
Essay on Software Engineering at the

Turn of Century

W ladys law M. Turski

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland

wmt@mimuw.edu.pl

Abstract. Presents a personal view of the development of software en-
gineering and its theoretical foundations, assesses the current state, lists
(some) unresolved problems and identifies (some) directions of fruitful
research. The Y2K problem is ignored.

0 Disclaimer

When asked to prepare this presentation, I was given a broad description of its
desired content: about software engineering, something appropriate for the year
2000, a look backward and few hints on future development, perhaps a little
about important research topics.

It could have been a very boring presentation, full of references and technical
jargon. Even if I decided to go this way, I am sure I would have missed some
references and some technical terms very dear to some of my esteemed audience
and/or readers. I do not need more enemies than absolutely necessary, therefore
I decided not to include any references and limit the use of technical jargon
to bare essentials. There is one exception: in several places I quote from the
proceedings of the 1968 Garmisch Conference on Software Engineering1; it is
there that it all began.

There is no widely accepted hierarchy of topics in software engineering, or if
it exists, I am left out of the common knowledge. I decided to follow my own
preferences (and if you wish to call them predilections, or even prejudices, I will
not argue).

There is always the perplexing matter of style. I believe that even without
references I could have produced a very learned-looking document, but I decided
to follow another pattern. I have chosen the form of an essay: at least at first
glance it seems easy to read.

I realise that writing this essay in the autumn of 1999 to be presented in
the spring of 2000 I am facing the difficulty of guessing the computer events of
the 99/00 changeover and their consequences for our systems/economies/lives.

1 Software Engineering. Report on a conference sponsored by the NATO Science Com-
mittee. Garmisch, Germany, 7th to 11th October 1968. Editors: Peter Naur and Brian
Randell. January 1969.

T. Maibaum (Ed.): FASE2000, LNCS 1783, pp. 1–20, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

2 W ladys law M. Turski

I am no seer, I cannot tell the future, but I am sure that in the long run the
whole Y2K affair shall have beneficial effects for software engineering practice
because some very bad systems will have been discontinued (or destroyed), some
bad systems will have been mended a little and — most of all — a few more
practicing software engineers and their bosses would have realised that proper
discipline in programming and documentation is not just for academic birds: it
pays, handsomely.

Finally, all opinions expressed in this essay are mine and I accept the whole,
undivided responsibility for them.

1 Background

The ancient Greeks were excellent mathematicians. Despite a relatively high level
of mathematical education, (at least some) Greek engineering projects clearly
exceeded cost and — one presumes — time limits.

To celebrate their victory over the Macedonian king Antigonus I in 306 b.c.,
proud citizens of the island of Rhodes decided to erect at the entrance to their
main harbour a bronze statue of Apollo. The design and project management
were entrusted to the famous sculptor and architect, Chares. When he submitted
the cost estimates, the Rhodians asked what would it cost to build the statue
twice as high. The answer “twice as much” accepted and corresponding budget
allocated, Chares started the construction. According to Sextus Empiricus, when
funds ran out long before the statue was completed, Chares committed suicide.
Colossus, one of the Wonders of the Ancient World, was eventually completed
(70 cubits high) by others. It was severely damaged by an earthquake in 224
b.c., never restored, and finally (in a.d. 672) sold for scrap to a merchant of
Edessa, who carried it off piecemeal on 900 camels. One wonders if the drastic
change of project management was responsible for structural heterogeneity of
the monument: one part was destroyed barely 80 years after construction (albeit
by an earthquake), another stood for nearly a millennium. This question can
be answered only by speculation; the glaring error in estimation of the cost of
change in specifications is a historic fact.

The Roman legionnaire, who in 212 b.c. killed Archimedes while the latter
was engrossed in solving a mathematical problem, gained a dubious kind of
immortality being the only ancient Roman ever mentioned in the history of
mathematics. A very comprehensive textbook on the subject may add that an
inscription prohibiting dogs and mathematicians adorned the doors of many a
Roman tavern. Mathematics was not among the subjects dear to a Roman mind,
yet Romans were excellent engineers.

And so it continued throughout the centuries. The contemporary structural
analysis of medieval cathedrals bristles with mathematics which certainly was
neither available nor even accessible to the inspired master masons who built
them. Yet, very few cathedrals collapsed on their own. The relationship between
mathematical and engineering excellence (and, indeed, proficiency) is not as
simple and straightforward as the popular view would have it.

Essay on Software Engineering at the Turn of Century 3

Software, or should I say “the software engineering product”, is by no means
unique in that it is less than completely satisfactory, reliable, trouble-free. In fact,
no engineering product ever is. Yes, there were a few actual disasters caused by
software, some — regretfully — cost human life. It is pointless and distasteful
to run a scoreboard of tragedies, but software engineering surely is not a clear
leader. A brief analysis of two catastrophes may throw some light on issues we
are to discuss later on.

Owners of the White Star Line raising toasts in April 1912 as their new liner
set course for New York were a little precipitate. Getting the Titanic launched
and selling the tickets were not really the issue. In retrospect, knowing all we
know today, what was the single most important “error”? I claim it was an incom-
plete specification in which hardly any attention was paid to life-saving features
under conditions of the total failure of disaster-prevention features. Apart from
considerations of cruising speed, cost-effectiveness and passengers’ (somewhat
graduated) comfort, designers worked to the best of their ability to make the
ship seaworthy and unsinkable. It did not enter their heads that all precautions
could fail under the impact of a North Atlantic iceberg, or, few years later, if a
U-boot would score a hit. The Titanic’s lifeboats did not have sufficient capacity.

The Chernobyl disaster is often quoted as an example of nightmares that
the technology could unleash. To be sure, the reactor design in the Chernobyl
power station was not the safest known. But what is conveniently overlooked
in most analyses and — especially — in dramatic writings intended for popular
consumption is that the actual catastrophe was due entirely to a human oper-
ator error, with control software intentionally switched off. There is absolutely
no reason to suspect that had the software operated as usual on that fateful
day in April 1986 there would have been an explosion. This realisation opens a
very difficult problem, one that may be truly insoluble, to wit: in safety-critical
situations, where computer-based i.e. software control is installed, should it be
possible for a human operator to override it? (Switching off being a rather spe-
cial instance of overriding.) The Chernobyl disaster points towards a negative
answer; most car manufacturers seem to go in the same direction, some aircraft
crashes perhaps could have been avoided if the pilot’s reactions were not over-
ridden. But the problem is deeper than this; the classical answer “it depends”
is more than a little disturbing.

Finally, let us note that at least some disasters clearly emanating from faulty
computer calculations can hardly be attributed to software errors. Stupidity, for
example, needs no software to show its ugly face, even though software is by no
means immune to it, as follows from a fairly recent piece of news:

The United States space agency Nasa admitted that the disastrous loss of its
$130m Mars Climate Orbiter last month was due to faulty flight calculations
based on the simple failure to convert imperial measurements into their metric
equivalents. (The Guardian Weekly, October 7 - 13, 1999.)

4 W ladys law M. Turski

2 A Bit of History

There is a tendency to consider the evolution of the software field as a kind
of more or less systematic progression from individual machine code programs
written in binary (or, indeed, wired by cables plugged into a switchboard) to
contemporary mammoth systems and networks, heterogeneous in every respect:
written in dozens of high (and very high) level languages, interconnected at
several levels by message passing mechanisms, produced by a variety of tools,
relying on vast depositories of non-uniformly structured information. This view
is correct only insofar as the term “software” is used in the loosest possible sense
of “all that makes computers run”. For any analytical use such an interpreta-
tion of the term is inadequate because it blurs the essential distinction between
programs which prescribe computations and those that prescribe behaviours.

Historically, computers were first used for computations or — in a slightly
more abstract phraseology — for effecting well-defined state transformations,
from a given to a result. Computations have been a part and parcel of human
civilisation for several millennia; for most of that period they were performed by
people. Algorithms were invented to formalise the process of human computa-
tions and thus to facilitate them, i.e. to make them performable by less qualified
persons. The sequentiality of computation (and its particularly important vari-
ant: iteration), born from the human propensity to do one thing after another,
has become a part of our cultural heritage. It was not a consequence of the von
Neumann architecture, quite the opposite: it dictated its principles.

The essence of computation is captured by the familiar {P}p{Q} triple; the
fundamental problems of computation software are easily expressible in terms of
this paradigm: termination and correctness nicely merged into notions of partial
and total correctness. It took about 20 years of programming practice and its
analysis by the more mathematically inclined to find this succinct representa-
tion; in another 10 years or so there emerged a fully-fledged discipline based on
this paradigm. Originally concerned (almost) exclusively with proofs of program
correctness, the discipline developed a number of logics (more or less) well-suited
for this task. Subsequently, with the {P}p{Q} triples embedded in predicate cal-
culus (as predicate transformers), the discipline embraced algebra-like calculi of
program derivation.

For software engineering, the most interesting aspects of the discipline were
those in which {P}p{Q} was considered as an equation in p, i.e. methods (or
at least hints) for constructing an unknown program p for a given characterisa-
tion of the initial and final states. The big white hope was automatic program
construction i.e. in fact an algorithmic solution for the program construction
problem, a goal very hard to achieve in restricted circumstances and most prob-
ably impossible to reach in general. A number of limited-application solutions
resulted in experimental systems implemented in academic and industrial re-
search environments; none have passed into general use. A relaxation of the
notion of algorithmicity, for example by admitting a heuristic trial and error
approach or by exploiting interaction with a human operator, resulted in several
more systems, some actually used, albeit primarily for educational purposes.

Essay on Software Engineering at the Turn of Century 5

Insofar as programming remains essentially a human activity, the greatest
impact of the {P}p{Q} paradigm on software engineering comes through its
influence on and absorption by programmers. As is usual with intellectual ad-
vances, the time needed for an innovation to reach its social fruition is measured
in academic generations: first it is absorbed by peers, then it enters curricula,
finally those educated with the innovation firmly established as an integral part
of the “craft” (or “science”, or “technology”) they were taught apply it in their
daily work. Assigning roughly five years for each generation, we arrive at the
mid-80s as the epoch when the calculational view of program correctness and
derivation (and, therefore, program manipulation) should have become a more or
less established norm amongst educated programmers. Unfortunately, by that
time the demand for programming bodies far outstripped the supply of pro-
gramming graduates. The balance was made up by persons trained in program
writing at various “intensive courses” and by self-taught amateurs, who attained
a rudimentary ability to put down program texts with a reasonably small num-
ber of syntactic errors. (Easily available tools quickly convert such texts into
syntactically perfect programs.) It is only in those establishments where the
concentration of educated programmers is high enough that the impact of the
calculational approach is felt. Such establishments tend to be found in the better
part of academia and in the highly specialised industries. A very large part of
the software industry has yet to discover the only tool (so far) for dealing with
the semantic problems of computations, i.e. to reap the benefits of using the
{P}p{Q} paradigm in a calculational fashion.

The mentality that came up with and eagerly embraced the {P}p{Q} par-
adigm was shaped by the computations culture, predominantly in science or in
some other previously mathematicised fields. This mentality was also formed by
the scientific work ethic in which criteria of success (although not the success
itself!) were impersonal and Occam’s razor was ever present. Thus there was
little currency for “almost correct” programs, the value attached to “user sat-
isfaction” (other than a perfect outcome of computations) was nil, and frugal
use of computer resources was not only a necessity dictated by severe hard-
ware limitations, but also a sign of one’s maturity and professionalism. To be
quite honest, this mentality could not really conceive of a million or more people
running a particular program. Hence, for instance, a very cautious attitude to-
wards program testing was taken: a pretty complex program could not possibly
be thoroughly tested within a reasonable time by a programmer and his/her sev-
eral friends/colleagues. In the realm of software for mass use, guided by market
forces and paltry user expectations, firmly established by the end of the 80s, the
fundaments of that world-view became decidedly outmoded.

For example, wide distribution of the so-called beta versions of popular pack-
ages increases the number of testers by several orders of magnitude. From the
producer’s point of view the beta version testing certainly is practically free, al-
though collecting and processing the test results is not. An additional advantage
of beta version testing by a large subpopulation of the intended users comes
from an ample representation of the variety of use modes. Indeed, it is very

6 W ladys law M. Turski

probable that the several hundred thousand testers using the beta version for
several months will find nearly all bugs in a fairly large software product. That
the product finally brought to the market still contains a number of errors is to
be expected, but these should relate to “exotic” modes of use, or to rare configu-
rations of interactions. Unfortunately, the challenges of managing the tidal wave
of bug reports pouring in after the beta version release, and the time pressure
to deliver the market version within a reasonable period after the beta version,
cause a large proportion of information generated by the beta release to be
wasted and/or misinterpreted, which — combined with the poor workmanship
inevitable in a hasty patching-up — results in a market product much inferior to
what could have been expected after such massive testing. The residual unrelia-
bility bears witness to the unmastered complexity and unresolved contradictions
characteristic of the software process.

Apart from a few and, frankly, well isolated special cases, software is no longer
expected to be mathematically correct. With this change, the whole edifice of
mathematically-founded software technology appears irrelevant, a folly.

As early as the Garmisch Conference, the incipient change was noted: If the
users are convinced that if catastrophes occur the system will come up again
shortly, and if the responses of the system are quick enough to allow them to
recover from random errors quickly, then they are fairly comfortable with what
is essentially an unreliable system. (J. W. Smith)

Since the time of the Garmisch Conference the scope of the notion of software
has vastly changed. The change is not only of size, even though the volume of
software written and used is several orders of magnitude larger today, it is not
only of kind, even though numeric computations and sequential file processing
then dominant now constitute a barely discernible fraction of computer use, it
is not even just the change of mode, even though interactive programs swept
from a mere curiosity very prominently into the forefront. The most important
change has occurred in the public perception of software.

Two equally powerful and interrelated factors contributed to the change of
attitude: emergence of the mass market and an essential shift in the mode of
computer use. To the great majority of users constituting the mass market any
notion of scientific work ethic is quite alien: they are guided by (and expect)
much more relaxed criteria, often “not too bad” taken literally (i.e. not as an
understatement) means “good enough”. Computers are not any longer used pri-
marily as machines to execute computations, instead they are employed to per-
form a variety of functions defined in terms of contexts taken from everyday life.
Windows is a bad idea whose time has come.

It is a serious educational fault that the software consumer population ear-
nestly expects miracles. A vast majority of current PC users are “first-time”
users. With no prior first-hand experience of pain and misery, they take an ad-
vertising copy for the gospel truth. For example, we talk of software maintenance,
when in fact we mean software change. Nobody expects house maintenance to
encompass addition of an extra floor or of an Olympic-size swimming pool in
the attic. Accomplishments of this calibre are routinely expected of software

Essay on Software Engineering at the Turn of Century 7

maintenance. Regrettably, in the realm of software, consumer education is just
as neglected as are consumer rights.

Computer today is typically used as a multimedia communication device or
as a glorified switchboard enabling multidirectional flow, transformation, stor-
age and retrieval of discrete signals. There is a growing tendency to eliminate
any visible barrier (such as, e.g. typing) between the computer and its environ-
ment. Some applications still do heavily depend on large volume of repetitive
computations (for instance, many medical applications rely on extensive FFT
computations), but even then the user is hardly aware of it. In many applica-
tions, the individual computations invoked in the course of performing a visible
function are trivial (e.g. in word processing); the usefulness of an application
obtains not from any particular computation, but from the available set of “ap-
plications” and the simplicity of their invocation2. This situation has profound
consequences for the present state of software engineering.

Individual programs of the {P}p{Q} paradigm are visible neither in the mass
market, nor in the field of special applications. Computer systems and instru-
ments with embedded computers are bought and sold for the visible functions
they perform, these functions defined in terms of the environment in which the
systems and instruments are to be used. Definitions of such functions are sel-
dom mathematical or even simply precise. Correspondingly, the criteria of per-
formance are often diffused. There is no clear relationship between the qualities
of the software, as expressed in the framework of the {P}p{Q} paradigm, and
the users’ assessment of the quality of the system or instrument. Moreover, the
observable deficiencies may just as likely be due to the software buried in its
bowels as to other components of the system or instrument. For instance, a poor
quality image on the screen of a medical instrument may be due to a defective
sensor, bad software, a glitch in the screen electronics or an imperfection in its
coating, just to name a few causes with identical visible results; naturally, all
these causes may be independently present, can interfere with each other, and
(don’t we all love it?) could be transient. Strict adherence to the {P}p{Q} school
dicta would make software engineering quite insensitive to demands posed by the
marketplace; unfortunately even the best software will not sell an erratically be-
having instrument, and no programmer can claim that the excellence of software
implies an overall good quality of the system.

As resources that used to be scarce got cheaper and cheaper, the economic
reasons for many good programming practices started to evaporate, soon to be
replaced by their near opposites. As storage units grew in capacity to previously
unimaginable sizes, and processing units grew very fast indeed, the premises for
the programmer’s frugality assumed the flavour of a sectarian ethic. Combined
with the growing cost of waste disposal, this has led to an abominable practice
of not removing obsolete parts of system software, just shunting them off in new
releases. The percentage of dead wood in current releases of popular systems is
quite large. So, of course, is the risk that the bypasses put in shall not always

2 At the Garmisch Conference, A. Perlis prophetically observed: Almost all users re-
quire much less from a large operating system than is provided.

8 W ladys law M. Turski

stay firm. But as long as the havoc resulting from an occasional activation of a
shunted off program can be cured by hitting the famous combination Ctrl Alt
Del, even with a loss of a file or two, the catastrophe is fully acceptable to most
users, immunised by occasional failures of other appliances.

Thus even in that part of software engineering which is concerned with pro-
gramming for computations, the frame of reference has changed dramatically
since the epoch dominated by programs written by scientists for scientists. It is
tempting to say that in {P}p{Q} the emphasis has shifted from p to the two
predicates, i.e. to specification. If this is indeed the case — and I believe it is
— we ought to note a remarkable success of the research carried out under the
banners of the {P}p{Q} paradigm: its original and initially considered the most
important goal, to wit: the development of technology for construction of correct
programs satisfying specifications given by firm initial and final conditions on
computational processes, has been reached.

3 A Linguistic Aside

In English, there is a bit of confusion about the meaning of the noun “model”: it
can denote either something that sets a pattern to be followed (model for, as in
“model citizen”), or something that mirrors some other (real) entity (model of, as
in “models of World War II aircraft”). Sometimes the noun is employed with both
meanings simultaneously, which greatly adds to the confusion. Unfortunately,
such is the case when speaking of software specifications one uses expressions
like “model of real-world (relationships)”.

4 A Short Treatise on Model Theory with Applications

The confusion of the natural language usage of “model” is avoided in mathe-
matics, where two terms are assigned to its two roles: theory and model. Pure
mathematics deals with abstract entities which possess only such properties as
by accepted rules of reasoning follow from their definition; e.g. it is meaningless
to ask about the colour of the number π. Some entities are known as domains,
usually they have a structure: elements, relations, functions etc. A fact is a
property “observed” in the domain, perhaps involving its structure. Thus in the
domain of natural number arithmetic it is a fact that all even numbers divisible
by 3 are divisible by 6.

Theories are sets of sentences generated by application of listed rules of in-
ference to a listed set of axioms. It is said that theory T is satisfied in domain D,
sat(D, T), or that D is a model of T , mdl(T, D), iff there is an interpretation of
sentences by means of facts, such that to each true sentence there corresponds
an observable fact. It is important to note that even if sat(D, T) there very well
may be facts in D which under the chosen interpretation correspond to no sen-
tences in T . Indeed this is what Gödel’s famous theorem on incompleteness is all
about. In this sense a model is richer than its theory. For example, the domain
of natural number arithmetic is richer than Peano’s axiomatisation (a theory

Essay on Software Engineering at the Turn of Century 9

expressly designed to succinctly capture the arithmetic of natural numbers). It
follows that a given theory T can have different models, i.e. domains which in
addition to “core” facts (all corresponding to true sentences of the theory, albeit
perhaps under different interpretations, specific for each domain) exhibit their
own “additional” facts not necessarily convertible from one domain to another.
Thus two perfectly valid models of the same theory need not be very similar
(isomorphic). Peano’s axiomatisation, for instance, has two well-known models:
arithmetic of natural numbers and arithmetic of transfinite numbers. If a theory
is consistent (i.e. not self-contradictory) it is guaranteed to have a model, and
vice versa, a theory that has a model is consistent; the latter is often used to
prove consistency.

In exact sciences it is usually the case that a theory has two important models:
the physical world, W , and a suitable mathematical model M . The theory and
its mathematical model being both artefacts, it is (at least in principle) possible
to prove the sat(M, T) relation. On the other hand no proof of sat(W, T) is
ever possible; the scientist use experiments to check if (important) statements
of T correspond to facts in W . Long series of confirmatory experiments increase
the likelihood that the theory is OK, a single irrefutable failure is enough to
shoot it down. A time-honoured scientific practice is to select for experimental
verification the most implausible statements of T .

So far we considered an idealised static picture. In practice, a theory is often
the last-to-arise element of the trio. The physical world precedes all man-made
artefacts, but in scientific analysis it is usually presented by means of a class of
observations which filter out most aspects of the reality. Thus in theory formation
and subsequently in verification, if sat(W, T) holds, W is seldom the whole wide
world but instead a specific view of it chosen by the scientist. It is also possible
first to construct an elegant mathematical structure, then to invent a theory for
which it would serve as a model, and only then look for an aspect of the physical
world that could be considered as the physical model; it is rumoured that some
Nobel Prize winners in physics have worked exactly in this manner.

5 Specifications

In software engineering, it is the specification that acts as the theory, the corre-
sponding software as one model, the application domain as another. As in science,
two elements of the trio are artefacts (specification and software), one is (an as-
pect of) the real world. Thanks to the discipline of the {P}p{Q} paradigm, the
relations between (properly presented) specifications and programs (software)
are calculable, at least in principle. This means we can prove that a program
satisfies its specification (if it indeed does so), or — which is much better —
given a non-contradictory specification, we can construct a program that prov-
ably (“by virtue of construction”) satisfies it.

The relationship between the specification and the application domain is
much harder to deal with. The chief problem with software for non-formal ap-
plication domains is that no matter how well-educated and conscientious are the

10 W ladys law M. Turski

specification builders, the informality of the domain precludes any strict verifi-
cation of the abstraction process that leads from the application model to the
specification. This plain fact is sometimes masked by the nature of specification-
making tools which are increasingly more sophisticated and whose use yields
specifications that are formal entities with desirable pragmatic properties. Thus,
as far as formal criteria are concerned, we are getting excellent specifications from
which it is increasingly easy to design correct programs, indeed, to obtain them
automatically. Nevertheless, from the application (i.e. ultimate user’s) point of
view, the quality of the program is determined by how well the informal abstrac-
tion process semantically captures the intended application model. (Let us stress
that we assume all subsequent steps in program construction and implementa-
tion to be faultless, hence the program given to a user is correct wrt informally
derived, but itself formally structured and impeccably formal, specification.)

Thus, even in the simplest cases (just as in exact sciences) there is no fi-
nite calculational procedure to establish the satisfaction; rapid prototyping and
on-site tests — which in this context play the role of experiments — are not con-
clusive when positive. When negative, following the pattern of exact sciences, the
first failure should invalidate the specification, but in many application domains
the specifications are so rickety that such a clean cut decision is seldom taken. A
negative result may simply be dismissed (“it was not really that important”), the
specification could be mended in an ad hoc fashion (“it really should have been
the other way”), or the view of the domain could be changed in a way that inval-
idates the test (“don’t worry, in practice it never happens”). There could (and
often is) a powerful incentive for such a cavalier attitude, notably when large
sums of money and a considerable effort have been expended on construction of
the other model, i.e. on software: a slight mismatch between the specification
and reality is not reason enough to throw that effort away3, especially when
the specification is a bit woolly and the view of reality a bit foggy. Needless to
say, the tenuous link between the software and the application does not get any
firmer by employing such practices.

In addition, in many instances software is written for application domains
which do not have the intransigence of the physical world . Often, especially
in the world of business applications, but also in a plethora of services and
entertainment applications, the time span needed to produce software satisfying
a given specification exceeds the life-span of the particular world view that served
as the specification’s other model. This gives rise to the phenomenon of evolving
specifications: theories that evolve to reflect an ever changing world-model.

A closer analysis of the situation in exact sciences shows that the phenomenon
is not entirely absent there. As the views of the physical world evolved, so did
their theories and the computation programs that were their models. Today we
compute planets’ positions according to algorithms quite different from 2000

3 This is not to say that I advocate the other extreme, vividly described at the
Garmisch Conference by R. M. Graham:We build systems like the Wright broth-
ers built airplanes - build the whole thing, push it off the cliff, let it crash, and start
over again.

Essay on Software Engineering at the Turn of Century 11

years ago; indeed, to compute positions of some planets and most comets we use
programs modelling (mildly) relativistic dynamics, while for most other planets
and asteroids the plain Newtonian dynamics will do very nicely. The point is
that in exact sciences the theories tend to stay fixed for periods much longer
than the software life-cycle.

Note, however, that in mathematics the phenomenon of evolving specifica-
tions is practically unknown. There, a theory once formulated stays unchanged
forever, because the wholly artificial world of mathematical structures knows no
internal evolution whatsoever. (Its expansion is an altogether different thing.)
A circle for Archimedes was the same as for Gauss, even though to compute
its circumference to diameter ratio (i.e. the number π) they would have used
quite different algorithms. The assumption of immutability of theories perme-
ates mathematical culture. The mathematically minded founders of the {P}p{Q}
discipline established a didactic paradigm in which the specifications are consid-
ered as given once and for all; they are so firmly fixed that any question of the
kind “what would happen if the specification changed?” is easily dismissed as
totally irrelevant. Much too easily!

Programming methods cultivated in the {P}p{Q} discipline — and they
are the best there is! — are often spurned on the grounds of frivolity of the
examples used to convey the methods. (From the Problem of Dutch National
Flag to the Problem of Welfare Crook, they all are “toy” examples, are they
not?) The issue is not in the examples being too simple, because they are not
that simple and no sane teacher would use much more challenging ones, but in the
tacit yet very convincing acceptance of the sacro-sancticity of the specifications
(problem statement). Students reared on the exclusive diet of such examples,
particularly, the bright students, are likely to consider the problems entailed by
evolving specifications as a can of worms carried around by simpletons unaware
that good programming practice requires unambiguous and (of course!) fixed
specifications. Therein lies one of the reasons for the mutual mistrust between
software specialists and programmers brought up in the {P}p{Q} discipline. It
is deep and divisive, its background is cultural, and therefore it will not be easy
to remove.

It would be untrue to say that the theoreticians have totally disregarded
the problem of changing specifications or, to use a more elevated terminology,
the problem of theory manipulation. The research under this heading took two
main directions: logic-based and functional-programming-based. Despite signif-
icant internal achievements, none of them has yet had an appreciable impact
on software making. Because of the novelty of approaches developed in this re-
search, it is only to be expected that their social acceptance would take a few
more years (cf. the academic generations phenomenon discussed earlier). I am
afraid, however, that this is only a part of the explanation. The other part is
related to some inherent features of the research, features that in the context of
a desired wide acceptability appear to be weaknesses.

The logic-based theory manipulation has two such weaknesses. In logic itself
the theory manipulation is quite awkward and computationally expensive. Per-

12 W ladys law M. Turski

haps yet more importantly, the required model manipulations following from the-
ory manipulation are seldom straightforward, indeed often are non-algorithmic.
As a matter of fact, the only known instances of simple model manipulations
restoring the satisfaction relation (after theory manipulation) correspond to
rather uninteresting kinds of theory manipulation (such as renaming or defini-
tion unfolding). In addition, the logic-based approach has a strange relationship
with mundane programming practice: its programming vehicle of choice, pro-
gramming in logic, has obviously missed its chance of becoming the working
tool of programming community (very active special interest groups notwith-
standing), while the direct use of logic for specification of imperative programs
leads to difficulties that the {P}p{Q} community avoided by using algebraic-like
specifications.

The use of algebraic specifications has also been the choice of the functional-
programming school. With this choice, a very rich source of mathematical inspi-
rations has been tapped and a lot of energy spent on establishing mathematical
credibility of the school. While this activity generated a large number of elegant
papers and created a legion of Ph.D. students and graduates, it did nothing
for the working programmer and her boss4. If anything, the use of forbiddingly
mathematical jargon (a PR fault assiduously avoided by the logic-based research
community) alienated the functional-programming school from the software in-
dustry. Recently there are signs that functional-programming-based specifica-
tion manipulation is making some inroads into industrial programming practice,
where the object-oriented programming mania created a receptive ground.

Time will show how deep the fertile layer for cross-breeding is. The imperative
programming habits of a working programmer seem as firmly established as ever,
even as the quality of the programming languages in common use is rapidly
deteriorating. On the other hand there is a growing tendency to use “fourth
generation” and similar “very high level” languages even for professional work
in software firms, despite their gargantuan appetite for computer resources. (Is
it plausible that in the near future the professional programming languages will
degenerate into two classes: one being machine language with object syntax,
another — a catalogue of pictographically invoked “intelligent” components?)

Yet, if we accept that software is produced for applications, and applications
are increasingly frequent in poorly formalised (or quite informal) domains, there
is no escaping the problem of evolving specifications, not least because the (views
of) application domains change as a result of implementation of computer sys-
tems. Paradoxically, the more successful — in terms of an application — is an

4 For the vast majority of software engineers, the perennial question of whether (un-
defined = undefined’) ≡ true or (undefined = undefined’) ≡ false is of precious little
significance and even less consequence. There, what matters is that undefined should
never be encountered and — if it happens — should raise all sorts of alarms. The
same, of course, goes for similar concerns with other errors of design: while they
could be viewed as a fertile ground for subtle considerations, in the bread–earning
community the need to avoid them is dominant, and the guarantee that errors, if
made, will not remain undetected is a prime concern.

Essay on Software Engineering at the Turn of Century 13

implementation, the more profoundly it changes the application domain, and,
therefore, the less valid becomes the original specification.

The only proper way to proceed in case of a changed application model and
an existing program is to modify the specification and then see how to modify
the program so that it remains a model of the changed specification-theory. The
specification’s “resistance” to change (expressed in the effort needed to do so
properly) is not an obstacle, but a warning about the real magnitude of effort
required to accommodate a change in the application domain. Attempts to make
it easier remind me of the policy of taking ever increasing doses of painkillers in
order to avoid visiting a dentist when a tooth aches. Follow this policy, if you
wish, but then do not complain that your teeth are unreliable and fail the simple
test of taking a bite of a nice, hard, juicy apple.

In the realm of software for humdrum applications, the major research chal-
lenge is to develop a usable specification calculus equipped with corresponding
algorithmic transformations of software models. In short, for a class of specifi-
cations Σ we need the following:

1. a set of meaningful and useful monadic operations U : Σ → Σ
2. a set of meaningful and useful diadic operations B : Σ ×Σ → Σ
3. an indexed set of algorithms {α}i∈U∪B

such that given specifications s1, s2 ∈ Σ and their software models p1, p2,
mdl(s1, p1), mdl(s2, p2), we would have mdl(u(s1), αu(p)) for any u ∈ U and
mdl(b(s1, s2), αb(p1, p2)) for any b ∈ B.

It is a very tall order indeed, one that certainly cannot be fulfilled in its full
generality, because it is not true that any meaningful and useful operation on
a satisfiable specification yields another satisfiable specification. On the other
hand, restricting the sets U and B to such operations that are guaranteed to
preserve satisfiability for all operands would be self-defeating as such sets would
consist of very few and mostly uninteresting operations. Yet, I believe this chal-
lenge to be most important for software research well into the next century.

6 Production of Software

The idealised view of software being produced by a programmer who was given
precise and complete specifications is very far from the prevailing reality. We
have already analysed one aspect, viz. specification evolution. There are two
more that are best considered jointly:

– software very seldom is written “from scratch”
– software is most often produced in large organisations

The existence of large software systems and — in many instances — continu-
ing dependence of users on their performance mean that a very large proportion
of software is produced as enhancements (updates, extensions, new releases etc.)

14 W ladys law M. Turski

of systems already in use. This entails additional constraints on writing soft-
ware: not only must it satisfy whatever specifications are provided but it must
also allow “seamless integration” of the fresh code with the existing body of
the system code. The exact meaning of “seamless integration” varies somewhat
from case to case, but in most instances it means that it should be possible to
insert the fresh code without seriously interfering with the productive use of
the existing system, and it always means that the writer(s) of the fresh code
must take into consideration all kinds of interactions between the old and new
parts of the system; needless to say, such interactions fall into two categories:
expected (well documented, desirable etc.) and unexpected. It is the latter that
cause royal headaches. Not infrequently “seamless integration” also implies that
the actual users’ procedures and habits evolved during their work with the old
system should be respected, i.e. preserved as much as possible.

Of course all this is nothing new if software engineering is considered as a
provider of utilities. Most other kinds of engineering are thoroughly familiar
with such requirements: neither a new bridge, nor an additional water reservoir
bring about major disruption to services provided (although the construction of
a new bridge may occasionally create local havoc!). But implications for software
engineering are far reaching. A very substantial part of the effort involved in a
successful design and implementation of a piece of software needs to go not into
the conversion of specifications into working code, but into all sort of peripheral
activities that ensure the “seamless integration”. Some of this extra activity is
of a programming kind, some is closely related to programming; some, however,
belongs to entirely different fields (such as, e.g., public relations or ergonomics).

This alone would indicate that to provide software one needs an organisation
which, in addition to programmers, employs other kinds of specialists. (Remem-
ber, we are not selling programs any more, we provide software services!). Add
to it the sheer volume of contemporary software systems, bloated by prevalent
practices, but also necessitated by the scope of activity covered, and the need
for large teams becomes pretty obvious.

It is important to note that quite a few of existing large systems were not con-
ceived as large systems, they just grew by repeated extensions, by adding features
and functions, each, perhaps, of a moderate size, and by a permissive attitude
to waste disposal. Thus, it is not necessarily the case that S. Gill’s Garmisch
warning: It is of utmost importance that all those responsible for large projects
involving computers should take care to avoid making demands on software that
go far beyond the present state of technology, unless the very considerable risks
involved can be tolerated went unheeded.

One way or another, large and very large software systems exist5, are being
updated, extended, modified etc. Other large systems are manufactured, often
from large components, much less often - from scratch. Work on a large software
system requires a large organisation, a large organisation requires a managerial
structure and a defined modus operandi. The question, whether the management

5 It is large systems that are encountering great difficulties. We should not expect the
production of such systems to be easy. — K. Kolence at the Garmisch Conference

Essay on Software Engineering at the Turn of Century 15

of a software-making organisation is essentially different from that of any other
complex-product making concern or not, has not been conclusively resolved6.

Superficially, the differences seem dominant. The distribution of costs be-
tween design and actual production seems very peculiar in software-making: no
matter how expensive an architect, his fee is minuscule as compared to the cost
of steel, concrete, pipes, cables and other supplies that go into construction of
a largish building; even the cost of construction labour is often larger than the
architect’s fee. In software construction the supplies and raw materials cost next
to nothing and cost of labour is mostly subsumed in costs of design, particularly
so if modern tools are used for churning out the actual lines of code. Many large
software systems are unique (for application on a single site), hence the famous
economies of scale hardly matter. And so on.

A closer look, however, casts some doubts on the simple conclusion. In any
large organisation a fair share of costs is consumed by the infrastructure, both
physical (offices, energy, various services etc.) and managerial (personnel, meet-
ings, reporting etc.); these costs are a function of organisation size and structure
regardless of what it does. Economy of scale does matter for software making,
although in a somewhat different sense: a company supplying its tenth banking
system spends less effort per line of code than it did for the first one, even if all
ten systems are truly different, because it gained experience7 in making systems
for banks. And so on.

A very substantial volume of national expenditure on software in nearly all
developed countries has been a powerful incentive for seeking managerial solu-
tions to the high cost of software construction and its odious companions: budget
and deadline overruns. A number of modelling techniques have been proposed
for representing the software-making process in a variety of metrics. Not sur-
prisingly, the predictive capability of these techniques is not very impressive:
insofar as software-making remains chiefly a creative process, modelling based
on statistics is bound to produce results applicable — at best — to collections,
and quite inadequate for individual instances. Thus, even if we can predict that
on the average projects of a certain kind are likely to cost X dollars and last for
T months, any particular project of this very kind may cost 2X or 0.5X dollars
and last 0.5T or 2T . To get better predictions we should make the software pro-
cess more homogeneous, less dependent on human idiosyncrasies; but this is not
going to be an easy task. Actually, I am not sure it is possible at all, because as
soon as technical means (tools) are introduced to automate (i.e. algorithmise) an
aspect of the software process, the process itself is extended on “the other end”
6 cf. K. Samelson at the Garmisch Conference:By far the majority of problems raised

here are quite unspecific to software engineering, but are simply management prob-
lems. ... Perhaps programmers should learn management before undertaking large
scale jobs.

7 In a hard to describe way it is indeed the organisation, as distinct from individuals it
employs, that gains the relevant experience. Of course, the employees, each in her/his
special way, also gain experience from the completed tasks, but there seems to be
a clear synergy effect, making the combined gain larger than the sum of individual
ones.

16 W ladys law M. Turski

by inclusion of tasks previously considered outside the software process proper,
for example, by processing preliminary requirements.

Another direction taken in an attempt to improve the management of the
software process in order to make it (i.e. the process) more predictable, consists
in developing organisational patterns which supposedly impose best structure
on the process and its managerial infrastructure. The success of this approach
is the greatest in the most chaotic organisations, where imposition of any order,
rules, procedures and standards cannot fail to improve co-ordination and inter-
nal communication, which in turn is bound to improve productivity and work
discipline. Thus, as a means of combating chaos, such patterns are very good;
whether they can produce improvements in a disciplined environment is open to
some doubt. Needless to say, in this approach there is very little truly specific to
software; it is a sad reflection on the state of many software companies that such
simple “law and order” prescriptions yield appreciably positive results. What
makes it even sadder is the realisation that the essence of the proper approach
was clear at the time of Garmisch Conference: The ability to estimate time and
cost of production comes only with product maturity and stability, with the di-
rectly applicable experience of the people involved and with business-like approach
to project control (R. McClure) Why this simple message did not reach all con-
cerned during more than 30 years and why substantial organizations can prosper
doing very little other then embellishing this message with irrelevant charts and
tables remains a psychological puzzle.

Because managerial remedies often do bring positive results in terms of better
productivity and more realistic scheduling, and because these effects are eagerly
sought after, and because — being managerial in nature and packaged as any
other “product” on the managerial market — they look appealingly familiar
to managers, such remedies sell very well to the top management of software
companies. No wonder then that there is a fierce competition between various
schools and institutions offering managerial remedies. The evidence for an objec-
tive assessment of individual competitors is (at best) scant, it would be foolish
to attempt any ranking; the more so because it is very probable that any one of
them is just as good as any other: very helpful to a chaotic organisation, and of
little value where a stable and workable modus operandi has been established.
If the latter hypothesis is correct, we should observe an industry-wide conver-
sion to regimented production units structured on conveyer-belt-like principles,
accompanied by a painful demise of traditional loose co-operatives of artist-
programmers, followed by a rather rapid loss of interest in all-encompassing
“managerial solutions”.

7 Programming for Behaviour

As mentioned earlier in this essay, the interest in computer applications is shift-
ing from calculations to behaviours. To be sure, computers still perform calcu-
lations and shall continue doing so, if only because they cannot do anything
else. The shift occurs in the external perception of computing activity: it is per-

Essay on Software Engineering at the Turn of Century 17

ceived less and less as a purposeful combination of calculations, and more and
more as an unordered collection of reactions to external stimuli. A computer is
no longer expected to be turned on to achieve a (calculational) result and then
be switched off, instead it is expected to be on all the time and, while being
on, to behave in conformance with its (independently and often unpredictably)
changing environment.

What does this shift spell for software? There is a level at which the simple
answer is: nothing new. Each individual reaction needs to be programmed just as
any old fashioned procedure, except for one significant difference: The execution
of any routine takes time, during this interval the environment, which now is
assumed to be quite independent from the computation, can change in a way
which makes the reaction being computed obsolete, inappropriate, unwanted or
even plainly harmful. This is not an entirely new problem, we have faced it ever
since programming concurrently running processes started. However, there is an
important novum: we are not in control of all processes. Even if there could arise a
harmful interference, we are not allowed the luxury of mutual exclusion of critical
sections, the environment will not patiently wait suspended at a semaphore nor
languish inactive in a monitor until our routine completes its critical section and
releases the catch.

In other words, we have two problems

– a theoretical one: how to deal with continuous concurrence?
– a practical one: how to implement the theoretical solution on discrete (digi-

tal) computers?

There are other problems which programming for behaviours brings to the
surface:

– how to express (specify) and program (implement) modalities: do something
as long as R , where predicate R does not depend on something, indeed,
may be totally outside our control, and: do something else before S, where
something else does not influence S ?

– how to cope with situations in which several behaviours are indicated in
the same state of the environment and there is no reason to expect that
choosing one (or, for that matter, any subset) could be justified? Note that
the collection of behaviours required in a state need not to recur in any other
state and that its components may belong to other collections indicated in
other states.

All these problems share one essential property: absence of a granularity of
“time” common to all participating computational processes. This vitiates most
(if not all) classical approaches to concurrence. Indeed, the principle of a com-
mon discrete time-like dimension permeates the temporal logic approach and its
variants. Sometimes the common time is replaced by a common synchronisation
principle, where the pattern of interactions (no matter whether synchronous or
not) weaves a braid of time-like progression. Even in seemingly time-less mu-
tual exclusion co-ordination there is an implicit pattern of sequencing which

18 W ladys law M. Turski

corresponds to a time-like dimension8. There are two reasons why the granular
time-like dimension (whether explicit or implicit) was chosen as the framework
for (nearly) all research on concurrent programming and — by extension —
for (nearly) all work on software systems: (i) it is a simple discrete version of
“smooth” time which was and remains a basis of Western religions, philosophies
and science, (ii) it allows us to play down the role of the interrupt, a phenomenon
all too common in hardware and singularly difficult to deal with in theories based
on logic, mathematics or computations.

A simple example should convince us about how eager we are to invent time-
based solutions to problems in which time plays no role at all. Consider the
problem of boiling a breakfast egg. To solve it means to bring the yolk and
the white to specific conditions, e.g., the white set, and the yolk semi-liquid.
Assuming we start with a reasonably fresh egg, the solution will be achieved by
heating the egg until the desired condition is reached. Simple, isn’t it? But in
deference to our scientific tradition (and also because measuring the consistence
of white and yolk without breaking the shell is a little difficult), we invent the
notion of a “three minute” egg and proclaim that under average conditions most
eggs immersed for three minutes in boiling water are proper breakfast eggs. And
so we cook breakfast eggs not to reach a satisfactory condition, but for three
minutes. Indeed, most people consider this a proper (scientific?) solution to the
original problem. In many instances, programming for behaviour is just restoring
the original sense to problems falsified by simplifications.

It seems that there are two major avenues of approach to behavioural pro-
gramming. In one of them, we decide to design perennially watchful programs,
i.e. programs which after each atomic action would evaluate the state of the en-
vironment and progress according to the outcome of the evaluation. In the other
approach we may decide to advance individual computations in larger chunks,
but be prepared to roll them back if they progress beyond the limits of validity
determined by the environment. Both solutions appear quite expensive in terms
of control and/or restorative computations; the second approach is not unlike
some techniques used in fault-tolerance and distributed database updating. A
common aspect of both approaches is an attempt to simulate an event-driven
behaviour within the framework of traditional computations. It may thus appear
that these approaches are implementation oriented, or even implementation mo-
tivated. Indeed, with the prevalent computer architectures there is hardly any
other way to implement behavioural computations.

An entirely different approach would result from taking an event-driven struc-
ture of computations as the basic paradigm, and all actions triggered by an ob-
served event as atomic. The latter assumption implies that an action produces
no externally observable events while it is being carried out (any possible visi-
ble effects occur only when the action terminates) and cannot be influenced by
external events occurring while it is being executed. In recognition of the fact
that the execution of any atomic action takes some time, we should equip an

8 I am using the expression “time-like” in order to avoid any suspicion that what is
implied is the well-behaved, uniform time of classical physics and theology.

Essay on Software Engineering at the Turn of Century 19

action with two guards: one, call it the preguard, describing the state of the
environment in which the action is fired, another, call it the postguard, describ-
ing the state of the environment in which the effects of the executed action are
acceptable. Operationally speaking: As soon as the environment enters (creates)
the state in which action is to be fired, its execution is initiated (on a private
copy of the universe). As soon as the execution terminates, the state of the en-
vironment is tested by (evaluating) the postguard; if the postguard is satisfied,
the action effects (if any) instantaneously update the environment, otherwise the
action’s execution and possible effects are completely ignored. This model can
be completed by an assumption on the number of agents able to execute any
action, for example, by stating that there are sufficiently many agents, or that
their number is infinite9.

The simplicity of behavioural specifications obtained in this fashion is very
enticing. For instance, the specification for a fork-picking action in the Dining
Philosophers Problem may look as follows

(has left fork and right fork on table, right fork on table)→ pick right fork,

where the two guards are separated by the comma. This specification corresponds
to verbal behavioural instruction: “if you have the left fork and the right fork is
available for taking, take it, provided you can pick the right fork before anybody
else grabs it”. In the same problem, the deadlock is prevented by a pair of
specifications for each philosopher:

(has left fork and right fork on table, right fork not on table) → release left fork,

(has right fork and left fork on table, left fork not on table) → release right fork

Note that the deadlock-breaking actions are purely local to each philosopher.
Unfortunately, even this unorthodox approach cannot cope with the limi-

tations unavoidably introduced by the discrete nature of digital computing. In
specification (P, P) → α there is no way to distinguish between the environment
unchanged during α’s execution and one changed but restored to a state satis-
fying P just in time for α’s termination. A very careful formulation of guards
may include terms that would reflect some “tracing” information, in which case
the two guards above will not be identical, but the generality of this solution
remains doubtful. Indeed, if the “observer” has a time constant τ > 0 such that
two consecutive observations must be separated by at least τ , then any cycle
(change, restore) in the environment with period much less than τ is likely to
be missed or miscounted by the “observer”.

The problem of providing software for behaviour-oriented systems has been
recognised long ago. So far, however, nearly all attempts to solve it have been
based on extensions of the sequential calculational paradigm. Some extensions
were brilliant, others — less so. A number of very interesting disciplines have
been created, among them various schools of parallel programming, especially for

9 On closer scrutiny, the apparently insurmountable implementational difficulties of
this approach turn out much less forbidding.

20 W ladys law M. Turski

numeric calculations, where the power of specially designed parallel processors
obviously needed a corresponding development on the programming side. None
of these addressed the main issues of behavioural programming. A pessimistic
conclusion appears inevitable: the possibilities of extending the calculational
paradigm towards a behavioural one have been exhausted without ever getting
near the goal.

Thus the challenge is there, clearly visible to any impartial observer. It seems
possible that in order to meet this challenge, we shall have to make an entirely
fresh start, perhaps discarding not only much of what we learned about program-
ming (and accepted as “natural”), but also largish parts of logic (in particular,
some classical rules of reasoning, such as modus ponens and tertium non datur).
It will be interesting to see if the programming/software community can take
the dare. Modern physics took a similar step in the first quarter of this century;
ever since then, the common sense and science remain at odds on many issues.
In the next century, shall we take the plunge?

8 Conclusions

The basic elementary step in software construction, the derivation of a program
correct wrt its fixed and consistent specification, has been fully intellectually
mastered and can now be performed orders of magnitude faster and safer than
50 years ago. The mathematical clarity of these developments enabled the con-
struction of tools which greatly facilitate the mechanics of programming. The
process of making larger software constructs from smaller ones can be carried
out safely in limited, highly constrained circumstances. The problem of adopting
existing software to evolving specifications remains largely unsolved, perhaps is
algorithmically insoluble in full generality. Development of a realistic specifica-
tion calculus is badly needed and does not seem impossible. Managerial aspects
of large-scale software production are important insofar as many software com-
panies are still managed in an amateurish way, which certainly leaves a lot of
room for improvement. Whether good management practices for large-scale soft-
ware production differ in an essential way from those for any other large-scale
team effort or not remains an open question. Prevailing criteria of commercial
success in the software market are shifting away from strict notions of correctness
towards much vaguer notions of user satisfaction; this tends to de-emphasise the
role of hard science in programming. Computers are increasingly perceived not
as calculating machines, but instead as elements of larger systems whose purpose
is to react, or enable other system elements to react, to stimuli provided by the
environment. This creates a need for a new programming paradigm, oriented
towards behaviour rather than towards calculations. It is likely that such a new
paradigm shall be radically different from what we consider as familiar.

I am not sure there exists a software engineering at all.

	Disclaimer
	Background
	A Bit of History
	A Linguistic Aside
	A Short Treatise on Model Theory with Applications
	Specifications
	Production of Software
	Programming for Behaviour
	Conclusions

