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Abstract

Data mining in large data sets often requires a sampling or
summarization step to form an in-core representation of the
data that can be processed more efficiently. Uniform random
sampling is frequently used in practice and also frequently
criticized because it will miss small clusters. Many natural
phenomena are known to follow Zipf’s distribution and the
inability of uniform sampling to find small clusters is of
practical concern. Density Biased Sampling is proposed
to probabilistically under-sample dense regions and over-
sample light regions. A weighted sample is used to preserve
the densities of the original data. Density biased sampling
naturally includes uniform sampling as a special case. A
memory efficient algorithm is proposed that approximates
density biased sampling using only a single scan of the
data. We empirically evaluate density biased sampling
using synthetic data sets that exhibit varying cluster size
distributions finding up to a factor of six improvement over
uniform sampling.

1 Introduction

Uniform sampling is often used in database and data
mining applications and Olken provides an excellent
argument for the need to include sampling primitives
in databases [17]. Whether or not uniform sampling is
the “best” sampling technique must be evaluated on an
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application by application basis. Some records may be
of more value in the sample than others. If we knew
the value of each record, we could sample by assigning
a probability proportional to the importance of the
record. It is unlikely that we can define the value of each
record in the database and, worse yet, it may be difficult
to generalize results obtained from such a sample
because the sample is no longer representative of the
database. Instead, we’ll consider applications in which
it is possible to define sets of equivalent records and use
the size of these sets to bias our sample while ensuring
that the sample is still representative. Data mining
applications on spatial data are a natural application
because we have a simple notion of equivalent points:
points that are close. To show the applicability of using
groups of equivalent points to bias the sample, we will
concentrate on clustering a database.

Clustering can be generally defined as the following
problem. Given N points in d dimensional feature
space, find interesting groups of points. There is
no definitive way to quantify “interesting” but many
algorithms assume that the number of clusters, k, is
known a priori and find the k clusters that minimize
some error metric. Other algorithms look at areas of
space that are denser than some threshold parameter
and then form clusters from these dense regions.
Clustering is of practical importance in many settings.
For example, clustering can be used for classification
problems in machine learning [16], in information
retrieval to identify concepts [4] or to improve the
presentation of web search results [22], by physicists
to find the spatial grouping of stars into galaxies [15]
and in general to find relationships in the data and
to succinctly model the data distribution. Interesting
problems for all of these applications involve data sets
that have at least a million points.

A typical clustering algorithm will initialize the
parameters of the model (randomly or based on a
sample) and iteratively use the model to assign the data
to group(s). According to this assignment, a new model
is constructed. This iterative process involves the entire
data set at each step and take an unbounded number
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Figure 1: Four clusters with skewed sizes

of steps to converge. It is essential that we reduce the
data size. One solution is to summarize the data and
create a new representation that is more compact. The
best algorithms based on data summarization use the
current model to summarize a subset of the data [2, 3].
As such, it is imperative that the initial model for a
summarizing clustering algorithm be representative of
the data.

Alternatively, many people use a p-uniform sample (a
sample in which each element has probability p of being
selected). A sample is selected from the database and
clustered. Provided that the sample was representative
of the data, the clustering is expected to generalize to
the entire data set. Once the sample has been clustered,
a single pass over the database to correct for small errors
(due to sampling) is recommended. To see why uniform
sampling is not necessarily ideal, consider the example
in Figure 1. This example and much of the discussion is
based on data generated by the “mixture model.” The
mixture model assumes that the data is generated by a
mixture of k Gaussian distributions. Each distribution
has a corresponding mean and covariance matrix and
points are assumed to have been generated by one of
these Gaussians. Our example contains 4 clusters and
the distribution of points between clusters has been
dramatically skewed: clusters A and B each contain
9,900 points while clusters C and D each contain only
100 points. The shaded area contains most of the
points of each cluster (the dense core of the Gaussian
distribution). A 1% sample of this data set would be
expected to draw around 99 points from each of A and
B and a single point from each of C and D. For any given
sample, if one or more points are actually selected from
the C and D clusters, they will likely be treated as noise
by the clustering algorithm. That is, we expect that
clusters C and D will be completely missed!

Let us consider what has happened with this uniform
sample to see what properties are needed by a good
sampling technique. First, it is important that the
sample contain many points from the shaded region
because they will be the best representatives of the
cluster. Uniform sampling has this property since the
shaded area is the dense core of the Gaussian. But,

as we saw, the uniform sample fails because it is not
representative of all the groups of points. We want
to sample more evenly from all the different groups.
For example, if we already knew the clusters, we’d
rather randomly pick 50 points from each cluster to
form the sample. Using the size of the groups to bias
the sample is the heart of our proposed method and we
call this a Density Biased Sample. Since we pick the
points uniformly from each cluster, the density biased
sample here will still contain more points from the
shaded regions. But, it is not necessarily a good sample
because it is no longer representative of the data (it
makes A and C appear to be the same size). Instead, we
notice that each sampled point from clusters A and B
is representing 9,900

50 = 198 points, while each sampled
point from cluster C and D is only representing 2 points.
Augmenting the sample with a weighting of the points
is called a Weighted Sample.

Cluster sizes are not actually expected to be skewed
as dramatically as was shown in the example. Instead, it
seems more likely that cluster sizes will follow a Zipf dis-
tribution. Zipf distributions occur extremely frequently
in practice: they have been found in the frequency dis-
tribution of vocabulary words in text (English and Latin
works of literature [24]; the Bible [6]); the distribution
of city populations [24]; distribution of first and last
names of people [5]; sales patterns [6]; income distribu-
tions (the “Pareto law” [20]); and distribution of web-
site hits [13].

The main contribution of this paper is to introduce
a new sampling technique and an efficient algorithm
that improves on uniform sampling when cluster sizes
are skewed. The rest of the paper is organized as
follows. First, we present density biased sampling
in general terms, parameterized to form a set of
sampling techniques that includes uniform sampling as
a special case. We then comment on related work.
Next, we develop a one-pass algorithm that produces
an approximate density biased sample and informally
characterize its behaviour. Experimental results follow
which demonstrate that density biased sampling is more
effective than uniform sampling when the size of the
clusters is skewed.

2 Density Biased Sampling

Suppose that we have N values x1, x2, · · · , xN that are
partitioned into g groups that have sizes n1, n2, · · · , ng
and we want to generate a sample with expected size M
in which the probability of point xi is dependent on the
group sizes (particularly dependent on the size of the
group containing xi). The groups in the motivating
example were defined to be the clusters. This is
obviously computationally infeasible. We will define a
simple algorithm for group assignments in section 4 and
proceed to define Density Biased Sampling in terms of
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arbitrary groups.
Our example from Figure 1 suggested the criteria

that we want our sampling to satisfy. We will define
a probability function and a corresponding weighting of
the sample points that satisfies:

i) Within a group, points are selected uniformly.

ii) The sample is density preserving.

iii) The sample is biased by group size.

iv) Expected sample size is M .

We define density preserving to mean that the
expected sum of the weights of the sampled points for
each group is proportional to the group’s size. That is,
if group i contains the points {x1, x2, · · · , xni}, point
xj is included in the sample (with weight wj) with
probability P (xj), then

ni∑
j=1

wj · P (xj) = κni

for some constant κ. This formalizes the notion of
“representative of the data distribution.” Uniform
sampling satisfies this definition. A p-uniform sample
has κ = p.

To satisfy criterion i), we define P(selecting point
x | x in group i) = f(ni). Each point in the group
then has the same probability of being selected and we
assign each point from the group equal weight w(ni) =
1/f(ni). The expected weight of the points in group i
is:

ni∑
j=1

P (point xi) ·w(ni) =
ni∑
j=1

f(ni) · 1/f(ni) = ni

which satisfies property ii). To bias the sample by group
size, we define f(ni) = α

ne
i

for any constant e. Notice
that for e = 0, we have simply defined a uniform sample
(independent of group assignments) and for e = 1 we
expect to select the same number of points per group
(as in the example). We define α such that the expected
sample size is M (requirement iv):

E(sample size) =
g∑
i=1

E(size of group i)

M =
g∑
i=1

nif(ni) =
g∑
i=1

ni
α

nei

⇒ α =
M∑g

i=1 n
1−e
i

The following observations apply in general and
will be useful when we discuss an implementation
of density biased sampling. First, if there are g

groups of size n
g then every point is assigned the same

probability and weight. That is, we have implemented
uniform sampling. The second observation is that if
each point is randomly assigned to a group, we will
approximate uniform sampling. Since each point is
randomly assigned to a group, the expected group
size is n/g. That is, the expected behaviour will
be to approximate a uniform sample when points
are randomly assigned to groups. These first two
observations will be important when we define a simple
algorithm for group assignments. We will be able to see
that poor parameter choices will gracefully degrade to
a uniform sample.

The final observation relates to a sample of data
generated by a mixture model in which each cluster has
equal size. The ideal groups for such a dataset are the
clusters (as we saw in the motivating example). That
is, in this special case, uniform sampling is equivalent
to Density Biased Sampling with ideal groups. We
will use this observation in our experiments to quantify
the effects of a much simpler definition of group
assignments.

3 Related Work

Sampling has attracted much interest in databases:
Olken et al. give algorithms for uniform sampling from
hash tables and index trees [17]; Hellerstein et al. use
sampling to give approximate answers to aggregation
queries [12]; Haas et al. use sampling to make estimates
for the number of distinct values of an attribute for
query optimization [10].

Sampling is also used extensively for data mining:
Commercial vendors of statistical packages (e.g., SAS,
at http://www.sas.com/) typically use uniform sam-
pling to handle large datasets.

Clustering is one of the typical operations in data
mining. There is a huge literature on clustering for
Information Retrieval (see [18] for a recent survey), with
additional interest in social and biological sciences (see
[11]). Clustering for large datasets has attracted a lot
of interest in the database field.

Zhang et al. proposed the BIRCH algorithm which
was the first to explicitly use a data summarization
step [23]. A tree of spherical groups of points (a
CF-tree) is built and the size of spheres is grown as
memory is exhausted. The assumption that the points
may be summarized as spheres is often criticized and
more recently Bradley, Fayyad and Reina have used the
current model of the data to select points that should
be summarized by their sufficient statistics [2, 3]. They
show that this model based summarization is more
effective than the BIRCH CF tree summarization. To
produce good clustering results, they assume that the
data is randomized (or at least the initial portion of the
data is a random sample). It seems that a density biased
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Figure 2: Density approximation by hashing

sample would be ideal to “seed” their initial model.
Uniform sampling has also been used directly for

clustering. CURE uses a uniform random sample and a
new hierarchical clustering algorithm that out-performs
BIRCH in experiments using non-spherical clusters that
are unevenly sized with noise in the data [9]. They
ensure that the sample is large enough to adequately
cover all clusters. Salem directly compares uniform
sampling against CF-tree summarization finding the
uniform sampling is as good a representation for
sufficiently large samples [14]. Sampling in both papers
is done using Vitter’s reservoir sampling [21].

Density Biased Sampling (DBS) is related to previous
sampling techniques. In particular, Probability Propor-
tional to Size (PPS) sampling has similarities to DBS.
PPS sampling is a multi-stage sampling technique. The
data is grouped and then some subset of the groups are
chosen. From the chosen groups, elements are added to
the sample. In PPS sampling, the selection of groups
is biased proportionally to their size. DBS will be in-
versely biased by group size and is a one stage sampling
technique. PPS sampling would be difficult if not im-
possible to implement as a one pass algorithm. Strati-
fied sampling is used for spatial analysis (for example,
[19]). Stratified sampling is another form of two stage
sampling.

4 Approximating Density Biased
Sampling

Density biased sampling requires that the data be
partitioned into “groups.” We have no a priori
knowledge of how the data will be distributed and
adopt the obvious technique for grouping the points.
Numerical attributes are divided into G bins and
categorical attributes have a bin for each category.

hash(< v1, ..., vd >) =
FOR i = 1 TO d DO h = h ∗ 65, 599 + vi
RETURN h MOD H

Figure 3: Hash function

FOR each input vector x
DO n[h(x)] = n[h(x)] + 1

Reset the input and compute α
FOR each input vector x

DO with prob. α/n[h(x)]e

output < n[h(x)]e/α, x >

Figure 4: Two-pass hash approximation to density
biased sampling

When dealing entirely with d-dimensional numerical
data, the space is divided into bins by placing a
d-dimensional grid over the data. If the data is
drawn from a low dimensional space and the number
of occupied bins, B, is small, we can compute the
bin counts using O(d × B) bytes. We call this an
exact density biased sample. If too many of the
bins are occupied, an approximate histogram algorithm
can be used [8]. But, in higher dimensions, it
becomes prohibitively expensive to merely represent the
occupied bins.

Those potential implementations suffer from the lack
of available memory. We propose a hashing based
approach where all available memory is used to create
an array of bin counts. Call this array n (then n[i]
corresponds to ni in the previous section) and assume
that it has H entries (indexed from 0). To index
into this array, we will use a hash function from the
bin label to array index (see Figure 2). The bin
labels are integers (either in the range 0, · · · , G − 1
for numerical data or 0, · · · , c − 1 for categorical data
with c categories). Hashing bin labels should be similar
to hashing strings since each element is expected to
be drawn from a relatively small range and we expect
values to frequently differ in only one position (adjacent
bins). Aho, Sethi and Ullman suggest that the hash
function shown in Figure 3 is appropriate for the symbol
table of a compiler [1]. For simplicity, assume that h(x)
is a function that takes value x, quantizes it and then
invokes hash on the quantized version. Then the two
pass algorithm using a hash function to approximate
density biased sampling is trivial and shown in Figure 4.

The second pass over the data makes this an unap-
pealing algorithm. If 0 ≤ e ≤ 1, this algorithm can
be converted into a one pass reservoir style algorithm.
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αD = 0
FOR each input point x DO

IF n[h(x)] 6= 0 THEN αD = αD − n[h(x)]1−e (*)
n[h(x)] = n[h(x)] + 1
αD = αD + n[h(x)]1−e (*)
WITH prob. P = min{M/(αD ∗ n[h(x)]e), 1} DO

IF the output buffer is full THEN reduce()
add < P, x > to the output buffer

reduce()
FOR each output buffer entry < Pi, xi > DO output < 1/Pi, xi >

reduce() is
FOR each output buffer entry < Pi, xi > DO

Let P ′i = min{M/(αD ∗ n[h(x)]e), 1}
WITH prob. P ′i/Pi replace this entry with < P ′i , xi >
OTHERWISE remove this entry

Figure 5: One pass hash approximation to density biased sampling

That is, to eliminate this second pass over the data, we
need to build the densities and the sample in parallel.
To do so, we will build a sample of the first j items and
then show how this can be used to build a sample of
the first j + 1 items. The following lemma is needed to
show that the sample of the first j items is a superset
of the sample of the first j + 1 items.

Lemma 1 If, when the data is restricted to the first j
records, the probability of outputting some record x is
Pj. Then for j ≤ j′, Pj ≥ Pj′.

Proof 1 (Sketch) ne and n1−e are monotone increas-
ing functions and the probability function that we use is
of the form

P =
M

nex
∑g
i=1 n

1−e
g

As more data is processed the number of terms in
the summation will never decrease nor will any value
of n decrease and consequently the denominator of the
probability function will be monotone increasing and the
probabilities will be monotone decreasing.

A buffer of points that have some chance of being
in the sample will be maintained. The buffer contains
elements {< Pi, xi >} to indicate that xi was added
to the buffer with probability Pi. Suppose that at
some later point, xi would have probability P ′i of being
output. We can convert the current output buffer into
a buffer that is a density biased sample of the currently
processed data. The lemma tells us that P ′i ≤ Pi
and consequently we will never erroneously discard a
point due to an underestimate of its probability. If we

keep < P ′i , xi > in the buffer with probability P ′i/Pi
(otherwise, remove this entry from the buffer), then xi
is in the buffer with probability P ′i . The weight of a
point is just 1/P ′i which means that we can output the
weighted sample from the reduced buffer. The one pass
algorithm is shown in detail in Figure 5

Assuming that reduce always removes at least one
entry, this algorithm is equivalent to the 2-pass version.
It is equivalent because the current output buffer is
always a superset of a density biased sample and the
reduce operation converts it to a density biased sample
of the data process to this point. When reduce fails
to remove any entries, we randomly select an entry to
evict. This happens quite rarely in practice1. In our
experiments, the output buffer is of size 1.1 × M to
generate a sample of expected size M . The two lines
marked with (*) compute the current denominator of
α in constant time (instead of time proportional to the
number of bins).

Obviously this one pass algorithm can be used for
any representation of the bin densities. Hashing is only
used to map from input point to group size and any
other mapping could be used here instead.

Collisions are a possible problem for this algorithm.
It seems that the ideal value of e would be 1 because
the sample will always be density preserving. If bins
g and g + 1 collided to form bin g then the expected

1This approach, of course, creates a small bias toward points
later in the database. It is trivial to correct this problem by
recording the number of times that each point in the buffer
“survived” one of the random evictions and using this to weight
the selection of the point to evict. But, since this does appear to
be insignificant, it is not developed further.
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weight of the points from bin g + 1 in the sample is:

ng+1 · P (select x | x in g + 1) · (weight ing + 1)
= ng+1 · M/g

ng+ng+1
· (ng + ng+1)

= M
g
ng+1

This computation is particularly interesting because
it illustrates why collisions will not be a serious problem
in practice. If ng >> ng+1 then any points in bin g+ 1
will be heavily over-weighted in the sample. But, the
probability of selecting one of the incorrectly weighted
points will be very small. This means that with high
probability we will not output any points from bin g+1.
If two bins of about equal size collide, an exact density
biased sample would be expected to output more points
from each of these bins. Collisions perturb the sample
but we see that a relatively small number of collisions
will not tend to dramatically change the sample.

Finally, a few words about the sensitivity of this
algorithm to the parameters. For very small values
of H (the hash table size), the bins will be essentially
randomly distributed to the various elements of n and
this will generate an approximation of a uniform sample
(by our observation of random group assignments).
Similarly, if G is too large and each bin has occupancy
1 or 0 then this algorithm outputs a uniform sample
(because each occupied bin will be of equal size). For
very poor choices of the hash table size or the number of
bins per attribute, hash based density biased sampling
will reduce to a uniform sample. That is, the algorithm
is expected to be quite robust to poor parameter
choices.

5 Experiments

There are several unknowns that will be explored in
our experiments. First, and foremost, we wish to see
that density biased sampling provides better clustering
results than uniform sampling and BIRCH when the
cluster sizes follow a Zipf distribution. The Zipf data
set will constitute an average case and we explore a
very skewed distribution of cluster sizes and a data set
in which cluster sizes are all equal to observe a range of
behaviours.

We have chosen to represent groups by binning the
data. This will have some effectiveness implications.
Using equal sized clusters makes uniform sampling
equivalent to ideal density biased sampling. We
can measure the effect of the binning by looking
at this extreme case. We will find that binning
introduces a small error that is acceptable given the
significant improvements seen for realistic cluster size
distributions.

Our approximation uses hashing to map bins to their
respective counts. This introduces an error resulting
from collisions. We will measure the effects of collisions

and find that they make little to no difference in the
effectiveness of the sample.

5.1 Methodology
Several sampling or summarizing algorithms are com-
pared experimentally. An experiment consists of select-
ing a data distribution, a clustering algorithm and then
varying the amount of available memory to measure
performance for various sample sizes. All the contend-
ing methods use a single pass over the data to generate
a sample, weighted sample, or a summarized represen-
tation of the data. The algorithms used are:

i) BIRCH. Summarization is done with CF-trees and
the maximum available memory will be limited to
2x the space needed to hold the sample [23].

ii) Uniform random sampling. A reservoir sampling
algorithm is used and requires only the amount of
memory needed to represent the sample [21].

iii) Hash based approximation to density biased sam-
pling. The amount of memory used is twice the
amount of memory needed to represent the sample.
We will use two values for e for density biased sam-
pling. Using e = 1 is Inverse Biased Sampling (IBS)
and e = .5 is Inverse Root Biased Sampling (IRBS).

iv) Exact density biased sampling. The occupied bins
are represented explicitly and the memory needed is
not restricted. The only difference between iii) and
iv) are collisions in the hash table. For e = 1, call
this Exact IBS and, for e = .5, call this Exact IRBS .

BIRCH is included because it is extensively studied
and has recently been directly compared to uniform
sampling for equal sized clusters in low dimensional
space [14]. Our experiments extend the cases in
which BIRCH and uniform sampling have been directly
compared. The hash based algorithm requires auxiliary
memory. The hierarchical clustering algorithm uses
about twice the memory needed to represent the sample
and thus the decision to allow BIRCH and the hash
based algorithm the opportunity to use this memory is
reasonable.

BIRCH is provided with a default configuration that
uses the framework shown in Figure 6. The sampling
and the refinement step will be those used by BIRCH
and are considered to be “off the shelf” components that
are beyond our control. In BIRCH, the sampling step
builds the CF-trees, the clustering step uses a simple
hierarchical clustering algorithm and the refinement
step implements a single iteration of the k-means
algorithm (the output clusters are the center of mass
of all the points that are included in the cluster). This
framework is used by all our competing algorithms and
consequently any differences in performance are directly
attributable to the sampling/summarizing technique.
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Figure 6: Clustering framework

Param. Value(s) Interpretation
N 200,000 # of points
d 20 or 50 # of dimensions
k 500 # of clusters
σ .05 Standard deviation

p1, · · · , pk Varies Prob. of cluster membership

Table 1: Parameters for data generation

5.2 Evaluation Metrics

The natural evaluation metric for the BIRCH algorithm
is the root mean square (RMS) distance to cluster
centers. If we assign each point xi = (x1

i , · · · , xdi )
to the closest cluster center, ci = (c1i , · · · , cdi ), then
the distance from the center is the standard Euclidean
distance

‖ xi − ci ‖2=

√√√√ d∑
a=1

(xai − cai )2

and the root mean square error is defined to be√∑n
i=1 ‖ xi − ci ‖22

n

RMS distance does not provide all of the information
that we need. We are particularly concerned with
the number of clusters that are actually found by the
respective algorithms. RMS distance does not provide
this information and we introduce a very simple metric
to count the number of clusters that are “found.”

Suppose that we knew that the true cluster centers
were {c1, c2, · · · , ck} and we wish to evaluate a system
that found cluster centers {ĉ1, ĉ2, · · · , ĉk′}. We say that
cluster ci is found if ∃ ĉj with ‖ ci− ĉj ‖2 < ε. We select
ε = 0.001 and define the metric Number of Clusters
found (NC) to be the number of the true clusters that
are “found.” Notice that algorithms are not rewarded
for finding the same cluster more than once nor are they
rewarded for merging clusters.
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Figure 7: Sample synthetic data: n = 4, 000, d = 2,
k = 10, σ = .05

5.3 Data Generation
We randomly generate data based on the parameters in
Table 1 using a mixture model. There are k clusters
and N points in the d-dimensional unit hypercube.
Each of the d attributes for a cluster center are
generated in the range [.1, .9]. A diagonal covariance
matrix is generated by computing a variance in the
range [0, σ2] and using the square root of the variance.
Covariances computed in this fashion are in the range
[0, σ] but will have very few small values. Since σ = .05
and the centers are generated in the range [.1, .9], the
majority of the points will be in the unit hypercube. For
simplicity we discard the few points that are outside
the hypercube. To generate the data, each point is
randomly assigned to a cluster using the the probability
distribution P (cluster i) = pi. Once assigned to a
cluster, the appropriate mean and covariance is used to
generate a point according to a Gaussian distribution.

The center of mass of each cluster is recorded for
future use in computing NC. By using the center of mass
and not the randomly generated mean, any clustering
that correctly classifies all the points will be guaranteed
to “find” the cluster.

Three different cluster membership distributions are
used:

i) Even: All clusters are equally likely (pi = 1/k).

ii) Zipf : Cluster sizes follow a Zipf distribution (pi =
1/(Hk · i) where Hk is the kth harmonic number).

iii) OneBig : One cluster has most of the points, all
other clusters have 100 points (p1 = (n − 100(k −
1))/n and pi = 100/n for 2 ≤ i ≤ k).

Figure 7 shows a very small example of the data that
is generated. This data was generated with Zipf sizes,
k = 10, n = 2000 and all other parameters unchanged.
The clusters are fairly well separated but we see that
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Figure 8: Zipf sizes (d=20): RMS Error predicted and NC for the same experiment

several clusters overlap in the bottom right quadrant.
It will be very difficult to exactly find every cluster in
data generated by this procedure.

6 Results

Figure 8 shows performance for the algorithms for
various sample sizes (equivalently memory size) for 20-
dimensional data with Zipf cluster sizes. We see that
the relative orderings of the contending algorithms is
identical for the two metrics and we can see similar
relative performance. This relationship is true for all
the experiments reported. Either metric could be used
to draw similar conclusions. Due to space limitations,
we can only present one metric and use NC because it
is easier to unambiguously interpret.

BIRCH performs quite poorly in these experiments.
BIRCH appears to require memory that is 10% of the
total database size to perform well in our 20 and 50
dimensional experiments. BIRCH tends to do slightly
better under the RMS distance metric than NC metric
but is generally still quite poor.

In the average case, IBS and IRBS are much better
than uniform sampling. Figure 10 shows NC for various
sample sizes for 20 and 50 dimensional data with Zipf
cluster sizes. For 1% samples, IBS and IRBS find
approximately 2.3 times as many clusters as uniform
sampling in 20 dimensions and more than twice as many
clusters in 50 dimensions. A 2.5% IRBS or IBS sample
finds 90% of the clusters while a 2.5% uniform sample
finds fewer than 70% of the clusters.

As the cluster sizes become more skewed, this
difference in performance increases. Figure 9 shows the
same information for data sets in which the OneBig
cluster sizes are used. For 1% sample sizes, IBS and
IRBS find between 4 and 6 times as many clusters as
uniform sampling. A 2.5% IBS or IRBS sample finds
more than 95% of the clusters while a 2.5% uniform

sample still finds fewer than 70% of the clusters.
Figure 11 shows that binning is a good approximation

to the ideal groups for IRBS but not as good for IBS. In
20 dimensions, IRBS is typically within 7.5% of uniform
and in 50 dimensions generally within 16%. On the
other hand, IBS is only within 20% and 43% in 20 and
50 dimensions respectively. We see that IBS is sensitive
to the quality of the groupings generated by binning the
data but that IRBS is hardly affected by our grid-based
choice of group assignments.

Finally, Figure 12 shows that collisions have essen-
tially no effect on clustering the Zipf cluster sizes data
set. In both 20 and 50 dimensions, the approximation
is typically within 10 clusters of exact IBS and exact
IRBS.

To summarize:

• IRBS and IBS are much better than uniform
sampling for clustering data sets with skewed cluster
sizes.

• Using bins is a reasonable choice for IRBS.

• Collisions do not reduce the effectiveness of IBS or
IRBS.

We generally conclude that IRBS gives the best
performance of any of the algorithms considered.

The running time of all the algorithms is linear in the
database size and completely dominated by the cost of
reading the data. Table 2 shows the wall clock running
time to generate a 1% sample for a 20 dimensional data
set with Zipf cluster sizes. “Read-only” is the time is
takes to read the data and perform no other processing.
The third row is the wall clock time less the time that
it takes to read the data. This is the time attributed to
the sampling algorithm. We see that all algorithms are
quite efficient and do not contribute undue overhead.
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Figure 9: OneBig sizes (d=20/50): Ideal case for density biased sampling
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Figure 10: Zipf sizes (d=20/50): Data moderately skewed, density biased sampling excellent
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Figure 11: Even sizes (d=20/50): Ideal case for uniform sampling
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Figure 12: Zipf sizes (d=20/50): Collisions only cause minor differences

Method Read-only Sample BIRCH IRBS
Time 16.7 17.7 18.1 18.1
- Read -16.7 -16.7 -16.7 -16.7
Actual 1.0 1.4 1.4

Table 2: Zipf sizes (d=20): Wall clock execution times

7 Applications and Further Research

We have used density biased sampling as a preprocess-
ing step for clustering. Good summarization algorithms
assume that the data appears in a random order and
that the first component is representative of the data
[2, 3]. Using a density biased sample is more likely
to satisfy these assumptions than a uniform sample of
equal size (in bytes). So, not only can IRBS be used to
cluster, it can also be used to improve summarization
based algorithms (such as [2, 3]) and to develop better
initial models (as done with uniform sampling in [7]).

More generally, density biased sampling offers a rep-
resentative sample of the data that includes more of
the unexpected points. Any algorithm that does not
require that all inputs be distinct can be trivially ex-
tended to support a weighted sample. Many statistical
algorithms use multiple samples to reduce variability.
Density biased samples should reduce the variability of
the algorithms because we can include more of the “un-
usual” points (i.e., the points that are likely to induce
variability) while ensuring a representative sample.

Finally, it appears that it should be possible to
efficiently construct a density biased sample using
an R-tree index by descending in the R-tree only
as far as needed to compute the bin sizes. Using
an existing index may make it possible to construct
samples without reading the entire database.

8 Conclusions

We proposed a new sampling technique: Density Biased
Sampling . Density biased sampling naturally includes
uniform sampling as a special case. We implemented
density biased sampling using a hashing function to
map bins in space to a linear ordering, allowing it
to work with very limited memory. The hash based
approximation to density biased sampling with e =
.5 (IRBS) is more effective for clustering than either
a uniform sample or a CF-tree summarization (for
realistic data). We found that binning is particular
appropriate for IRBS and that collisions had little to
no impact on the effectiveness of the sample generated
by IRBS and IBS.

The method favours clusters containing fewer points.
Uniform sampling tends to miss these smaller clusters.
These clusters are the most likely to contain interesting
results because the domain experts are likely aware
of the very large clusters. Using a Zipf distribution
of cluster sizes (an “average” case) and taking a 1%
sample, IBS and IRBS find more than twice as many
clusters as uniform sampling. As the cluster sizes
become even more skewed, this increases to between 4
times and 6 times for 20 and 50 dimensions respectively.
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