
A Cryptographic Method
for Secure Watermark Detection

Michael Malkin1 and Ton Kalker2

1 Stanford University,
Stanford, CA, USA

mikeym@cs.stanford.edu
2 Hewlett-Packard Laboratories

Palo Alto, CA, USA
ton.kalker@hp.com

Abstract. We present a semi-public key implementation of quantiza-
tion index modulation (QIM) watermarking called Secure QIM (SQIM).
Given a signal, a watermark detector can learn the presence of an SQIM
watermark without learning anything anything else from the detection
process. The watermark detector first transforms the signal with a secret
transform, unknown to the detector, and then quantizes the transform
coefficients with secret quantizers, also unknown to the detector. This
is done with the use of homomorphic cryptosystems, where calculations
are performed in an encrypted domain. A low-power, trusted, secure
module is used at the end of the process and reveals only if the signal
was watermarked or not. Even after repeated watermark detections, no
more information is revealed than the watermarked status of the signals.
The methods we present are for watermark systems with quantizers of
stepsize 2.

1 Introduction

When watermarking occurs for the purposes of digital rights management (DRM),
watermark embedding is performed in a trusted environment, while watermark
detection is performed “in the wild”. That is, the watermark detector is assumed
to be a trusted party, but it is generally operating in a hostile environment where
the end-user would like to circumvent the DRM. One way to keep the water-
marking secret and functionality out of the hands of hostile parties is to embed
it in a physically secure device, such as a smartcard, which can be operated in
a black-box manner. However, such devices generally have very low computing
capacity, and will be unable to perform watermark detection very quickly on
their own. Our strategy, also proposed in other papers, is to have the watermark
detector work in an encrypted domain and use a trusted secure device, called
the secure module, to finish the detection process.

Secure QIM (SQIM) uses public and private keys much like public key cryp-
tosystems such as RSA. The private key is used by the watermark embedder to
generate watermarks while the public key is used by the watermark detector to

2 Michael Malkin and Ton Kalker

perform watermark detection in an encrypted domain. Finally, the secure module
uses the private key to decrypt the results produced by the watermark detector.
The secure module must be initialized by communication with the watermark
embedder to receive the private key information. In a sense, this system is not
truly asymmetric but rather semi-asymmetric, since the aid of a trusted third
party (the secure module) is required.

Our first goal is to ensure that the act of detecting a watermark reveals
as little information as possible to the watermark detector. Because the secure
module is low-power and low-bandwidth, our second goal is to ensure that the
watermark detector takes on as much of the computational burden as is possible,
and transmits a few bits to the secure module as possible. Two cryptosystems
are used to allow the watermark detector to perform the necessary calculations
without learning any information about the watermarking secrets. These sys-
tems are homomorphic, meaning that an operation performed on ciphertexts
corresponds to another operation performed on plaintexts. For example, in the
Paillier cryptosystem (see Section 3.1), if E(·) is the encryption function, then
E(x)E(y) = E(x + y). The homomorphic properties of these cryptosystems are
what make it possible for the watermark detector to run the algorithm without
learning anything.

However, even though the watermark detector gains no extra knowledge
through the detection process, knowledge of the presence or absence of wa-
termarks is sufficient to mount oracle attacks (see Cox and Linnartz [5], Ven-
turini [18], and Li and Chang [14], for example). The purpose of these attacks
is to find the boundary separating watermarked signals from non-watermarked
signals, and use this boundary to learn the watermarking secret. Such attacks are
much more powerful than attacks on the cryptosystems presented in this paper,
and are possible whenever a watermark detector can test signals for watermarks.

One defense against oracle attacks is to increase the time required for water-
mark detection, effectively limiting the speed of the “oracle” (See Venturini [18]).
This would not be possible with a fully assymetric watermarking scheme, since
the speed of such a watermark detector would be limited only by the speed of
the machine that is running it. A trusted secure module could have a built-in
delay, or a limit on the number of watermark detections per minute, and could
thereby help to slow the rate of convergence of oracle attacks.

On the other hand, the use of a secure module introduces side channel at-
tacks, for example timing attacks (see Kocher [10], and Brumley and Boneh [2]),
and power attacks (see Kocher et al. [12]). In these attacks, the secure module is
monitored externally to guess at the operations occurring internally. An imple-
mentation of SQIM would have to take side channel attacks into account, but a
detailed discussion of these attacks is beyond the scope of this paper.

Quantization Index Modulation (QIM), developed by Chen and Wornell [4],
embeds a watermark into an signal by manipulating the signal so that transform
coefficients are quantized in a specific manner. A watermark detector trans-
forms a signal and checks to see if the transform coefficients are appropriately
quantized. There are two phases to securely detecting a QIM watermark. First

Lecture Notes in Computer Science 3

a hidden transform is performed on the signal, and second the transform co-
efficients are quantized via hidden quantization. After hidden quantization the
secure module counts the number of watermarked transform coefficients and
reveals whether a threshold of the coefficients were watermarked. The method
presented in the paper only works for quantizers with stepsize 2.

Attempts have been made at completely asymmetric watermarking schemes
(see Eggers et al. [6] and Hachez and Quisquater [7]), but these have generally
not been completely successful. Another specific method of performing asym-
metric watermarking involves multi-round zero knowledge proofs (see Adelsbach
and Sadeghi [1], for example). Kalker [8] introduced the idea of using a secure
module to enable semi-public key watermarking, using a variant of the Paillier
cryptosystem to perform secure spread spectrum watermarking. In comparison
with the spread spectrum scheme, a SQIM scheme must implement a nonlinear
operation in an encrypted domain, namely quantization. For more discussion of
secure watermarking and the SQIM system, see Malkin [11].

Section 2 outlines the QIM watermarking scheme. Section 3 reviews homo-
morphic cryptography and introduces the two cryptosystems used in this paper.
Section 4 discusses how to perform a hidden transform, while Section 5 discusses
how to perform hidden quantization. Section 6 presents the full Secure QIM sys-
tem. Finally, in Section 7 we discuss the efficiency of SQIM and in Section 8 we
prove that SQIM is zero knowledge and that it is secure.

2 QIM

We consider a simple variant of QIM with dithered scalar quantizers. Our pur-
pose is not to improve the watermarking aspects of QIM, but to ensure that
watermark detection is secure. Therefore, watermark embedding is not changed
at all, and watermark detection is changed only in that all calculations are per-
formed in a secure manner. We will discuss watermark detection first, and then
explain how a watermark is embedded into a signal. We are only concerned with
whether or not a signal was watermarked, so we do not use the watermark to
embed data into a signal.

To detect a watermark in a signal, the signal is first transformed with a
secret, random linear transform, for example a DCT or wavelet transform. For
every transform coefficient ti, there are two secret quantizers, Qi

0 and Qi
1. If ti

is closer to a quantization point on Qi
0, then it corresponds to 0, otherwise it

corresponds to 1. In this way, each transform coefficient is assigned a value. If
a threshold of transform coefficients have the correct, watermarked value, then
the signal is considered to be watermarked. If not, the signal is considered not
watermarked.

Embedding a watermark into a signal involves changing the signal so that
the correct values are obtained after quantizing the transform coefficients. The
most straightforward approach is to transform the signal, quantize the transform
coefficients, and perform the inverse transform. Other embedding schemes, such
as distortion-compensated QIM [4], may also be used.

4 Michael Malkin and Ton Kalker

3 Homomorphic cryptosystems

We use two cryptosystems, the Paillier cryptosystem and the Goldwasser-Micali
cryptosystem, both of which are probabilistic public-key cryptosystems. They
are public key in that a public key is used to encrypt plaintext, while a private
key is needed to decrypt a ciphertext, and the two keys are computationally
not easily derived from each other. They are probabilistic in the sense that the
same plaintext is represented by a large number of ciphertexts. This is important
when the range of possible plaintexts is small. For example, when encrypting 0
or 1, a non-probabilistic cryptosystem can produce only 2 possible ciphertexts,
whereas a probabilistic cryptosystem can produce many different ciphertexts.

This last property is especially important in the current application. For ex-
ample, if samples were in the range [0, ..., 255], then there would be only 256
possible encryptions of the samples. This would make it much easier to break
the system by looking at the transcripts of many watermark detections. Even
relabelling the sample values would not solve the problem; there would be 256!
possible relabellings, but statistical analysis could be used to easily find the
correct one. With probabilistic cryptosystems, the values would be effectively
blinded, so that this essentially brute-force searching attack would not be possi-
ble.

Both of these cryptosystems share another important property: they are ho-
momorphic. This means that a mathematical operation performed on ciphertexts
corresponds to a mathematical operation performed on plaintexts. For example,
if E(·) corresponds to encryption in the Paillier cryptosystem, then we can write
the homomorphism of the Paillier cryptosystem as

E(a1)E(a2) = E(a1 + a2).

Homomorphic cryptosystems enable the watermark detector to perform cal-
culations without explicitly knowing what is being calculated or finding out the
results of the calculation. For example, given α = E(a), but not knowing the
value of a, we could compute the encryption of 7a + 3 as

α7E(3) = E(7a + 3).

Furthermore, with the right public values, it would be possible for us to
compute, in the encrypted domain, any polynomial function of a given public
input. For example, say α1 = E(a1), α2 = E(a2), and α3 = E(a3) were public,
and we were asked to compute a1x

2 + a2x + a3 in the encrypted domain. We
could do this as

α
(x2)
1 αx

2α3 = E(a1x
2 + a2x + a3).

We would know the encryption of the polynomial, but have no knowledge of the
actual value.

3.1 Paillier Cryptosystem

The Paillier cryptosystem is homomorphic, with multiplication of ciphertexts
corresponding to the addition of the plaintexts. Furthermore, exponentiation of

Lecture Notes in Computer Science 5

a ciphertext corresponds to multiplication of the plaintext. We present a very
brief summary of the system. See Paillier [13] for more details.

Let N = pq, where p and q are primes. Choose g ∈ Z∗N2 such that the order
of g is divisible by N . Any such g is of the form g ≡ (1 + N)abN mod N2 for a
pair (a, b), where a ∈ ZN and b ∈ Z∗N . Note that (1+N)a ≡ 1+ aN mod N2, so
g ≡ (1+aN)bN mod N2. Let λ = lcm(p−1, q−1). The public key is (g, N), the
private key is λ. For message m and blinding factor r ∈ Z∗N , Paillier encryption
is defined as

EP (m, r; g, N) = gmrN mod N2.

Note the equalities:

EP (m1, r1; g, N) · EP (m1, r1; g,N) = EP (m1 + m2, r1r2; g, N) ,

EP (m, r; g,N)k = EP (mk, rk; g,N).

In the Paillier cryptosystem, decryption is more complicated than encryption.
First note that for any x ∈ Z∗N2 ,

xλ ≡ 1 (mod N),
xNλ ≡ 1 (mod N2).

Given c = EP (m, r; g,N) = gmrN mod N2, we can see that

cλ ≡ gmλrNλ

≡ (1 + N)amλbλNm

≡ 1 + amλN (mod N2).

Note also that gλ ≡ [(1 + N)abN]λ ≡ 1 + aλN (mod N2). Therefore,

(cλ mod N2)− 1
N

= aλm and
(gλ mod N2)− 1

N
= aλ

To simplify, let fN (x) = (x mod N2)−1
N . Then we decrypt by computing

m = DP (c; g, λ,N) =
fN (cλ)
fN (gλ)

mod N.

Optimizations are discussed by Catalano et al. [3], Damg̊ard and Jurik [15],
and Kalker [8].

3.2 Goldwasser-Micali Cryptosystem

The Goldwasser-Micali cryptosystem was developed in 1984 by Goldwasser and
Micali [16]. It encrypts a single bit of information and is homomorphic in that
multiplying ciphertexts corresponds to finding the XOR of the plaintexts. This
cryptosystem is based on quadratic residues. A number is a quadratic residue
modulo an odd prime p if it is the square of some number modulo p.

6 Michael Malkin and Ton Kalker

Definition 1 (Legendre symbol). The Legendre symbol is defined as

(
x

p

)
=





0 if x ≡ 0 (mod p)
1 if x is a quadratic residue modulo p
−1 if x is a quadratic non-residue modulo p

By Euler’s criterion[17], we compute
(

x
p

)
= x

p−1
2 (mod p).

In the case of a composite modulus, the Jacobi symbol is used instead of the
Legendre symbol.

Definition 2 (Jacobi symbol). For N = pq, where p and q are odd primes,
the Jacobi symbol is

(x

N

)
=





0 if gcd(x,N) > 1
1 if

(
x
p

)
=

(
x
q

)

−1 if
(

x
p

)
= −

(
x
q

)

Definition 3 (QR). Let QR(N) be the set of all quadratic residues modulo N .

Lemma 1. x is a quadratic residue modulo N iff
(

x
p

)
=

(
x
q

)
= 1. If x is a

quadratic residue modulo N2 then it is a quadratic residue modulo N .

Proof. If x ∈ QR(N) then x = y2 + kN = y2 + kpq for some y, k, so x ≡ y2

(mod p) and x mod p ∈ QR(p). The same holds for q, so
(

x
p

)
=

(
x
q

)
= 1. Given

x such that
(

x
p

)
=

(
x
q

)
= 1, we know that there exist a and b such that a2 ≡

x (mod p) and b2 ≡ x (mod q). By the Chinese Remainder Theorem [9], there
exists a y such that y ≡ a (mod p) and y ≡ b (mod q). Since, y2 ≡ x (mod p)
and y2 ≡ x (mod q), we know that y2 ≡ x (mod N), and therefore x ∈ QR(N).
If x ∈ QR(N2) then x = y2 + kN2 for some y, k, so x mod N ∈ QR(N). ut

Definition 4 (Q̃R). x is a pseudosquare modulo N if
(

x
p

)
=

(
x
q

)
= −1.

Define Q̃R(N) to be the set of pseudosquares modulo N.

It is easy to calculate Jacobi symbols, even if the factors of N are unknown
(see Koblitz [9]). However, if the factorization of N is unknown, it is not always
easy to determine quadratic residuosity. For any x ∈ QR(N)∪Q̃R(N),

(
x
N

)
= 1,

but determining if x ∈ QR(N) is a classical hard problem in cryptography and is
assumed to be impossible without factoring N . If p and q are known, it is easy to
determine if such an x is a quadratic residue by computing

(
x
p

)
= x

p−1
2 (modp)

as above.

Lecture Notes in Computer Science 7

The Goldwasser-Micali Cryptosystem Let N = pq, where p and q are safe
primes. Choose g ∈ Q̃R(N). N and g are public while the factorization of N is
private. Encryption takes as input a single bit b and a random blinding factor
r ∈ Z∗N . The Goldwasser-Micali cryptosystem is defined as

Egm(b, r; g, N) = gbr2 mod N.

Decryption is defined as

Dgm(x; p, q) =
{

0 if x ∈ QR(N)
1 if x ∈ Q̃R(N)

If the factorization of N is known, decryption can easily be done by comput-
ing

(
x
p

)
= x(p−1)/2 mod p. Otherwise decryption is not possible, since it requires

distinguishing members of QR(N) from members of Q̃R(N) (see Section 3.2).
This system is homomorphic in that multiplying ciphertexts is equivalent to

XORing plaintexts. Note the following equalities:

Egm(b1, r1; g, N) · Egm(b2, r2; g, N) ≡ gb1+b2(r1r2)2 (mod N).

≡ Egm(b1 ⊕ b2, r1r2; g, N) (mod N).

The last equality holds because only the least bit of b1 + b2 matters, and ⊕ is
equivalent to modulo 2 addition.

4 Phase I: Hidden Transform

The first phase of Secure QIM is a hidden linear transform. This means that
the watermark detector takes the sample values from the signal and performs a
transform on the sample values without learning the transform or the resulting
transform coefficients.

Using the Paillier cryptosystem, we know how to perform addition and multi-
plication in the plaintext domain by performing the corresponding operations of
multiplication and exponentiation in the ciphertext domain. Let a signal consist
of m samples, y = (y1, ..., ym)T . The random transform takes y as input and
produces n transform coefficients, t = (t1, ..., tn)T . Let the watermark embedder
choose an orthogonal transform S = {sij}, for i = 1...n and j = 1...m, and let
si be row i of the transform. Note that t = Sy and ti = si · y.

The watermark detector is not allowed to know any of the values of S, nor
any of the values of t. This is achieved by performing all the calculations in
the Paillier encrypted domain. First, the watermark embedder chooses N = pq,
where p and q are primes, and chooses a random g ∈ Z∗N2 such that the order of
g is divisible by N . Next, for i ∈ [1, n], j ∈ [1, m], it generates random βij ∈ Z∗N .
The public key consists of encryptions of the transform matrix V = {vij} where
vij = EP (sij , βij ; g, N).

8 Michael Malkin and Ton Kalker

The watermark detector wants to find c = (c1, ..., cm) , the hidden transform
coefficients. It does so by computing

ci =
∏

j

(vij)yj mod N2.

For later convenience in notation, define wi =
∏m

j=1 β
yj

ij . Then by the homomor-
phic properties of the Paillier cryptosystem, we have

ci =
∏

j

v
yj

ij mod N2 =
∏

j

EP (sij , βij ; g,N)yj mod N2

=
∏

j

EP (sijyj , β
yj

ij ; g, N) mod N2 = EP (
∑

j

sijyj ,
∏

j

β
yj

ij ; g, N)

= EP (si · y, wi; g, N) = EP (ti, wi; g,N).

5 Phase II: Hidden Quantization

This section will present a simplified version of the hidden quantization scheme,
uncoupled from the hidden transform, for a clearer presentation. The full version
will be presented in Section 6.

The watermark embedder chooses N = pq, where p and q are safe primes,
and g ∈ Q̃R(N). It also chooses private quantization values q = (q1, ..., qn) where
each qi ∈ {0, 1}, and blinding values γ = (γ1, ..., γn) where each γi ∈ Z∗N , and
calculates k = (k1, ..., kn), ki = Egm(qi, γi; g, N). It publishes g, N , and k, and
reveals the value of p to the secure module.

The watermark detector knows the public values g, N , and k. Assume in
this section that it has n unencrypted transform coefficients, t = (t1, ..., tn) . If
the signal is watermarked, these coefficients will each quantized so that ti ≡
qi (mod2) , but for any given coefficient, the watermark detector does not know
the correct quantization value. The key point to notice is that if the signal is
watermarked, ti ⊕ qi ≡ 0 (mod2) .

First, the watermark detector chooses α = (α1, ..., αn), with αi ∈ Z∗N , and
encrypts the transform coefficients,

ci = Egm(ti mod 2, αi; g, N).

Then it computes

fi = ciki

= Egm(ti mod 2, αi; g, N)Egm(qi, γi; g, N)
= E((ti mod 2)⊕ qi, ri; g, N).

Note that fi is a Goldwasser-Micali encryption of 0 if ti is watermarked, 1 oth-
erwise.

Lecture Notes in Computer Science 9

The secure module has a threshold function, T (n). It is given as input
f1, ..., fn, decrypts each fi, sums the values, and announces that the data is
watermarked if

n∑

i=1

Dgm(fi; p, q) ≤ T (n).

6 Secure QIM

This section presents the full system, in which the watermark detector performs a
hidden transform on the input data and then quantizes the transform coefficients
while still in the encrypted domain. It is a combination of the systems from
Sections 4 and 5 with a careful choice of g and the blinding factors so that
the ciphertexts of the hidden transform can be used for hidden quantization. In
Sections 6.1, 6.2, and 6.3, we discuss the basic SQIM scheme, and in Section 6.4
we present modifications that prevent abuse by a malicious adversary.

6.1 Initialization

The watermark embedder chooses N = pq, where p and q are safe primes.
Recall that for such N , λ = lcm(p − 1, q − 1). g ∈ Z∗N2 is chosen so that
g mod N ∈ Q̃R(N) and the order of g, denoted ord(g), is kN , where k|λ. All
such g can be generated as follows. Choose a ∈ Z∗N , so gcd(a, N) = 1, and
b ∈ Q̃R(N). Let g = (1 + N)abN mod N2. Because (1 + N)a ≡ 1 + aN mod N ,
we can write

g = (1 + aN)bN mod N2.

Claim. g mod N ∈ Q̃R(N) and ord(g) = kN .

Proof. Notice that g ≡ bN (mod N). Since N is odd, bN mod N ∈ Q̃R(N), so
g mod N ∈ Q̃R(N). Because ord(1 + N) = N and gcd(a, N) = 1, ord(1 +
N)a = N . Let k = ord(bN). Since bN ∈ Z∗N , k|φ(N), and since N and φ(N)
share no factors, gcd(k, N) = 1. Therefore, ord(g) = ord(1 + N)ord(bN) =
kN . ut

6.2 Watermark Embedding

The watermark embedder chooses an orthogonal transform S = {sij}, for i =
1...n and j = 1...m. Let si be row i of the transform. The embedder also
chooses q = (q1, ..., qn), with each qi ∈ {0, 1}. It takes as input the signal
x = (x1, ..., xm) and produces a watermarked signal y = (y1, ..., yn) such that
for all i, si · y ≡ qi (mod 2) .

For i ∈ [1, n], j ∈ [1,m], βij is chosen such that βij ∈ QR(N). For i ∈ [1, n],
γi is chosen so that γi ∈ QR(N). Let V = {vij} where vij = EP (sij , βij ; g, N) ,
and k = (k1, ..., kn) where ki = Egm(qi, γi; g, N). The public watermarking key
consists of N , V , and k.

10 Michael Malkin and Ton Kalker

6.3 Watermark Detection

First, the watermark detector finds the encrypted transform coefficients c =
(c1, ..., cm) . Recall that ti = si · y. Let wi =

∏m
j=1 β

yj

ij . Then

ci =
∏

j

v
yj

ij mod N2 = EP (ti, wi; g, N) = gtiwN
i mod N2.

At this point we change from looking at ciphertexts modulo N2 and begin
looking at them modulo N . This is done so that the ciphertexts will be compat-
ible with the Goldwasser-Micali cryptosystem.

We will now show that if ti mod 2 = 0, then ci mod N ∈ QR(N), otherwise
ci mod N ∈ Q̃R(N). Since each βij ∈ QR(N), then wi ∈ QR(N) and therefore
(wi)N mod N ∈ QR(N). If ti mod 2 = 0, then gti mod N ∈ QR(N). Otherwise,
since g mod N ∈ Q̃R(N), gti mod N ∈ Q̃R(N). Therefore, if ti mod 2 = 0 then
ci ∈ QR(N) otherwise, ci ∈ Q̃R(N). In both cases

(
ci

N

)
= 1. Therefore,

ci mod N = Egm(ti mod 2, wN
i g2b ti

2 c; g, N).

Now we begin hidden quantization. Let fi = ciki mod N and zi = wN
i g2b ti

2 c.

fi = ciki mod N = Egm(ti mod 2, zi; g, N)Egm(qi, γi; g, N) mod N

= Egm((ti mod 2)⊕ qi, γizi; g, N).

So, Dgm(fi; p, q) = (ti mod 2)⊕ qi, which is 0 if ti was correctly quantized,
1 otherwise.

The secure module is given as input f1, ..., fn and knows a threshold function
T (n). It decrypts each fi, sums the values, and announces that the data is
watermarked if

n∑

i=1

Dgm(fi; p, q) ≤ T (n).

6.4 Verification

It is possible for a malicious watermark detector to abuse the secure module.
For example, if a watermark detector has a Goldwasser-Micali ciphertext y =
Egm(x, r; g, N) but does not know x, it can set the input to the secure module
to be n copies of y. If the secure module says “watermarked”, then the detector
knows x = 0, otherwise it knows that x = 1. The watermark detector can trick
the secure module into functioning as a Goldwasser-Micali decryption oracle.

To prevent this sort of abuse, we force the watermark detector to prove
that each query to the secure module is valid in that is comes from an honest
execution of the SQIM algorithm. If the a query is not proved to be valid, the
secure module refuses to respond.

There are two steps to prove validity. First the detector proves legitimacy,
the fact that the inputs to the secure module are the result of homomorphic

Lecture Notes in Computer Science 11

operations on ciphertexts from existing public watermarking keys. This prevents
the detector from inventing new ciphertexts to use as input to the secure module,
as in the example above. Next the detector proves wholeness, which prevents
mixing and matching attacks. This prevents the watermark detector from mixing
parts of multiple transform matrices, and forces it to calculate all transform
coefficients with the same signal.

We now describe the modifications to the Secure QIM scheme that are nec-
essary to prove legitimacy and wholeness. Section 8.1 describes how the modifi-
cations prove these properties.

Legitimacy Each public watermarking key must now include two encryptions
of the transform matrix: V = {vij}, vij = EP (sij , βij ; g, N); and W = {wij},
wij = EP (sij , βij ;h,N); where h is formed as g is in Section 6.1, but h 6= g. The
watermark detector uses V to compute c = {ci} as in Section 6.3, and likewise
uses W to compute c′ = {c′i}. Note that the decryptions of ci and c′i are equal,
but the ciphertexts that were used to generate ci were encrypted with g, while
those that were used to generate c′i were encrypted with h.

Queries to the secure module now consist of n 4-tuples: (ci, c
′
i, ki, fi). The

secure module checks that for all i,

DP (ci; g, λ, N) = DP (c′i; h, λ, N), (1)

then checks that
fi = ciki mod N. (2)

If either of these conditions do not hold for any i, then fi is not legitimate and
the secure module does not respond to the query.

Wholeness The wholeness constructions make use of a public hash function,
H(·). Any hash function will do as long as it is collision-resistant. This means
that it is difficult to find any pairs (x, y) where x 6= y but H(x) = H(y).

During initialization, the watermark embedder chooses a random
θ = {θ1, ..., θn} where θi ∈ Z∗N . It includes in the watermarking public key σ =
EP (H(θ), ρ0; g,N) as well as Θ = {Θ1, ..., Θn}, where Θi = EP (θi, ρi; g, N) and
the ρi are random blinding factors. It also includes ∆ = EP (H(θ, k), τ ; g, N),
with blinding factor τ . Note that the hash in ∆ includes k, not q.

In Section 6.2, the hidden transform was chosen as S = {sij}, for i = 1...n
and j = 1...m. We now add an extra row, s0, to the top of the matrix S. s0 is
formed as a random linear combination of the all the other rows, si:

s0 =
n∑

i=1

θisi.

Letting k0 = 0 and f0 = 0, we can say that the 4-tuple corresponding to s0 is
(c0, c

′
0, k0, f0).

12 Michael Malkin and Ton Kalker

When the secure module receives a query, it is first given σ, Θ, and ∆.
It decrypts σ and Θ and checks if DP (σ; g, λ, N) = H(θ1, ..., θn). If not, θ
is corrupt and the secure module refuses to respond. Next it checks if that
DP (∆; g, λ, N) = H(θ1, ..., θn, k1, ..., kn). If not, k is corrupt and the secure
module refuses to respond. Finally, it checks if

DP (c0; g, λ, N) =
n∑

i=1

θiDP (ci; g, λ,N). (3)

If equation 3 does not hold, the transform was corrupt and the secure module
does not respond.

7 Efficiency

In this section we will compare the efficiency of standard QIM with that of Secure
QIM. Note that in both cases, the secure module starts off knowing the Paillier
and Goldwasser-Micali private keys, but does not know any transform matrices
or quantization values. In standard QIM, performed with a random transform
on a secure module, the secure module is given a signal, an encrypted trans-
form matrix, and encrypted quantization values, and performs QIM watermark
detection by itself.

In our analysis we are concerned with the communication and computation
required of the secure module. Let signals be of length m and let there be n
transform coefficients. Samples of the signal are k-bit numbers and encryptions
modulo N have ` = log2 N bits.

Communication In standard QIM, the secure module can receive all the infor-
mation in an efficiently encrypted form. As such, we will calculate the number
of bits that would be required unencrypted, and will assume that encryption
adds negligible overhead. The secure module receives the signal (mk bits), the
encrypted transform matrix (mnk bits), and the encrypted quantization values
(n bits), for a total of mnk + mk + n bits. The mnk term will dominate.

In SQIM, each number is encrypted individually modulo N or N2. The secure
module receives (n + 1) 4-tuples of 6` bits (6(n + 1)` bits), σ (2` bits), Θ (2n`
bits), and ∆ (2` bits), for a total of 8n` + 10`. The 8n` term dominates.

In comparison, standard QIM requires m
8

k
` times more bits than SQIM. Since

m is the number of samples in the signal, this is a very large difference. For ex-
ample, consider a signal of m = 105 samples, with k = 24, n = 25, and ` = 1024.
Then SQIM requires 26.3 kilobytes while standard QIM requires 7.4 megabytes.
At a rate of 9600 bits per second, it would take 22.4 seconds to complete the
SQIM data transfer, whereas it would take 1.8 hours for the standard QIM data
transfer.

Computation The computational costs are harder to compute and more de-
pendent on specific implementation. We estimate the cost of standard QIM as

Lecture Notes in Computer Science 13

the cost of performing the transform. Assuming straightforward matrix multi-
plication, this will have a running time of O(nmk2). We estimate the cost of
SQIM based on the total number of decryptions. There are approximately 5n
decryptions, which results in a running time of O(n`3). `3 very large, but ` is
fixed based on security needs. k is generally in a small range, say 8 to 24 bits.
So, the relative performance is highly dependent on the number of samples in
the signal. With a small number of samples, standard QIM will be faster, while
with a very large number of samples SQIM will be faster.

8 Security

Given the security of the Goldwasser-Micali and Paillier cryptosystems, our sys-
tem is secure and zero knowledge. Length limitations prevent detailed proofs, so
we offer proof sketches instead. More detailed proofs appear in Malkin [11].

8.1 Proof of Verification

The proof of zero knowledge rests upon the fact that invalid queries to the secure
module will be rejected. Now we sketch proofs of this fact, taking our notation
from Sections 6.2 and 6.3.

Legitimacy Recall that equation 1 requires that

DP (ci; g, λ, N) = DP (c′i; h, λ, N).

It is impossible for a watermark detector to produce c and c′ such that this
equation holds, other than by generating them homomorphically from hidden
transform values.

Assume that algorithm A can produce c and c′ that satisfy equation 1. By
definition of Paillier decryption, that is equivalent to saying

c = gmrN
1 mod N2 (4)

c′ = hmrN
2 mod N2 (5)

for some m and some blinding factors r1 and r2. Note however, that A doesn’t
know g or h. This means that equations 4 and 5 must simultaneously be true
for all possible pairs (g, h) (perhaps with a different m per pair). This is not
possible, so A can not exist. Note that this proof can also be extended to work
when the algorithm A is probabilistic.

The only access to g and h that the detector has is through the encrypted val-
ues in the public watermarking key, so all c and c′ are the result of homomorphic
operations on such values.

Equation 2 (fi = ciki mod N) guarantees that the fi were generated by per-
forming hidden quantization on ci with the supplied ki. This means that hidden
quantization was legitimately performed on a legitimate hidden transform.

14 Michael Malkin and Ton Kalker

Wholeness The watermark detector can not mix and match Θi from different
public watermarking keys, because σ would not match Θ and the collision re-
sistance of H prevents the detector from constructing a match. Likewise, all the
ki must come from the same k or ∆ won’t match. Furthermore, Θ and k must
come from the same public watermarking key, or ∆ won’t match.

In any watermark detection, all the vij must come from the same V , and
that V is the one associated with Θ. If a watermark detector mixes and matches
coefficients from different V it can not fulfill equation 3:

DP (c0; g, λ, N) =
n∑

i=1

θiDP (ci; g, λ,N).

Encrypting both sides of equation 3, we see

c0 =
n∏

i=1

ci
θi =

n∏

i=1

Θi
DP (ci;g,λ,N).

A mix-and-match attack would have to generate c0, but neither of these equal-
ities can be formed homomorphically. An algorithm A that can generate c0

without knowing these decryptions can be used to compute the computational
Diffie-Hellman problem: given ga and gb, compute gab. This is assumed to be
impossible, so A can’t exist.

We showed that for a given Θ there is only one possible k that will be
accepted, and also for a given Θ there is only one possible V that will be
accepted, and that no mixing and matching is possible

8.2 Proof of Zero Knowledge

By definition, SQIM is zero knowledge if the watermark detector can simulate
what it sees during watermark detections. This is easy if the detector is honest.

The detector has a watermarking public key, is given (or chooses) a signal s,
and receives a bit b from the secure module, so its view is v = (s, b). s is chosen
from a distribution D that includes whether or not s is watermarked. To simulate
this view, first choose a transform matrix and quantization values, then choose
a signal s′ according to D. Since the transform matrix and quantization values
are known, it is easy to see if s′ is watermarked. Let b′ = 1 if s′ is watermarked,
b′ = 0 otherwise, and let the view of the simulation be v′ = (s′, b′). v and v′ are
identically distributed, so SQIM is honest-detector zero knowledge.

The verification system ensures that the view of a dishonest watermark de-
tector is the same as that of an honest watermark detector because dishonest
queries are ignored. Therefore, SQIM is zero knowledge from the perspective of
the watermark detector.

Note that there are no zero knowledge proofs here. The secure module is
trusted, so it does not have to prove that its calculations are correct.

Lecture Notes in Computer Science 15

8.3 Proof of Security

In both the Paillier and Goldwasser-Micali cryptosystems, any properly-formed
N with large-enough factors is secure. The security of the Paillier cryptosystem is
independent of the choice of g, and any g such that g mod N ∈ Q̃R(N) is secure
for the Goldwasser-Micali cryptosystem. Therefore, even though we choose g in
a unique manner, it is still secure.

The security of Paillier encryption depends on the blinding factors, which we
also choose in a unique manner. Since the blinding factors in standard Paillier
encryption are chosen at random from Z∗N , choosing them from a subset of
non-negligible size does not introduce security problems; if it did, then choosing
them at random from Z∗N would have a non-negligible chance of encountering the
same problems. A problem would exist if the subset were small enough to make
a brute-force search possible, but |QR(N)| = 1

4 |Z∗N |, so this is not a concern.
Therefore, our choice of blinding factors is secure.

The only public watermarking values are either Paillier ciphertexts or
Goldwasser-Micali ciphertexts which are acted upon homomorphically. Since N ,
g, and the blinding factors are chosen securely, these ciphertexts are as secure
as the Paillier and Goldwasser-Micali cryptosystems, respectively.

The only area where the security of SQIM does not derive immediately from
the Paillier and Goldwasser-Micali cryptosystems is when Paillier ciphertexts
are taken modulo N and converted into Goldwasser-Micali ciphertexts. How-
ever, this is still provably secure. Consider these ciphertexts to belong to a new,
hybrid cryptosystem. The essence of the proof is that any algorithm that has
an advantage in decrypting these hybrid ciphertexts can be shown to have an
advantage decrypting Goldwasser-Micali ciphertexts. Since we assume the secu-
rity of the Goldwasser-Micali cryptosystem, no such algorithm can exist, and
the hybrid cryptosystem is secure.

9 Conclusion

We have presented a Secure QIM system, one in which most of the work of
watermark detection can be performed in the open without any information
about the private key being leaked. A secure module, such as a smartcard, is used
to perform the final portion of watermark detection, revealing only if the signal
is watermarked and no other information about the watermark. Our hidden
transform utilizes the Paillier cryptosystem, while our hidden quantization uses
the Goldwasser-Micali cryptosystem, and a robust verification system is used to
force all watermark detectors to honestly follow the SQIM algorithm.

The novelty of SQIM lies in the coupling of two cryptosystems to implement a
semi-private key QIM, and in the verification system which prevents watermark
detectors from cheating. Furthermore, our system is provably secure, assuming
the security of the Paillier and Goldwasser-Micali cryptosystems.

16 Michael Malkin and Ton Kalker

References

1. A. Adelsbach and A . Sadeghi. Zero-knowledge watermark detection and proof of
ownership. In Information Hiding Workshop, 2000.

2. D. Brumley and D. Boneh. Remote timing attacks are practical. In 12th USENIX
Security Symposium, 2003.

3. Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, and Phong Q. Nguyen.
Paillier’s cryptosystem revisited. In CCS ’01: Proceedings of the 8th ACM confer-
ence on Computer and Communications Security, pages 206–214, New York, NY,
USA, 2001. ACM Press.

4. B. Chen and G. W. Wornell. Quantization index modulation: A class of provably
good methods for digital watermarking and information embedding. IEEE Trans.
on Information Theory, 47(4):1423–1443, May 2001.

5. Ingemar J. Cox and John-Paul M. G. Linnartz. Public watermarks and resistance
to tampering. In International Conference on Image Processing (ICIP’97), pages
26–29, 1997.

6. J. Eggers, J. Su, and B. Girod. Asymmetric watermarking schemes, 2000.
7. Gael Hachez and Jean-Jaques Quisquater. Which directions for asymmetric wa-

termarking? In XI European Signal Processing Conference, 2002.
8. Ton Kalker. Secure watermark detection. In Allerton Conference, 2005.
9. Neal Koblitz. A Course in Number Theory and Cryptography. Springer Verlag,

1994.
10. P. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems. In Crypto, 1996.
11. M. Malkin. Cryptographic Methods in Multimedia Identifi-

cation and Authentication. PhD thesis, Stanford University,
http://theory.stanford.edu/∼mikeym/papers/malkin-thesis.pdf, 2006.

12. J. Jaffe P. Kocher and B. Jun. Differential power analysis: Leaking secrets. In
Crypto. Springer Verlag, 1999.

13. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proceedings of Eurocrypt ’99, volume 1592, pages 223–238. Springer-
Verlag, 1999.

14. E.C. Chang Q. Li. Security of public watermarking schemes for binary sequences.
In Information Hiding Workshop, 2002.

15. Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Proc. of Public Key Cryp-
tography, 2001.

16. S.Micali s. Goldwasser. Probabilistic encryption. In Journal of Computer and
Systems Science, volume 28, pages 270–299. 1984.

17. D. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.
18. Ilaria Venturini. Counteracting oracle attacks. In Proceedings of the 2004 Workshop

on Multimedia and Security, pages 187–192. ACM Press, 2004.

