=0

mean=mean out=prelim cluster=preclus;
var petal: sepal:;

run;

proc freq;
tables preclus*species / nopercent norow nocol plot=none;

run;

proc sort data=prelim;
by preclus;

run;

Output 30.3.9 Preliminary Analysis of Fisher’s Iris Data: Fastclus Procedure

Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FASTCLUS Procedure
Replace=FULL Radius=0 Maxclusters=10 Maxiter=99 Converge=0

Convergence criterion is satisfied.

Criterion Based on Final Seeds = 2.1271
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Output 30.3.9 continued

Cluster Summary

Maximum Distance
RMS Std from Seed Radius Nearest

Cluster Frequency Deviation to Observation Exceeded Cluster
-----------------------------------------------------------------------------

1 14 2.3258 6.6047 10
2 16 2.0402 6.7373 3
3 23 1.6115 6.3775 8
4 24 2.4329 8.3178 6
5 10 3.1829 7.9517 4
6 18 2.2628 7.1135 7
7 12 1.9824 7.0833 1
8 11 1.7123 7.0435 3
9 10 2.5155 6.1335 10

10 12 2.0207 7.9390 1

Cluster Summary

Distance Between
Cluster Cluster Centroids
-----------------------------

1 5.6068
2 6.2977
3 5.4185
4 9.3274
5 12.4281
6 8.2685
7 7.6733
8 5.4185
9 8.4783

10 5.6068

Pseudo F Statistic = 374.89

Observed Over-All R-Squared = 0.96016

Approximate Expected Over-All R-Squared = 0.82928

Cubic Clustering Criterion = 27.285

WARNING: The two values above are invalid for correlated variables.
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Output 30.3.10 Crosstabulation of Species and Cluster From the Fastclus Procedure

Cluster Analysis of Fisher (1936) Iris Data
Preliminary Analysis by FASTCLUS

The FREQ Procedure

Table of preclus by Species

preclus(Cluster) Species(Iris Species)

Frequency|Setosa |Versicol|Virginic| Total
| |or |a |

---------+--------+--------+--------+
1 | 0 | 14 | 0 | 14

---------+--------+--------+--------+
2 | 16 | 0 | 0 | 16

---------+--------+--------+--------+
3 | 23 | 0 | 0 | 23

---------+--------+--------+--------+
4 | 0 | 0 | 24 | 24

---------+--------+--------+--------+
5 | 0 | 0 | 10 | 10

---------+--------+--------+--------+
6 | 0 | 3 | 15 | 18

---------+--------+--------+--------+
7 | 0 | 12 | 0 | 12

---------+--------+--------+--------+
8 | 11 | 0 | 0 | 11

---------+--------+--------+--------+
9 | 0 | 10 | 0 | 10

---------+--------+--------+--------+
10 | 0 | 11 | 1 | 12

---------+--------+--------+--------+
Total 50 50 50 150

The following macro, CLUS, clusters the preliminary clusters. There is one argument to choose the
METHOD= specification to be used by PROC CLUSTER. The TREE procedure creates an output data
set containing the three-cluster partition, which is sorted and merged with the OUT= data set from PROC
FASTCLUS to determine which cluster each of the original 150 observations belongs to. The SHOW macro
is then used to display the results. In this example, the CLUS macro is invoked using Ward’s method, which
produces 16 misclassifications, and Wong’s hybrid method, which produces 22 misclassifications.
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/*--- Define macro clus ---*/
%macro clus(method);

proc cluster data=mean method=&method ccc pseudo;
var petal: sepal:;
copy preclus;

run;

proc tree noprint ncl=3 out=out;
copy petal: sepal: preclus;

run;

proc sort data=out;
by preclus;

run;

data clus;
merge out prelim;
by preclus;

run;

%show;
%mend;

The following statements produce Output 30.3.11 through Output 30.3.14.

title2 'Clustering Clusters by Ward''s Method';
%clus(ward);

Output 30.3.11 Clustering Clusters by Ward’s Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The CLUSTER Procedure
Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 417.301104 398.455363 0.9504 0.9504
2 18.845742 16.244505 0.0429 0.9933
3 2.601236 2.272553 0.0059 0.9993
4 0.328684 0.0007 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Root-Mean-Square Distance Between Observations 30.24221
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Output 30.3.11 continued

Cluster History
T
i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 e

9 OB1 OB10 26 0.0030 .957 .934 5.84 394 10.6
8 OB3 OB8 34 0.0032 .954 .927 6.16 420 20.2
7 OB6 OB7 30 0.0072 .947 .919 5.70 424 26.5
6 CL9 OB9 36 0.0094 .937 .908 5.26 431 24.5
5 OB2 CL8 50 0.0103 .927 .893 5.36 461 41.3
4 OB4 OB5 34 0.0160 .911 .870 3.84 498 38.4
3 CL6 CL7 66 0.0285 .883 .825 4.36 552 48.8
2 CL3 CL4 100 0.1099 .773 .695 3.91 503 113
1 CL2 CL5 150 0.7726 .000 .000 0.00 . 503

Output 30.3.12 Criteria for the Number of Clusters for Clustering Clusters from Ward’s Method
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Output 30.3.13 Crosstabulation for Clustering Clusters from Ward’s Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Ward's Method

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species(Iris Species)

Frequency|Setosa |Versicol|Virginic| Total
| |or |a |

---------+--------+--------+--------+
1 | 0 | 50 | 16 | 66

---------+--------+--------+--------+
2 | 50 | 0 | 0 | 50

---------+--------+--------+--------+
3 | 0 | 0 | 34 | 34

---------+--------+--------+--------+
Total 50 50 50 150

Output 30.3.14 Scatter Plot for Clustering Clusters using Ward’s Method
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The following statements produce Output 30.3.15 through Output 30.3.17.

title2 "Clustering Clusters by Wong's Hybrid Method";
%clus(twostage hybrid);

Output 30.3.15 Clustering Clusters by Wong’s Hybrid Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The CLUSTER Procedure
Two-Stage Density Linkage Clustering

Eigenvalues of the Covariance Matrix

Eigenvalue Difference Proportion Cumulative

1 417.301104 398.455363 0.9504 0.9504
2 18.845742 16.244505 0.0429 0.9933
3 2.601236 2.272553 0.0059 0.9993
4 0.328684 0.0007 1.0000

Root-Mean-Square Total-Sample Standard Deviation 10.69224

Cluster History
Maximum Density

Normalized in Each Cluster T
Fusion i

NCL ---Clusters Joined--- Freq SpRSq RSq ERSq CCC Ps F PsT2 Density Lesser Greater e

9 OB3 OB8 34 0.0032 .957 .934 5.77 392 20.2 47.595 41.5390 100.0
8 CL9 OB2 50 0.0103 .947 .927 4.19 360 41.3 34.03 28.1852 100.0
7 OB1 OB10 26 0.0030 .944 .919 4.94 399 10.6 17.044 14.8854 22.9763
6 OB6 OB7 30 0.0072 .936 .908 5.07 424 26.5 10.842 20.6497 24.8051
5 CL6 OB4 54 0.0169 .920 .893 4.00 415 38.4 9.7472 20.0098 24.8051
4 CL7 OB9 36 0.0094 .910 .870 3.74 493 24.5 7.0911 8.2711 22.9763
3 CL5 OB5 64 0.0347 .875 .825 3.72 517 47.7 3.4164 3.2270 24.8051
2 CL3 CL4 100 0.1029 .773 .695 3.91 503 98.5 10.77 22.9763 24.8051
1 CL2 CL8 150 0.7726 .000 .000 0.00 . 503 0.5153 24.8051 100.0

3 modal clusters have been formed.
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Output 30.3.16 Crosstabulation for Clustering Clusters from Wong’s Hybrid Method

Cluster Analysis of Fisher (1936) Iris Data
Clustering Clusters by Wong's Hybrid Method

The FREQ Procedure

Table of CLUSTER by Species

CLUSTER Species(Iris Species)

Frequency|Setosa |Versicol|Virginic| Total
| |or |a |

---------+--------+--------+--------+
1 | 50 | 0 | 0 | 50

---------+--------+--------+--------+
2 | 0 | 35 | 1 | 36

---------+--------+--------+--------+
3 | 0 | 15 | 49 | 64

---------+--------+--------+--------+
Total 50 50 50 150

Output 30.3.17 Scatter Plot for Clustering Clusters using Wong’s Hybrid Method
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Example 30.4: Evaluating the Effects of Ties

If, at some level of the cluster history, there is a tie for minimum distance between clusters, then one or
more levels of the sample cluster tree are not uniquely determined. This example shows how the degree of
indeterminacy can be assessed.

Mammals have four kinds of teeth: incisors, canines, premolars, and molars. The following data set gives
the number of teeth of each kind on one side of the top and bottom jaws for 32 mammals.

Since all eight variables are measured in the same units, it is not strictly necessary to rescale the data.
However, the canines have much less variance than the other kinds of teeth and, therefore, have little effect
on the analysis if the variables are not standardized. An average linkage cluster analysis is run with and
without standardization to enable comparison of the results.

title 'Hierarchical Cluster Analysis of Mammals'' Teeth Data';
title2 'Evaluating the Effects of Ties';
data teeth;

input Mammal & $16. v1-v8 @@;
label v1='Top incisors'

v2='Bottom incisors'
v3='Top canines'
v4='Bottom canines'
v5='Top premolars'
v6='Bottom premolars'
v7='Top molars'
v8='Bottom molars';

datalines;
Brown Bat 2 3 1 1 3 3 3 3 Mole 3 2 1 0 3 3 3 3
Silver Hair Bat 2 3 1 1 2 3 3 3 Pigmy Bat 2 3 1 1 2 2 3 3
House Bat 2 3 1 1 1 2 3 3 Red Bat 1 3 1 1 2 2 3 3
Pika 2 1 0 0 2 2 3 3 Rabbit 2 1 0 0 3 2 3 3
Beaver 1 1 0 0 2 1 3 3 Groundhog 1 1 0 0 2 1 3 3
Gray Squirrel 1 1 0 0 1 1 3 3 House Mouse 1 1 0 0 0 0 3 3
Porcupine 1 1 0 0 1 1 3 3 Wolf 3 3 1 1 4 4 2 3
Bear 3 3 1 1 4 4 2 3 Raccoon 3 3 1 1 4 4 3 2
Marten 3 3 1 1 4 4 1 2 Weasel 3 3 1 1 3 3 1 2
Wolverine 3 3 1 1 4 4 1 2 Badger 3 3 1 1 3 3 1 2
River Otter 3 3 1 1 4 3 1 2 Sea Otter 3 2 1 1 3 3 1 2
Jaguar 3 3 1 1 3 2 1 1 Cougar 3 3 1 1 3 2 1 1
Fur Seal 3 2 1 1 4 4 1 1 Sea Lion 3 2 1 1 4 4 1 1
Grey Seal 3 2 1 1 3 3 2 2 Elephant Seal 2 1 1 1 4 4 1 1
Reindeer 0 4 1 0 3 3 3 3 Elk 0 4 1 0 3 3 3 3
Deer 0 4 0 0 3 3 3 3 Moose 0 4 0 0 3 3 3 3
;
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The following statements produce Output 30.4.1:

title3 'Raw Data';
proc cluster data=teeth method=average nonorm noeigen;

var v1-v8;
id mammal;

run;

Output 30.4.1 Average Linkage Analysis of Mammals’ Teeth Data: Raw Data

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Raw Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

Root-Mean-Square Total-Sample Standard Deviation 0.898027

Cluster History
Number

of RMS
Clusters ----------Clusters Joined----------- Freq Distance Tie

31 Beaver Groundhog 2 0 T
30 Gray Squirrel Porcupine 2 0 T
29 Wolf Bear 2 0 T
28 Marten Wolverine 2 0 T
27 Weasel Badger 2 0 T
26 Jaguar Cougar 2 0 T
25 Fur Seal Sea Lion 2 0 T
24 Reindeer Elk 2 0 T
23 Deer Moose 2 0
22 Brown Bat Silver Hair Bat 2 1 T
21 Pigmy Bat House Bat 2 1 T
20 Pika Rabbit 2 1 T
19 CL31 CL30 4 1 T
18 CL28 River Otter 3 1 T
17 CL27 Sea Otter 3 1 T
16 CL24 CL23 4 1
15 CL21 Red Bat 3 1.2247
14 CL17 Grey Seal 4 1.291
13 CL29 Raccoon 3 1.4142 T
12 CL25 Elephant Seal 3 1.4142
11 CL18 CL14 7 1.5546
10 CL22 CL15 5 1.5811
9 CL20 CL19 6 1.8708 T
8 CL11 CL26 9 1.9272
7 CL8 CL12 12 2.2278
6 Mole CL13 4 2.2361
5 CL9 House Mouse 7 2.4833
4 CL6 CL7 16 2.5658
3 CL10 CL16 9 2.8107
2 CL3 CL5 16 3.7054
1 CL2 CL4 32 4.2939
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The following statements produce Output 30.4.2:

title3 'Standardized Data';
proc cluster data=teeth std method=average nonorm noeigen;

var v1-v8;
id mammal;

run;

Output 30.4.2 Average Linkage Analysis of Mammals’ Teeth Data: Standardized Data

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Standardized Data

The CLUSTER Procedure
Average Linkage Cluster Analysis

The data have been standardized to mean 0 and variance 1

Root-Mean-Square Total-Sample Standard Deviation 1

Cluster History
Number

of RMS
Clusters ----------Clusters Joined----------- Freq Distance Tie

31 Beaver Groundhog 2 0 T
30 Gray Squirrel Porcupine 2 0 T
29 Wolf Bear 2 0 T
28 Marten Wolverine 2 0 T
27 Weasel Badger 2 0 T
26 Jaguar Cougar 2 0 T
25 Fur Seal Sea Lion 2 0 T
24 Reindeer Elk 2 0 T
23 Deer Moose 2 0
22 Pigmy Bat Red Bat 2 0.9157
21 CL28 River Otter 3 0.9169
20 CL31 CL30 4 0.9428 T
19 Brown Bat Silver Hair Bat 2 0.9428 T
18 Pika Rabbit 2 0.9428
17 CL27 Sea Otter 3 0.9847
16 CL22 House Bat 3 1.1437
15 CL21 CL17 6 1.3314
14 CL25 Elephant Seal 3 1.3447
13 CL19 CL16 5 1.4688
12 CL15 Grey Seal 7 1.6314
11 CL29 Raccoon 3 1.692
10 CL18 CL20 6 1.7357
9 CL12 CL26 9 2.0285
8 CL24 CL23 4 2.1891
7 CL9 CL14 12 2.2674
6 CL10 House Mouse 7 2.317
5 CL11 CL7 15 2.6484
4 CL13 Mole 6 2.8624
3 CL4 CL8 10 3.5194
2 CL3 CL6 17 4.1265
1 CL2 CL5 32 4.7753
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There are ties at 16 levels for the raw data but at only 10 levels for the standardized data. There are more ties
for the raw data because the increments between successive values are the same for all of the raw variables
but different for the standardized variables.

One way to assess the importance of the ties in the analysis is to repeat the analysis on several random
permutations of the observations and then to see to what extent the results are consistent at the interesting
levels of the cluster history. Three macros are presented to facilitate this process, as follows.

/* --------------------------------------------------------- */
/* */
/* The macro CLUSPERM randomly permutes observations and */
/* does a cluster analysis for each permutation. */
/* The arguments are as follows: */
/* */
/* data data set name */
/* var list of variables to cluster */
/* id id variable for proc cluster */
/* method clustering method (and possibly other options) */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro CLUSPERM(data,var,id,method,nperm);

/* ------CREATE TEMPORARY DATA SET WITH RANDOM NUMBERS------ */
data _temp_;

set &data;
array _random_ _ran_1-_ran_&nperm;
do over _random_;

_random_=ranuni(835297461);
end;

run;

/* ------PERMUTE AND CLUSTER THE DATA----------------------- */
%do n=1 %to &nperm;

proc sort data=_temp_(keep=_ran_&n &var &id) out=_perm_;
by _ran_&n;

run;

proc cluster method=&method noprint outtree=_tree_&n;
var &var;
id &id;

run;
%end;

%mend;
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/* --------------------------------------------------------- */
/* */
/* The macro PLOTPERM plots various cluster statistics */
/* against the number of clusters for each permutation. */
/* The arguments are as follows: */
/* */
/* nclus maximum number of clusters to be plotted */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro PLOTPERM(nclus,nperm);

/* ---CONCATENATE TREE DATA SETS FOR 20 OR FEWER CLUSTERS--- */
data _plot_;

set %do n=1 %to &nperm; _tree_&n(in=_in_&n) %end;;
if _ncl_<=&nclus;
%do n=1 %to &nperm;

if _in_&n then _perm_=&n;
%end;
label _perm_='permutation number';
keep _ncl_ _psf_ _pst2_ _ccc_ _perm_;

run;

/* ---PLOT THE REQUESTED STATISTICS BY NUMBER OF CLUSTERS--- */
proc sgscatter;

compare y=(_ccc_ _psf_ _pst2_) x=_ncl_ /group=_perm_;
label _ccc_ = 'CCC' _psf_ = 'Pseudo F' _pst2_ = 'Pseudo T-Squared';

run;
%mend;

/* --------------------------------------------------------- */
/* */
/* The macro TABPERM generates cluster-membership variables */
/* for a specified number of clusters for each permutation. */
/* PROC TABULATE gives the frequencies and means. */
/* The arguments are as follows: */
/* */
/* var list of variables to cluster */
/* (no "-" or ":" allowed) */
/* id id variable for proc cluster */
/* meanfmt format for printing means in PROC TABULATE */
/* nclus number of clusters desired */
/* nperm number of random permutations. */
/* */
/* --------------------------------------------------------- */
%macro TABPERM(var,id,meanfmt,nclus,nperm);

/* ------CREATE DATA SETS GIVING CLUSTER MEMBERSHIP--------- */
%do n=1 %to &nperm;

proc tree data=_tree_&n noprint n=&nclus
out=_out_&n(drop=clusname

rename=(cluster=_clus_&n));
copy &var;
id &id;

run;
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proc sort;
by &id &var;

run;
%end;

/* ------MERGE THE CLUSTER VARIABLES------------------------ */
data _merge_;

merge
%do n=1 %to &nperm;

_out_&n
%end;;

by &id &var;
length all_clus $ %eval(3*&nperm);
%do n=1 %to &nperm;

substr( all_clus, %eval(1+(&n-1)*3), 3) =
put( _clus_&n, 3.);

%end;
run;

/* ------ TABULATE CLUSTER COMBINATIONS------------ */
proc sort;

by _clus_:;
run;
proc tabulate order=data formchar=' ';

class all_clus;
var &var;
table all_clus, n='FREQ'*f=5. mean*f=&meanfmt*(&var) /

rts=%eval(&nperm*3+1);
run;

%mend;

To use these macros, it is first convenient to define a macro variable, VLIST, listing the teeth variables, since
the forms V1-V8 or V: cannot be used with the TABULATE procedure in the TABPERM macro:

/* -TABULATE does not accept hyphens or colons in VAR lists- */
%let vlist=v1 v2 v3 v4 v5 v6 v7 v8;

The CLUSPERM macro is then called to analyze 10 random permutations. The PLOTPERM macro plots
the pseudo F and t2 statistics and the cubic clustering criterion. Since the data are discrete, the pseudo F
statistic and the cubic clustering criterion can be expected to increase as the number of clusters increases, so
local maxima or large jumps in these statistics are more relevant than the global maximum in determining
the number of clusters. For the raw data, only the pseudo t2 statistic indicates the possible presence of
clusters, with the four-cluster level being suggested. Hence, the macros are used as follows to analyze the
results at the four-cluster level:

title3 'Raw Data';

/* ------CLUSTER RAW DATA WITH AVERAGE LINKAGE-------------- */
%clusperm( teeth, &vlist, mammal, average, 10);
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The following statements produce Output 30.4.3.

/* -----PLOT STATISTICS FOR THE LAST 20 LEVELS-------------- */
%plotperm(20, 10);

Output 30.4.3 Analysis of 10 Random Permutations of Raw Mammals’ Teeth Data

The following statements produce Output 30.4.4.

/* ------ANALYZE THE 4-CLUSTER LEVEL------------------------ */
%tabperm( &vlist, mammal, 9.1, 4, 10);
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Output 30.4.4 Raw Mammals’ Teeth Data: Indeterminacy at the Four-Cluster Level

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Raw Data

-----------------------------------------------------------------------------
| | | Mean |
| | |---------------------------------------|
| | | Top | Bottom | Top | Bottom |
| |FREQ |incisors |incisors | canines | canines |
|-----------------------------+-----+---------+---------+---------+---------|
|all_clus | | | | | |
|-----------------------------| | | | | |
|1 3 1 1 1 3 3 3 2 3 | 4| 0.0| 4.0| 0.5| 0.0|
|-----------------------------+-----+---------+---------+---------+---------|
|2 2 2 2 2 2 1 2 1 1 | 15| 2.9| 2.6| 1.0| 1.0|
|-----------------------------+-----+---------+---------+---------+---------|
|2 4 2 2 4 2 1 2 1 1 | 1| 3.0| 2.0| 1.0| 0.0|
|-----------------------------+-----+---------+---------+---------+---------|
|3 1 3 3 3 1 2 1 3 2 | 5| 1.0| 1.0| 0.0| 0.0|
|-----------------------------+-----+---------+---------+---------+---------|
|3 4 3 3 4 1 2 1 3 2 | 2| 2.0| 1.0| 0.0| 0.0|
|-----------------------------+-----+---------+---------+---------+---------|
|4 4 4 4 4 4 4 4 4 4 | 5| 1.8| 3.0| 1.0| 1.0|
-----------------------------------------------------------------------------

(Continued)

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Raw Data

-----------------------------------------------------------------------
| | Mean |
| |---------------------------------------|
| | Top | Bottom | Top | Bottom |
| |premolars|premolars| molars | molars |
|-----------------------------+---------+---------+---------+---------|
|all_clus | | | | |
|-----------------------------| | | | |
|1 3 1 1 1 3 3 3 2 3 | 3.0| 3.0| 3.0| 3.0|
|-----------------------------+---------+---------+---------+---------|
|2 2 2 2 2 2 1 2 1 1 | 3.6| 3.4| 1.3| 1.8|
|-----------------------------+---------+---------+---------+---------|
|2 4 2 2 4 2 1 2 1 1 | 3.0| 3.0| 3.0| 3.0|
|-----------------------------+---------+---------+---------+---------|
|3 1 3 3 3 1 2 1 3 2 | 1.2| 0.8| 3.0| 3.0|
|-----------------------------+---------+---------+---------+---------|
|3 4 3 3 4 1 2 1 3 2 | 2.5| 2.0| 3.0| 3.0|
|-----------------------------+---------+---------+---------+---------|
|4 4 4 4 4 4 4 4 4 4 | 2.0| 2.4| 3.0| 3.0|
-----------------------------------------------------------------------
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From the TABULATE output, you can see that two types of clustering are obtained. In one case, the mole is
grouped with the carnivores, while the pika and rabbit are grouped with the rodents. In the other case, both
the mole and the lagomorphs are grouped with the bats.

Next, the analysis is repeated with the standardized data as shown in the following statements. The pseudo
F and t2 statistics indicate three or four clusters, while the cubic clustering criterion shows a sharp rise up
to four clusters and then levels off up to six clusters. So the TABPERM macro is used again at the four-
cluster level. In this case, there is no indeterminacy, because the same four clusters are obtained with every
permutation, although in different orders. It must be emphasized, however, that lack of indeterminacy in no
way indicates validity.

title3 'Standardized Data';

/*------CLUSTER STANDARDIZED DATA WITH AVERAGE LINKAGE------*/
%clusperm( teeth, &vlist, mammal, average std, 10);

The following statements produce Output 30.4.5.

/* -----PLOT STATISTICS FOR THE LAST 20 LEVELS-------------- */
%plotperm(20, 10);



1888 F Chapter 30: The CLUSTER Procedure

Output 30.4.5 Analysis of 10 Random Permutations of Standardized Mammals’ Teeth Data
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The following statements produce Output 30.4.6.

/* ------ANALYZE THE 4-CLUSTER LEVEL------------------------ */
%tabperm( &vlist, mammal, 9.1, 4, 10);

Output 30.4.6 Standardized Mammals’ Teeth Data: No Indeterminacy at the Four-Cluster Level

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Standardized Data

-----------------------------------------------------------------------------
| | | Mean |
| | |---------------------------------------|
| | | Top | Bottom | Top | Bottom |
| |FREQ |incisors |incisors | canines | canines |
|-----------------------------+-----+---------+---------+---------+---------|
|all_clus | | | | | |
|-----------------------------| | | | | |
|1 3 1 1 1 3 3 3 2 3 | 4| 0.0| 4.0| 0.5| 0.0|
|-----------------------------+-----+---------+---------+---------+---------|
|2 2 2 2 2 2 1 2 1 1 | 15| 2.9| 2.6| 1.0| 1.0|
|-----------------------------+-----+---------+---------+---------+---------|
|3 1 3 3 3 1 2 1 3 2 | 7| 1.3| 1.0| 0.0| 0.0|
|-----------------------------+-----+---------+---------+---------+---------|
|4 4 4 4 4 4 4 4 4 4 | 6| 2.0| 2.8| 1.0| 0.8|
-----------------------------------------------------------------------------

(Continued)

Hierarchical Cluster Analysis of Mammals' Teeth Data
Evaluating the Effects of Ties

Standardized Data

-----------------------------------------------------------------------
| | Mean |
| |---------------------------------------|
| | Top | Bottom | Top | Bottom |
| |premolars|premolars| molars | molars |
|-----------------------------+---------+---------+---------+---------|
|all_clus | | | | |
|-----------------------------| | | | |
|1 3 1 1 1 3 3 3 2 3 | 3.0| 3.0| 3.0| 3.0|
|-----------------------------+---------+---------+---------+---------|
|2 2 2 2 2 2 1 2 1 1 | 3.6| 3.4| 1.3| 1.8|
|-----------------------------+---------+---------+---------+---------|
|3 1 3 3 3 1 2 1 3 2 | 1.6| 1.1| 3.0| 3.0|
|-----------------------------+---------+---------+---------+---------|
|4 4 4 4 4 4 4 4 4 4 | 2.2| 2.5| 3.0| 3.0|
-----------------------------------------------------------------------
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