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ABSTRACT

ESSAYS IN OPTIMIZATION METHODS FOR RESOURCE ALLOCATION

Markos Epitropou

Rakesh Vohra

This dissertation proposes and investigates the use of mathematical programming techniques

to solve resource allocation problems that are typically handled using other techniques. This

approach both simplifies proofs of earlier results as well as extends them.

The first setting addresses a network of agents, initially endowed with resources, exchanging

goods and services via bilateral contracts. Under full substitutability of preferences, it is

known via fixed point arguments that a competitive equilibrium exists in trading networks.

I formulate the problem of finding an efficient set of trades as a generalized submodular

flow problem in a suitable network. Existence of a competitive equilibrium follows directly

from the optimality conditions of the flow problem. This formulation enables me to perform

comparative statics with respect to the number of buyers, sellers, and trades. For instance,

I establish that if a new buyer is added to the economy, at equilibrium the prices of all

existing trades increase. In addition, a polynomial time algorithm for finding competitive

equilibria in trading networks is given.

The second setting relates to dynamic resource allocation with the presence of uncertainty

for future rewards. Prophet inequalities involve a set of results relating the reward attained

in an on-line selection setting to the reward generated by a prophet possessing perfect

information. I develop new, approximately efficient rules leveraging the reduced-form rep-

resentation of on-line selection problems. I apply the method in an on-line mechanism

design problem with verification and the on-line fractional knapsack selection problem.
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Ĝ does not involve any of the arcs in ∆, L,R, or R̄. . . . . . . . . 82

FIGURE 10 : ∆ denotes the set of new arcs (trades) in the trading network. In

the initial equilibrium in G, the trades associated with the arcs in

R are executed. R̄ is obtained from R by reversing the orientation

of each arc in R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



CHAPTER 1 : Introduction

The best use of scarce resources is a primary objective of economic activity and has many

different flavors depending on the circumstances the various decisions are taken. Instantia-

tions of the resource allocation problem include production planning, scheduling, portfolio

selection, ad allocation, and labor markets. Mathematical programming frameworks have

been widely used to address resource allocation problems by providing well-defined descrip-

tions of the relevant problem. An objective function models the notion of efficiency, and a

constraint set formalizes the scarcity of resources. An algorithm for solving a mathematical

program can serve as a decision-making strategy to allocate the relevant scarce resources.

However, the challenges inherent in resource allocation problems expand way beyond a sim-

ple notion of efficiency. For a variety of instances, there are concerns related to the design of

information structures, the implementation of decision-making procedures under strategic

behavior, fairness, and privacy.

This research will focus on two settings related to resource allocation and how they can

be addressed using a carefully chosen optimization framework. The first setting addresses

a network of agents, initially endowed with resources, exchanging goods and services, via

bilateral contracts. The second setting relates to dynamic resource allocation with the

presence of uncertainty for future rewards. This research examines the relevant optimization

frameworks in order to provide qualitative insights for each setting.

1.1. Trading Networks: A Network Flow Approach

The terms of trade for the exchange of goods and services are often set via bilateral contracts.

For instance, in labor markets, firms contract with individual employees who offer their

labor and time. In supply chains, manufacturers bilaterally contract with their suppliers

to procure materials needed for the production of their goods. Service firms, such as those

providing tax and consulting services, (commercial as well as passenger) transportation, and

construction use bilateral contracts with their clients to specify the scope of their projects

as well as the payment for the service they provide.
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Trading networks, introduced in Hatfield et al. (2013), are a way to represent the non-price

aspects of bilateral trades such as quantity, quality, delivery dates, and returns policy. The

vertices of the underlying network correspond to agents, or traders, who buy and/or sell

goods or services. Each arc represents the non-price aspects of a bilateral trade between the

agents corresponding to the incident vertices. The orientation of the arc identifies which

agent is the “buyer” and which the “seller” in that particular trade. Agents have quasilinear

preferences over the set of incident arcs and their corresponding prices. Preferences need not

be additive over the trades and, in general, can exhibit a fairly rich combinatorial structure.

For instance, in a supply chain, a firm is unable to sell goods to its downstream buyer

without first procuring necessary materials from upstream suppliers – a feature that can

be encoded by appropriately specifying agents’ preferences. A central question is whether

there exist prices for the trades that “clear” the market, i.e., competitive equilibria.

The classic assignment model of Shapley and Shubik (1971) is a special case. Each agent

is either a buyer or a seller, but not both. Furthermore, no agent can participate in more

than one trade. In this setting the underlying network is bipartite. The existence of

market-clearing prices is a consequence of linear programming duality. By contrast, trading

networks are rich enough to model an agent who takes the “buy” side in some trades and the

“sell” side in others. This is an important feature, for instance, in supply chain networks,

where firms simultaneously participate as buyers of their production inputs and sellers of

their finished products. In supply chain networks, the underlying directed network is often

acyclic. Under this condition, Ostrovsky (2008) establishes1 the existence of competitive

equilibria.

Acyclicity of trading networks is violated if there is a market for resale of goods. For

example, in the used car sales market, some individuals participate as buyers and others

participate as sellers, and dealers trade with both buyers and sellers of used cars and with

each other (Hatfield et al., 2013); hence the underlying trading network involves directed

1In fact, it is shown that existence obtains under preferences more general than quasilinear.
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cycles. Similar directed cycles are present in financial markets, where financial institutions

may simultaneously buy securities from some institutions while selling them to others.

Finally, firms offering different services can also induce cycles, e.g., a firm offering consulting

services to an audit firm while also receiving audit services for its operations.

Hatfield et al. (2013, 2019a) have shown that under a full substitutability condition on

agents’ preferences, a competitive equilibrium exists in trading networks, whether acyclic

or not. The full substitutability condition generalizes the gross substitutability condition

used to establish the existence of a competitive equilibrium in two-sided markets (Kelso

and Crawford, 1982; Gul and Stacchetti, 1999; Sun and Yang, 2006). Thus, the trading

network model extends the competitive equilibrium existence results to multi-sided settings.

Competitive equilibria in trading networks are also stable outcomes in that they cannot be

blocked by any coalition of agents and trades. A blocking set is a set of (feasible) trades

and corresponding prices such that all agents who can participate in these trades prefer

them (while possibly declining some of their equilibrium contracts) (Hatfield et al., 2013).

Conversely, in any stable outcome, it is possible to price the trades not involved in this

outcome to support the stable outcome as a competitive equilibrium. In fact, the stability

condition is equivalent to the seemingly weaker chain stability condition (Hatfield et al.,

2019b). The latter condition restricts blocking sets to be paths/cycles of trades in the

underlying trading network.

A first contribution is to show that under the full substitutability assumption, all these

results can be obtained simply and directly from the optimality conditions of a generalized

submodular flow problem in a suitable network. An optimal flow corresponds to competitive

equilibrium trades, and its optimal dual solutions (potential values) are supporting prices.

Moreover, in generalized submodular flow problems, a feasible flow is optimal if and only if

there is no improvement cycle. This optimality condition yields the equivalence between a

competitive equilibrium outcome and (chain) stability. As a result, it is possible to obtain

polynomial algorithms for finding a competitive equilibrium, testing whether a given payoff

3



vector can be supported in a competitive equilibrium, as well as identifying a blocking chain

when an outcome is not stable. In addition, I exploit the connection to the submodular

flow problem to give new comparative statics on the behavior of equilibrium prices as the

set of buyers, sellers, and trades changes.

The starting point is to express the problem of identifying the set of trades that maximize

welfare as a network flow problem in an appropriately defined flow network. The flow

network is related to, but distinct from the underlying trading network. In the flow network,

each vertex corresponds to an agent-trade pair of the trading network. Since exactly two

agents are involved in each trade, the flow network has two vertices for each feasible trade

(one associated with the buyer and the other associated with the seller). These vertices

are connected by an arc in the flow network, though, the flow network itself need not be

connected.

Full substitutability of agents’ preferences corresponds to M \-concavity of agents’ value

functions (Hatfield et al., 2019a). This observation allows us to represent the problem of

finding the set of welfare-maximizing trades as a generalized submodular flow problem in

the flow network. In doing so, I do not impose flow conservation at each vertex. Instead,

I impose an M -convex penalty term on the net outflow at vertices associated with the

same agent in the flow network. Intuitively, the net outflow encodes the trades in which an

agent participates as a buyer/seller, and the penalty term captures the total value the agent

gains from these trades. Minimum cost flows in this network correspond to trades in the

original network that maximize total welfare. The optimal dual solutions to this problem are

competitive equilibrium prices that support the welfare-maximizing set of trades. Thus, the

approach generates the equilibrium trades and prices through the solution of an optimization

problem. This is in contrast to Hatfield et al. (2013), who construct an auxiliary two-

sided market and invoke the associated competitive equilibrium existence results of Kelso

and Crawford (1982). These existence results rely on both discrete prices and explicitly

constructing a price (salary) adjustment process that converges to prices that complement
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an efficient set of trades. My approach relaxes the discreteness requirement on prices and

skips the reduction to Kelso and Crawford (1982), and leverages duality results to establish

the existence of a competitive equilibrium.

I establish the equivalence between stability, chain stability, and competitive equilibrium

outcomes directly from the fact that a given flow is optimal if and only if it admits no

improvement cycle. The proof technique used also provides an algorithm that (i) checks

whether an outcome is (chain) stable, and (ii) identifies a blocking chain if it is not. In

particular, given a set of trades and associated prices, I first consider a (reduced) trading

network, which consists of the remaining trades (after an appropriate modification of the

payoff functions), and the corresponding flow network. The algorithm starts with the (triv-

ial) flow, which does not use any arc in the flow network that is associated with the trades

in the (reduced) trading network. Then, the algorithm searches for an improvement cycle.

If such a cycle is absent, I conclude that the initial set of trades/prices constitutes a (chain)

stable outcome. Otherwise, an improvement cycle with the least number of arcs reveals

a blocking chain. The computational complexity of this approach is equivalent to that of

constructing the flow network and identifying a negative cycle with the least number of arcs

in this network. The overall complexity is polynomial in the number of vertices/arcs in

the underlying trading network. Thus, the network flow approach presented here not only

gives simpler proofs of the properties of trading networks (e.g., existence of a competitive

equilibrium, and its equivalence to stability), but also provides a tractable algorithm for

determining competitive equilibria, testing whether a given payoff vector can be supported

in a competitive equilibrium, testing (chain) stability, and identifying blocking sets of trades

whenever they exist.

Hatfield et al. (2019b) observed an equivalence between stability and chain stability that

resembles an analogous equivalence in classic network flows. Those authors argued that

there are important differences between the two settings:

“[I]n the ‘network flows’ environment, there is a single type of good ‘flowing’

5



through the network, and the objective function is the maximization or mini-

mization of the aggregate flow, whereas in our setting many different types of

goods may be present, and the preferences of agents in the market may be more

complex.”

My work shows this difference to be superficial. An outcome is not stable if the correspond-

ing flow is suboptimal. In the generalized submodular flow problems, suboptimality implies

the existence of an improvement cycle. This indicates that whenever the initial outcome is

not stable, it can be blocked by relying on a “simple” set of trades, which corresponds to a

chain in the underlying trading network.

This optimization approach allows us to determine how competitive equilibria change if a

new trade, buyer, or seller is added to the economy. It is shown that if a new trade is

added to the economy, the new equilibrium trades can be found by augmenting the existing

trades with a set of trades that form an undirected chain in the trading network, i.e., by

(i) including among equilibrium trades the trades of this chain that do not belong to the

initial equilibrium, and (ii) removing the remaining trades associated with the arcs in the

chain from the set of the equilibrium trades. Adding a new buyer (seller) to the economy

is equivalent to adding a collection of such trades, and hence new equilibrium trades can

be found by repeatedly augmenting the existing ones. In addition, it is shown that if a

new buyer (seller) is added to the economy, the prices of all existing trades, even those of

traders not adjacent to the new agent, increase (decrease). Hence, the equilibrium payoffs

of all existing buyers decrease (increase), and those of all sellers increase (decrease). Using

these results as building blocks, I provide comparative statics for richer settings where the

new trades are not all adjacent to a single trader (and can involve multiple buyers/sellers).

I also outline how to incorporate trade frictions into the model, and generalize the results

on competitive equilibria and comparative statics. Finally, I discuss applications of the

comparative statics to changes in trade frictions (e.g., excise taxes or transportation costs)

as well as to quotas in trading networks.
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I summarize the related literature below. Trading networks, the M-convex submodular flow

problem, and their relation are introduced in Chapter 2. Applications of this approach are

presented in Chapter 3.

Related literature: Gross substitutability of agents’ preferences is a sufficient condition

for the existence of a competitive equilibrium in settings with indivisible goods (Kelso and

Crawford, 1982; Gul and Stacchetti, 1999). It is equivalent to M \-concavity of agents’ value

functions (Fujishige and Yang, 2003; Murota and Tamura, 2003a; Leme, 2017; Shioura and

Tamura, 2015). It has been used in mathematical economics to generate direct proofs of

the existence of competitive equilibria in exchange economies (Danilov et al., 2001, 2003;

Murota and Tamura, 2003a,b). For a survey see Murota (2016).

Kelso and Crawford (1982) and Gul and Stacchetti (1999) were concerned with a two-sided

market of buyers and sellers. The trading network literature (Ostrovsky, 2008; Hatfield

et al., 2013, 2019a,b) extends these results to multi-sided settings, where agents can simul-

taneously participate as buyers and sellers in the market. This is done by extending the

gross substitutes condition on preferences2 to full substitutability. Full substitutability of

agents’ preferences corresponds to M \-concavity of agents’ value functions (Hatfield et al.,

2019a).

In Murota (2003) and Murota and Tamura (2003b), the problem of finding the efficient

allocation in a two-sided economy with multiple buyers and sellers was formulated as a

generalized submodular flow problem in a bipartite network. In our case, the presence of

agents who participate as buyers in some trades and sellers in others makes the reduction

in Murota (2003) and Murota and Tamura (2003b) inapplicable. I provide an alternative

network flow formulation for identifying the efficient set of trades. Additionally, this for-

mulation shows the equivalence of competitive equilibrium to (chain) stable outcomes and

characterizes them using a generalized submodular flow formulation. Thus, together with

2Some papers, e.g., Ostrovsky (2008) and Hatfield et al. (2019b), relax the assumption of quasilinear
preferences.
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the results of Murota (2003) and Murota and Tamura (2003b), this work indicates that a

generalized submodular flow formulation provides a unifying framework for the study of

various competitive equilibrium results in the literature.

Prior to this dissertation, Ikebe and Tamura (2015) and Ikebe et al. (2015) also used ideas

from discrete convexity to study trading networks. Ikebe and Tamura (2015) focused on

acyclic trading networks (called supply chain networks) under M \-concavity of agents’ value

functions. They allowed trades between agents to occur with some (integer) intensity,

capturing the fact that multiple units of the same trade can take place. They also provided

algorithms for finding chain stable outcomes. Importantly, the authors focused on a setting

where there are finitely many contracts (trade and price tuples). This implies that the

supporting prices are exogenously restricted to a finite set. Given the restriction to finitely

many contracts and acyclic networks, the algorithms provided in their paper for testing chain

stability do not apply to my setting. Finally, this dissertation provides comparative statics

and sheds light on the equivalence between stability, chain stability, and the competitive

equilibrium outcome.

Ikebe et al. (2015) focused on general trading networks, where, as in Ikebe and Tamura

(2015), agents may engage in multiple units of the same trade. In their setting trades

between different pairs of agents are considered distinct. In particular, trades that represent

two distinct sellers selling the same commodity to a common buyer are considered distinct.

Under these restrictions, the authors established the existence of a competitive equilibrium

where all identical trades have the same price. This result is related to but weaker than the

one presented in Section 2.3.2 below. When identical trades are defined I do not restrict

attention to pairs of agents. Hence, I allow for settings where the same commodity is sold

by different sellers to a common buyer. I establish the existence of competitive equilibria

where all identical trades adjacent to an agent have the same price.

Ikebe et al. (2015) employed a definition of stability that differs from the one used here

along two dimensions. First, when a trade is included in a blocking set, the prices of
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other identical trades (which belong to the original outcome) are allowed to change as well.

Second, agents are not allowed to drop old trades if identical trades are included in the

blocking set. Under this alternative definition of stability, Ikebe et al. (2015) showed that a

stable outcome need not correspond to a competitive equilibrium. By contrast, I establish

an equivalence between the two outcomes.

Like us, Ikebe et al. (2015) exploited properties of discrete convexity to derive their results.

However, they did not obtain the network flow formulation, which allows us to provide short

proofs of the equivalence of various solution concepts. The network flow formulation is

conceptually important because it explains why chain stability is a natural solution concept

for trading networks in the first place. As in the classic network flow problem, if a flow is

suboptimal (i.e., the corresponding set of trades is inefficient), it is always possible to find an

improvement cycle, which in the context of my network flow formulation closely relates to

a blocking chain. Furthermore, leveraging network flow ideas allows us to develop efficient

algorithms for identifying blocking chains and provide interesting comparative statics, both

of which are beyond the scope of Ikebe et al. (2015).

One can exploit gross substitutability to derive a tâtonnement that converges to a compet-

itive equilibrium. In two-sided markets, Ausubel (2006) provided such a tâtonnement pro-

cess, similar in spirit to the one in Gul and Stacchetti (2000). Sun and Yang (2009) analyzed

a tâtonnement process called double-track, which converges to a competitive equilibrium

for the case of substitutes and complements. The double-track procedure was generalized

to the case of multiple complementary goods in Sun and Yang (2014). Using the network

formulation of the efficient allocation problem, I outline a similar tâtonnement process for

trading network models.

Comparative statics have received significant attention in the matching and trading network

literature (Kelso and Crawford, 1982; Blum et al., 1997; Hatfield and Milgrom, 2005; Ostro-

vsky, 2008; Fleiner et al., 2018). The network flow literature contains a rich set of sensitivity

analysis results on how optimal flows and corresponding potential values change as arc ca-
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pacities, costs, and supply/demand at different vertices change (Granot and Veinott, 1985;

Ahuja et al., 1993). By extending these results to my network flow formulation, I obtain

new results on how the equilibrium trades, prices, and payoffs change as new trades/traders

are introduced into the economy.

1.2. Prophet Inequalities in Resource Allocation Under Uncertainty

Stopping problems are concerned with choosing a time to take a given action based on

sequentially observed random variables in order to maximize an expected payoff. The

action taken may be to reject a hypothesis, replace a machine, hire a secretary, or exercise

an American option. They are often solved using dynamic programming.

In a simple version of a stopping problem, introduced by Krengel and Sucheston (1977),

one is shown n non-negative numbers, sequentially, that are independent draws from known

distributions (not necessarily identical). I refer to it as the basic stopping problem hereafter.

The goal is to maximize the number on which one stops relative to the expected maximum

value in hindsight. Krengel and Sucheston (1977) obtained a tight approximation guarantee

of 1
2 . In other words, the optimal reward of the stopping problem is at least half of the

expected value of the largest of the n random numbers. This approximation guarantee is

usually referred to as a prophet inequality.

A simple example shows that the approximation factor of 1
2 is the best possible. There are

two prizes, where the first one gives a reward of 1, while the second one gives a reward of

1
ε with probability ε or 0 otherwise. Both strategies of stopping or not stopping in the first

period return the same expected reward equal to 1. However, a prophet could solve an off-

line version of the problem, and choose the second prize only when a reward of ε is realized,

i.e., with probability 1
ε . Hence, the expected prophet’s reward is equal to 2 − ε. The on-

line decision-maker guarantees 1
2−ε of the prophet’s reward. Thus, 1

2 is the approximation

factor that most algorithms attempt to attain unless the structure of the problem is more

welcoming.

The problem has attracted an enthusiastic following which has extended the problem in
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a variety of ways. Hill and Kertz (1992) provide an early survey, and Hartline (2012)

and Lucier (2017) provide surveys discussing the implications of prophet inequalities for

mechanism design and pricing. Part of the literature considers on-line selection problems,

a series of problems where the selected elements must satisfy combinatorial constraints.

Alaei (2011) considers an extension where k numbers can be chosen and Kleinberg and

Weinberg (2019) deal with a general setting, where the set of numbers chosen must form

an independent set of a specified matroid.

Interestingly, research on prophet inequalities finds applications in mechanism design. Apart

from the efficiency guarantees, several proofs reveal simple rules for well-known mechanism

design problems. Samuel-Cahn (1984) provided a simple proof of the prophet inequality,

where the median of the largest order statistic of n numbers is chosen as a threshold to

decide which number to choose. Chawla et al. (2010) establish a connection with mechanism

design, by showing that this threshold can serve as a posted price in an auction setting.

Recently, Duetting et al. (2017) covered a unifying technique for general settings which is

approximately efficient and operates by producing balanced prices.

This dissertation follows a different path by modeling the prophet problem via linear pro-

gramming. The modeling process is closely related to works in mathematical finance where

the decisions made are conditioned on the paths of the relevant stochastic process generating

the rewards. The main contributions of this part of the dissertation is a new representa-

tion of the stopping problem, an alternative viewpoint of the prophet inequality, as well as

applications in on-line selection problems with complex constraints.

Initially, the basic stopping problem is considered and its application in auction theory.

First, a naive linear programming formulation is presented. Unfortunately, the linear pro-

gramming representation of the problem exploits a set of variables conditioned on the pos-

sible paths of the reward generation stochastic process, which exponentially grows on the

number of agents. As a remedy, the reduced-form representation of the basic stopping

problem is introduced. The reduced-form representation is a tractable description of the
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stopping problem, where a polynomial number of variables is used. The reduced-form repre-

sentation has been employed in auction theory before, mainly through the work of C Border

(1991), with the main contribution known as Border’s theorem. The variables in Border’s

theorem are called interim allocation, representing the expected allocation to an agent given

her type. The same idea applies to the optimal stopping setting, from an auction-based

viewpoint. Using this new representation, I devise a new algorithm which is approximately

efficient, along the lines of the classic prophet inequality. This constitutes a new proof of

the classic prophet inequality.

A first application involves a mechanism design problem with verification. The problem

can be thought in the context of labor markets. I consider a principal who must hire an

employee from a set of candidates arriving sequentially, each of whom prefers to have the

job than not. Each agent has access to private information about the principal’s payoff

if he gets hired. The decision to allocate the job to an employee must be made upon his

arrival and is irreversible. There are no monetary transfers but the principal can verify

agents’ reports at a cost and punish them (by not hiring them). The optimal allocation

and verification rules are given as a solution to a compact linear program. There exists a

strategy that can achieve on expectation at least half of the second-best of a prophet, i.e.,

when all agents arrive simultaneously but still the principal has to elicit truthful reports

via verification.

Last, I provide a generalized version of on-line selection problems and a linear programming

formulation addressing the problem. The formulation is also valid for simple on-line selection

problems since the linear programming formulation for their continuous counterparts has

integer optimal solutions. I will consider a setting based on the fractional knapsack selection

problem and provide an algorithm that scales the prophet’s reduced form by 1
2 and then

implements it. I prove that it is well-defined for the fractional knapsack selection setting,

i.e., the interim allocation that it constructs is implementable, and trivially achieves a 1
2 -

approximation of the prophet’s rewards (linear in interim allocation variables). It is worth
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noting that the above algorithm details a way to convert a solution of the classic allocation

problem to a solution when the actions must be taken sequentially. Finally, we see that

the linear programming formulation captures simple on-line selection problems too, i.e.,

problems defined in a combinatorial domain. For simple settings, the prophet inequalities

attained are the same, regardless of whether the domain is continuous or combinatorial.

In Chapter 4 I introduce the basic stopping problem. I then describe three different tech-

niques to derive the classic prophet inequality. The techniques are based on different al-

gorithms for the stopping problem. First, I describe pricing strategies, where a reward is

chosen when it is larger than an a priori defined threshold, which can be thought of as a

price paid in an auction setting where bidders arrive sequentially. The pricing schemes come

from different works found in the literature. Second, I describe a duality-based technique

to derive the prophet inequality. The argument examines the optimal stopping rule and

is based on the celebrated work of Davis and Karatzas (1994) in mathematical finance.

I include this proof to better illustrate duality in prophet inequalities. Last, I formulate

the optimal stopping problem as a linear program. First, I provide a proof of the prophet

inequality using an appropriate price, based on Guha and Munagala (2007). The prophet

inequality leverages a relaxed linear programming formulation of the stopping problem us-

ing the reduced form. Next, i describe the reduced-form representation of the optimal

stopping problem. Leveraging this representation, I present the algorithm based on scaling

the reduced form of the prophet’s strategy.

In Chapter 5 I describe applications of some of the above techniques. Specifically, I introduce

the on-line verification problem and describe a linear programming formulation of it. The

linear program implies an algorithm to solve it as well as a direct argument to lower bound its

efficiency. Finally, in Chapter 6, I introduce the fractional knapsack problem and provide

a novel application of it in computational sprinting. The above technique of scaling the

reduced form is used to derive a new prophet inequality for the fractional knapsack problem.

Finally, I end the chapter by showing that the formulation for the fractional version of the
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problem, in simple settings, carries on to settings with integrality constraints.
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CHAPTER 2 : Trading Networks through Network Flows

The subsequent Section 2.1 introduces notation and the model. Section 2.2 describes the

submodular flow problem and its optimality conditions. Section 2.3 describes the transfor-

mation of the problem of finding an efficient set of trades into an instance of the submodular

flow problem.

2.1. Model

A trading network is represented by a directed multigraph G = (N,E), where N is the

set of vertices and E the set of arcs. Each vertex corresponds to an agent and each arc

corresponds to the non-price elements of a trade that can take place between the incident

pair of vertices. For each arc e ∈ E, let e+ and e− denote the tail and head of this arc,

respectively. Vertex e+ corresponds to the seller and vertex e− corresponds to the buyer of

the trade associated with e. Let δ+(i) and δ−(i) respectively be the outgoing and incoming

arcs incident to vertex i ∈ N , and set δ(i) = δ+(i) ∪ δ−(i). A price vector is dentoed by

p ∈ RE , where pe is the price associated with the trade that corresponds to arc e. Denote

by pX the price vector restricted to the arcs in X.

Denote agent i’s value function for any set of trades involving agent i by1 wi : 2δ(i) →

R ∪ {−∞}. Agent i’s payoff function is ui : 2δ(i) × Rδ(i) → R ∪ {−∞}. For each S ⊂ δ(i)

and p ∈ RE , the agent’s payoff can be expressed as:

ui(S, p) = wi(S) +
∑

e∈S∩δ+(i)

pe −
∑

e∈S∩δ−(i)

pe.

The demand correspondence for agent i ∈ N , given a price vector p ∈ Rδ(i), is

Di(p) = arg max
Y⊂δ(i)

ui(Y, p).

1Having −∞ in the range of the value function allows us to incorporate trading constraints as described
in Hatfield et al. (2013); e.g., if a trader cannot sell goods without procuring her inputs first, this can be
incorporated by specifying −∞ for bundles of trades.
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Definition 2.1.1. A set of trades X ⊂ E along with a price vector p ∈ RE is a competitive

equilibrium (X, p) if, for all i ∈ N ,

X ∩ δ(i) ∈ Di(p).

Definition 2.1.2. A set of trades X ⊂ E is efficient if

X ∈ arg max
S⊂E

∑
i∈N

wi(S ∩ δ(i)).

2.2. M -convex Submodular Flow Problem

Here I describe the M -convex submodular flow problem that generalizes the classic network

flow problem (see Chapter 9 in Murota (2003)). A directed graph F = (V,A) is given,

where V is the set of vertices and A is the set of arcs. For each arc a ∈ A, denote by a+

and a− the tail and head vertices respectively. For each v ∈ V denote by δ+(v) and δ−(v)

the set of outgoing and incoming arcs incident to vertex v, respectively.

As in the classic network flow problem, each arc a ∈ A has a cost ca ∈ R per unit of flow,

and lower and upper capacities ka ∈ Z ∪ {−∞}, ka ∈ Z ∪ {∞}. Denote by xa the amount

flowing through a ∈ A, and let x denote the vector of {xa}a∈A. Given flows on the arcs, let

yv be the net outflow (positive or negative) from vertex v, and denote the vector of {yv}v∈V

by y. In what follows I focus on integer flow problems, where x, y have integer entries.

The added feature of the M -convex submodular flow problem (MSFP) is a function f :

ZV → R ∪ {∞} in the objective function that penalizes the net outflow at each vertex.

The function f is assumed to be M -convex (defined below). MSFP2 can be formulated as

follows:

2This version of MSFP is called the M-convex submodular integer flow problem, due to the integrality
constraint on (x, y). As in the classic network flow problem, under mild conditions, the integrality condition
is without loss of optimality; i.e., even when the problem is formulated over the reals, an integral optimal
solution exists. See Remark 2.2.
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min
x∈ZA,y∈ZV

∑
a∈A

caxa + f(y)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = yv ∀v ∈ V,

ka ≤ xa ≤ ka ∀a ∈ A.

To define M -convexity, let χj ∈ Zn denote the 0-1 vector with exactly one nonzero entry in

component j. A function f : Zn → R∪{∞} on the integer lattice is M -convex if it satisfies

the following exchange axiom:

(M-EXC[Z]): For all z, z′ ∈ Zn and for all u ∈ supp+(z − z′),

f(z) + f(z′) ≥ min
v∈supp−(z−z′)

f(z − χu + χv) + f(z′ + χu − χv),

where supp+(z − z′) (supp−(z − z′)) is the set of indices in {1, . . . , n} such that zi − z′i > 0

(zi − z′i < 0). A function f is called M -concave if −f is M -convex.

A set B ⊂ Zn is called M -convex if given z, z′ ∈ B, for all u ∈ supp+(z − z′), there exists

v ∈ supp−(z − z′) such that z−χu +χv ∈ B, and z′+χu−χv ∈ B. An M -convex function

f ’s effective domain (i.e., domf , {z ∈ Zn| − ∞ < f(z) < ∞}) as well as the function’s

minimizers are M -convex sets.

In the classic network flow problem, f ’s effective domain is a single point ({y0}), which

allows for a fixed amount of net inflow (outflow) at demand (supply) vertices satisfying

{i|y0
i < 0} ({i|y0

i > 0}), while imposing flow conservation at the rest of the vertices (i.e.,

the inflow to a vertex is equal to the outflow). In MSFP, the flow conservation constraints

are relaxed through the use of the penalty function f . In the next section, when I study

trading networks, I formulate the problem of finding the efficient set of trades as an MSFP.

In this formulation, a unit of flow from a vertex associated with agent i to a vertex associated

with agent j represents the trade between these agents (where i is a seller and j is a buyer),
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and the associated valuations of agents is encoded by the appropriately defined net outflow

penalties. Note that in the efficient set of trades, an agent may participate in more trades as

a buyer than as a seller (or vice versa). Also, the valuations of agents need not be additive

over the trades they participate in. As a result, it is impossible to formulate the problem

of finding the efficient set of trades in trading networks as a classic network flow problem.

However, as I illustrate in Section 2.3, the aforementioned problem can be formulated as an

MSFP with appropriately constructed penalties.

One can generalize the optimality conditions of the classic flow problem with a linear ob-

jective function to MSFP (see Murota (2003)). In particular, the optimality of a flow is

characterized by the nonexistence of a negative cycle in an auxiliary network as well as in

terms of a set of potential values associated with the vertices of the network.

Before I state the optimality conditions, some necessary definitions are introduced. First,

define an auxiliary network F aux, which is an extension of the idea of the residual network

used in the classic network flow problem to account for the non-linearities in f . Let x be

a feasible flow in F = (V,A) and y be the associated vector of net outflows at each vertex.

Consider three sets of arcs incident to the set of vertices V :

1. Aaux(x) = {(u, v)|(u, v) ∈ A, x(u,v) < k(u,v)},

2. Baux(x) = {(v, u)|(u, v) ∈ A, x(u,v) > k(u,v)}, and

3. Caux(y) = {(u, v)|u, v ∈ V, f(y − χu + χv) < +∞}.

Let F aux(x, y) = (V,Aaux(x) ∪ Baux(x) ∪ Caux(y)) be the directed multigraph where all

three sets of arcs are present. Note that, in general, F aux can be a directed multigraph.

However, in this work, I focus on settings where F is a directed graph that has at most

one arc between any pair of vertices, and the effective domain of f is such that the arcs

in Caux do not overlap with those in Aaux and Baux. As a result, F aux is always a simple

directed graph. The auxiliary network F aux has no arc capacities. The cost for each arc a
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in F aux(x, y) is given by

cauxa (x, y) =


c(a+,a−) if a ∈ Aaux(x)

−c(a−,a+) if a ∈ Baux(x)

f(y − χa+
+ χa

−
)− f(y) otherwise.

(2.1)
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Figure 1: (a) Feasible Flow (b) Auxiliary Network

Figure 1 illustrates the construction of the auxiliary network. The flow network is dis-

played in (a). The penalty function is given by f1(y1, y2) + f2(y3, y4), where yi denotes

the net outflow at vertex vi. The effective domain of f1 is {(1, 0), (2,−1)} and that of

f2 is3 {(−1, 0), (−2, 1)}. Function f1 penalizes the net outflow at vertices {v1, v2} while

f2 penalizes the net outflow at {v3, v4}. The functions f1 : {(1, 0), (2,−1)} → R, and

f2 : {(−1, 0), (−2, 1)} → R are specified such that f1(y1, y2) + f2(y3, y4) is M -convex over

its effective domain. The upper arc capacities in this example are 2 units for the first arc

and 1 unit for the second arc, and the lower arc capacities are zero for both arcs. Suppose

that one unit of flow is sent on the first arc, as denoted by the arrow below the arc. The

corresponding auxiliary network is displayed in (b). The arcs in Aaux(x) ∪Baux(x) appear

as solid arrows while the arcs in Caux(y) appear as dashed arrows.

In classic network flow problems, f(y) = ∞ unless y = y0 for some y0, which allows for

a fixed net inflow/outflow for a subset of vertices, while imposing flow conservation at the

3Any functions f1 and f2 that take finite values at {(1, 0), (2,−1)} and {(−1, 0), (−2, 1)}, respectively,
and take a value of ∞ elsewhere, satisfy M -EXC[Z] and are M -convex.
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rest of the vertices. Consequently, Caux(y) = ∅, and hence the auxiliary network reduces to

the residual network that is standard in the network flow literature. By contrast, in MSFP

the auxiliary network involves additional arcs whose costs are determined by the associated

outflow penalty. Consider the classic network flow problem given in Figure 1, where it is

assumed that y0 = (1, 0,−1, 0). Note that the only feasible solution is to send one unit of

flow on the upper arc and zero unit of flow on the lower arc. Then, the auxiliary network

consists of the pair of arcs between v1 and v3, as well as the single arc from v4 to v2. By

contrast, in more general MSFP formulations, depending on the penalty function f , one or

both of the arcs in the network may have nonzero flow in the optimal solution. In this case,

flow conservation may not be preserved, but the effect of the net outflows is still reflected

in the penalty function f . Moreover, as discussed above, the auxiliary network may involve

arcs from Caux(y).

The sum of the arc costs associated with a directed path/cycle of the auxiliary network

is interpreted as the “length” of the path/cycle. The distance from a vertex to another

vertex is defined as the smallest length achieved by a directed path connecting them. Any

path achieving this distance is referred to as the shortest path. A directed cycle of negative

length is called a negative cycle. The following theorem summarizes the optimality criteria

for MSFP.

Theorem 2.2.1. (Theorems 3.1 and 3.2 in Murota (1999)) Given a feasible solution (x, y)

to an MSFP, the following three conditions are equivalent for the MSFP:

1. (x, y) is an optimal solution to the MSFP.

2. There does not exist a negative cycle in F aux(x, y).

3. There exists a potential function π : V → R such that

(a) for each (u, v) ∈ A,

(i) c(u,v) + π(u)− π(v) > 0⇒ x(u,v) = k(u,v)
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(ii) c(u,v) + π(u)− π(v) < 0⇒ x(u,v) = k(u,v)

(b) f(y)−
∑
v∈V

π(v)yv ≤ f(y′)−
∑
v∈V

π(v)y′v for all y′ ∈ ZV .

Conditions 2 and 3 are called the negative cycle criterion and the potential function op-

timality criterion, respectively. The negative cycle criterion furnishes a means to improve

a given suboptimal solution. Specifically, suppose that (x, y) is a suboptimal (integral)

solution to an MSFP. Therefore, the auxiliary network has a negative cycle. Choose K to

be a negative cycle in F aux(x, y) with the least number of arcs. Consider augmenting the

current flow x along K and updating the associated net outflow y accordingly, i.e., :

• x(a+,a−) = x(a+,a−) + 1, if a ∈ K ∩Aaux(x),

• x(a−,a+) = x(a−,a+) − 1, if a ∈ K ∩Baux(x),

• y = y +
∑

a∈K∩Caux(y)

(−χa+
+ χa

−
).

Intuitively, the flow on arcs along K that are common to the underlying network F and

have excess capacity (i.e., arcs in Aaux(x)) is increased. On the other hand, some arc a in

the network may carry flow exceeding the associated lower bound, and hence there may be

a corresponding arc in F aux(x, y) with a reversed orientation (which belongs to Baux(x)).

If this arc also belongs to K, then, the flow on a is reduced after augmentation. The net

outflow is also updated so that it is consistent with the resulting induced flow.

It can be shown that augmenting a flow along the negative cycle K with the least number

of arcs lowers the cost of the MSFP. Moreover, successive augmentation along such negative

cycles4 guarantees convergence to an optimal solution of the MSFP; see Murota (2003).

The potential values associated with the vertices of the flow network can be viewed as

dual variables for the MSFP, and those satisfying Condition 3 are referred to as the optimal

4Successively augmenting the flow along any negative cycle guarantees convergence to an optimal solution
in the classic minimum-cost network flow problems (without M -convex penalties) as well. However, unlike
in the classic setting, in MSFP one must augment the flow along the negative cycle with the least number
of arcs.
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potential values. I conclude this section by providing an equivalent statement of the potential

function optimality criterion of Theorem 2.2.1, which is used in the subsequent analysis.

This characterization is in terms of the reduced costs of the arcs in the auxiliary network

F aux(x, y). For a given set of potential values π at the vertices of the network, the reduced

cost of each arc a in F aux(x, y) is given by cπa = cauxa (x, y) + π(a+)− π(a−).

Theorem 2.2.2 (Reduced-Cost Optimality Condition). A feasible solution (x∗, y∗) satisfies

the optimality conditions of Theorem 2.2.1 with vertex potential function π, if and only if

the following reduced-cost optimality condition holds:

cπa ≥ 0 for each arc a in F aux(x∗, y∗).

Proof. It can be readily seen that the conditions in Theorem 2.2.1, part 3(a), are equivalent

to the reduced-cost optimality conditions for the subsets of arcs Aaux(x∗) and Baux(x∗) in

the auxiliary network F aux(x∗, y∗). Thus, to prove the claim it suffices to show that the

reduced-cost optimality conditions for the remaining subset of arcs Caux(y∗) in F aux(x∗, y∗)

hold if and only if the conditions of Theorem 2.2.1, part 3(b), hold.

This immediately follows from the fact that (i) f̄(y) = f(y) −
∑
v∈V

π(v)yv is an M -convex

function, and (ii) for an M -convex function f̄ , local optimality is equivalent to global op-

timality, i.e., f̄(y1) ≤ f̄(y2) for all y2 = y1 − χu + χv and vertices u, v ∈ V if and only if

f̄(y1) ≤ f̄(y) for all y (see, e.g., Murota (2003)). Note that given net outflow y∗, we have an

arc (u, v) ∈ Caux(y∗) if and only if f(y∗ − χu + χv) <∞. It follows that reduced costs are

nonnegative for arcs in Caux(y∗), if we have f̄(y∗) ≤ f̄(y∗−χu+χv) for all u, v ∈ V , and vice

versa. This in turn implies that nonnegativity of reduced costs in Caux(y∗) is equivalent to

having f(y∗) −
∑
v∈V

π(v)y∗v = f̄(y∗) ≤ f̄(y) = f̄(y) −
∑
v∈V

π(v)yv for any y. Since the latter

condition is equivalent to Theorem 2.2.1 (3b), the claim follows.

Remark. MSFP can be defined without restricting (x, y) to be integral. For this version of

MSFP, the domain of the penalty term on net outflows is the reals and the penalty term is
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required to be an integral polyhedral M -convex function. An integral polyhedral M -convex

function f̄ is obtained by extending an M -convex function f to Rn via its convex closure

(Murota (2003), Section 6.11) defined as follows:

f̄(x) = sup
α∈Rn+1

{
n∑
i=1

αixi + α0

∣∣∣ n∑
i=1

αiyi + α0 ≤ f(y) ∀y ∈ Zn
}

for all x ∈ Rn.

Theorem 9.15 in Murota (2003) guarantees the existence of an optimal integer flow to

MSFP when the capacities are integer-valued and the penalty function is integral polyhedral

M -convex – a result analogous to integrality of optimal solution in classic network flow

problems. Moreover, the optimality conditions provided in Theorem 2.2.1 continue to hold

in such settings; see, e.g., Murota (2003).

2.2.1. M \-Concave Functions

An M \-convex function f : Zn → R is a function satisfying the following exchange axiom

(M \-EXC[Z]): For all x, y ∈ Zn and for all u ∈ supp+(x− y),

f(x) + f(y) ≥ min[f(x− χu) + f(y + χu), min
v∈supp−(x−y)

f(x− χu + χv) + f(x+ χu − χv)].

An M \-convex function is supermodular. A function f is M \-concave if −f is M \-convex.

Any M \-convex function f : Zn → R ∪ ∞ can be represented as an M -convex function

f ′ : Zn+1 → R ∪∞, where

f ′(x0, x) =


f(x) if x0 = −

n∑
i=1

xi

+∞ otherwise.

(2.2)

2.2.2. Full Substitutability

In Section 2.1, each wi was defined as a function over subsets of δ(i). If sets are repre-

sented by their characteristic vectors, we can treat each wi as a function over {0,−1}δ−(i)×

{0, 1}δ+(i). I extend the domain of wi to Zδ(i) by following the convention that wi(y) = −∞

for y ∈ Zδ(i) such that y /∈ {0,−1}δ−(i) × {0, 1}δ+(i). An analogous convention applies to
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each payoff function ui. Next, assume that for each i ∈ N , wi is M \-concave. This is

equivalent to the property that each agent’s preferences are fully substitutable (see Hatfield

et al. (2013, 2019a) and Theorem 7 in Murota and Tamura (2003a)).

Definition 2.2.1. Agent i’s preferences are fully substitutable if:

1. For all p, p̃ ∈ Rδ(i) such that pe = p̃e for all e ∈ δ+(i) and p̃e ≥ pe for all e ∈ δ−(i),

for every Y i ∈ Di(p) there exists Ỹ i ∈ Di(p̃) such that (Y i ∩ {e|pe = p̃e}) ∩ δ−(i) ⊂

Ỹ i ∩ δ−(i) and Ỹ i ∩ δ+(i) ⊂ Y i ∩ δ+(i).

2. For all p, p̃ ∈ Rδ(i) such that pe = p̃e for all e ∈ δ−(i) and p̃e ≤ pe for all e ∈ δ+(i),

for every Y i ∈ Di(p) there exists Ỹ i ∈ Di(p̃) such that (Y i ∩ {e|pe = p̃e}) ∩ δ+(i) ⊂

Ỹ i ∩ δ+(i) and Ỹ i ∩ δ−(i) ⊂ Y i ∩ δ−(i).

2.3. Transformation to MSFP

In this section, the optimality conditions of MSFP are used to show that a competitive

equilibrium exists when agents have M \-concave value functions, and shed light on its

structure. To do so, I first transform the problem of finding an efficient set of trades into

an instance of the MSFP.

I introduce a flow network F = (V,A), associated with the trading network G = (N,E).

Recall that there is an M \-concave function wi : Zδ(i) → R associated with each vertex

i ∈ N . I slightly modify this representation in Section 2.2.2, and represent the set of trades

agent i participates in by a vector yi ∈ Z×Zδ(i). Index the entries of yi with 0 (to capture

its first entry) and e ∈ δ(i). For each trade e ∈ δ(i) that occurs, set yie = 1 if e ∈ δ+(i)

and yie = −1 if e ∈ δ−(i) (i.e., the entries of yi corresponding to e ∈ δ(i) constitute the

characteristic vector of trades agent i participates in). Also set yi0 = −
∑

e∈δ(i) y
i
e, so that

the entries of the yi vector sum up to zero. With this representation each wi can be replaced
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by an M -concave function w′i : Z× Zδ(i) → R, such that

w′i(z0, z) =


wi(z) if z0 = −

∑
e∈δ(i)

ze

−∞ otherwise.

(2.3)

For y = {yi}i∈N , the social welfare of the trading network is given by −f(y) =
∑

i∈N w
′
i(y

i).

M -concavity of w′i for all i ∈ N implies that f is M -convex5 as the arguments of the M -

convex functions in the summand are disjoint.

In the flow network, each i ∈ N is represented by a set V i of vertices associated with the

arguments of the M -concave function w′i, i.e., |V i| = |δ(i)|+ 1. Formally,

V =
⋃
i∈N

V i,

where V i = {vie|e ∈ {0} ∪ δ(i)}. I refer to vertices of the form vi0 as special vertices. I add

a directed arc between every pair of special vertices. In what follows, the orientation of

this arc does not matter, and hence I pick it arbitrarily. The set of all arcs between special

vertices is dentoed by A0. Additionally, for each e ∈ E I introduce an arc a = (ve
+

e , ve
−
e ).

Intuitively, one unit of flow on this arc represents agents e+ and e− executing the trade

e. These arcs form set A1 = {(ve+e , ve
−
e )|e ∈ E}. Informally, each w′i is a function of the

characteristic vector of arcs incident to V i that carry positive flow, as there is a one-to-one

correspondence between the vertices V i and the incident arcs.

Formally, the set of arcs in F is given by A = A0 ∪A1. Furthermore, I assume that for any

arc a ∈ A, the associated flow costs are zero, i.e., ca = 0, and the lower and upper capacities

are set6 as follows:

ka = −∞, ka = +∞. (2.4)

5In general, the sum of M -convex functions is not M -convex. However, this property trivially holds when
M -convex functions with disjoint arguments are considered.

6Because of this assumption on capacities, given any feasible flow on F = (V,A), in the associated
auxiliary network there are two directed arcs with opposite orientations between any pair of special vertices.
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An example of this construction is displayed in Figure 2. Figure 2(a) is the trading network,

where each vertex appears as a large black circle. Figure 2(b) shows the associated flow

network. The special vertices appear as dotted circles. The vertices associated with a

given agent appear together in the relevant rectangle. I refer to the induced subnetwork

consisting of the vertices in a given rectangle as the corresponding agent’s internal network.

The net outflow at the vertices of an agent’s internal network encode the trades the agent

participates in.

e1

e2e3

v1
e3

v1
e1

v2
e2

v2
e1

v3
e3

v3
e2

v1
0 v2

0

v3
0

Figure 2: (a) Trading NetworkG = (N,E) (b) Corresponding Flow Network F = (V,A)

I define the following instance of MSFP on F = (V,A):

min
x∈ZA,y∈ZV

f(y)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = yv ∀v ∈ V

ka ≤ xa ≤ ka ∀a ∈ A.

Recall that, by construction, f(y) is M -convex. Suppose that a set S ⊂ E of trades in

the trading network G = (N,E) is executed. A corresponding flow in F = (V,A) can be

obtained by sending one unit of flow on each arc in A1 associated with these trades, and

choosing the flow through arcs between special vertices to keep the total net outflow at
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the vertices in V i equal to zero (which is possible since by (2.4) I can set negative flow

values). Observe that the absolute value of the associated flow cost is equal to the welfare

corresponding to S. Conversely, by the construction of f , it can be seen that any flow with

bounded cost is such that the net outflow at the vertices in V i is equal to zero for all i (see

(2.3)), and each arc in A1 carries at most one unit of flow. Moreover, the absolute value of

the cost of any such flow is equivalent to the total welfare associated with the trades that

correspond to the arcs in A1 with nonzero flow. Hence, integer flows with bounded cost

in F correspond to feasible sets of trades in G. Thus, the optimal solution of the MSFP

corresponds to an efficient set of trades for the trading network G = (N,E).

The construction of the auxiliary network associated with a given feasible solution (x, y)

of this problem is displayed in Figure 3. The network in Figure 3(a) is the flow network

from Figure 2. Suppose that one unit of flow is sent through (v2
e1 , v

1
e1) and (v1

0, v
2
0), as

indicated by the arrows, which corresponds to executing trade e1 in Figure 2. The network

in Figure 3(b) is the corresponding auxiliary network.

v1
e3

v1
e1

v2
e2

v2
e1

v3
e3

v3
e2

v1
0 v2

0

v3
0

v1
e3

v1
e1

v2
e2

v2
e1

v3
e3

v3
e2

v1
0 v2

0

v3
0

Figure 3: (a) Feasible Solution (b) Auxiliary Network (solid arcs: Aaux(x)∪Baux(x), dashed
arcs: Caux(y))

Consider an optimal solution (x, y) to the MSFP in F . There exists a vertex potential

function π that satisfies the optimality conditions in Theorem 2.2.1, part 3. Moreover, by
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Theorem 2.2.2, under this potential function the associated reduced costs of the arcs in the

auxiliary network are nonnegative. Recalling that the arc costs of the auxiliary network are

as in (2.1), and the arc cost of a ∈ A satisfies ca = 0, the reduced-cost optimality condition

can be stated as follows:

π(v)− π(u) ≤ 0 ∀(u, v) ∈ Aaux(x) ∪Baux(x), (2.5)

π(v)− π(u) ≤ f(y − χu + χv)− f(y) ∀(u, v) ∈ Caux(y). (2.6)

Recall by (2.4) that (u, v) ∈ Aaux(x) if and only if (v, u) ∈ Baux(x). Together with the above

optimality conditions this implies that π(u) = π(v) for all (u, v) ∈ A. For (u, v) ∈ A1 ⊂ A,

this potential value is the candidate price for the trade associated with (u, v). Similarly,

since there is an arc in A0 ⊂ A between any pair of special vertices, it follows that each

special vertex has a potential value equal to some π0. Furthermore, given a potential

function π : V → R satisfying conditions (2.5) and (2.6), setting π′(u) = π(u) + c for all

u ∈ V gives another potential function satisfying these conditions. By setting c = −π0 the

potential function is normalized to take a value of zero at the special vertices throughout

my analysis.

Potential values are defined at vertices. Recall that in the construction of flow networks

each vertex corresponds to a particular agent-trade pair and the optimal potential values

of two adjacent vertices (associated with the same trade) are equal. Theorem 2.2.1 (3b)

implies that if these potential values are interpreted as prices, and the set of trades yi

chosen for some agent i is unilaterally modified (through the choice of a different outflow

at the vertices in V i), then the payoff of agent i cannot be improved. Thus, it follows that

an optimal solution (x, y) of the MSFP and the prices that correspond to potential values

satisfying Theorem 2.2.1 (3b) constitute a competitive equilibrium.

Conversely, given a competitive equilibrium, the prices for trades define potential values

at all vertices of the flow network, where the potential value of a vertex is the price of
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the corresponding trade and the special vertices get a potential value of zero. The equilib-

rium conditions imply that the equilibrium prices and trades satisfy Theorem 2.2.1 (3a–3b).

Hence, the flow associated with the equilibrium trades solves the MSFP. Thus, the equiva-

lence of optimal solutions of the MSFP to efficient sets of trades, as well as the equivalence

of optimal potential values to competitive prices, follow.

2.3.1. Immediate Consequences

Theorem 2.3.1. (Theorem 1 in Hatfield et al. (2013)) There exists a competitive equilib-

rium.

Proof. Given a trading network G = (N,E), I map it to the associated flow problem in

the flow network (V,A). The MSFP in (V,A) has an optimal solution (x∗, y∗), since it is

a discrete problem and “no flow” is a feasible solution. Theorem 2.2.1 implies that there

exists an optimal potential function π∗ satisfying Condition 3. The trades that correspond

to (x∗, y∗), along with the prices associated with the potential function π∗, constitute a

competitive equilibrium, and the claim follows.

The set of trades associated with a competitive equilibrium is efficient.

Theorem 2.3.2. (First Welfare Theorem, Theorem 2 in Hatfield et al. (2013)) Suppose

that (X, p) is a competitive equilibrium. Then, X is an efficient set of trades.

Proof. Let (x, y) be a feasible flow associated with the set of trades X. The competitive

prices define a potential function for the flow (x, y). By Theorem 2.2.1, (x, y) is optimal;

therefore, the set of trades X is efficient.

Next, it is shown that competitive prices support all efficient sets of trades; i.e., competitive

prices along with any efficient set of trades constitute a competitive equilibrium.

Theorem 2.3.3. (Second Welfare Theorem (strong version), Theorem 3 in Hatfield et al.

(2013)) For any competitive equilibrium (X, p) and efficient set of trades X ′, (X ′, p) is also
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a competitive equilibrium.

Proof. The sets of trades X,X ′ correspond to optimal flows (x, y) and (x′, y′), respectively.

The prices define a potential function associated with the optimal flow (x, y). The second

part of Theorem 3.1 in Murota (1999) states that the potential function satisfies the con-

ditions of Theorem 2.2.1 (3) for the flow (x′, y′). I conclude that (X ′, p) is a competitive

equilibrium.

The set of competitive prices has a lattice structure.

Theorem 2.3.4. (Theorem 4 in Hatfield et al. (2013)) The set of competitive price vectors

is a lattice.

Proof. The claim7 is immediate from the fact that the feasible region of the system of

difference constraints (2.5) and (2.6) is a lattice.

Remark. Hatfield et al. (2013) established the existence of a competitive equilibrium in

trading networks, by reducing the trading network to a two-sided market. Then, they in-

voked the existence results of Kelso and Crawford (1982) for two-sided markets. Finally,

the authors used this equilibrium to construct a corresponding equilibrium for the underly-

ing trading network model, which implies the existence of competitive equilibria in trading

networks. The proof of Kelso and Crawford (1982) relies on discrete prices and a price

update process, and requires establishing that this process terminates in a finite number of

steps. The limiting point is always a competitive equilibrium. My approach eliminates the

need for discrete prices and the need to devise a specific price update process that converges

7Theorem 9.15 in Murota (2003) implies a stronger version of this result, which can be explained through
L-convexity. A set B ⊂ Zn is L-convex if (i) for p, q ∈ B we have p ∨ q, p ∧ q ∈ B, and (ii) for p ∈ B we
have p± 1 ∈ B. Here, p ∨ q (p ∧ q) is a vector, which is obtained by taking the component-wise maximum
(minimum) of the p and q vectors, and 1 is the vector of ones. B′ is L\-convex if B′ = {p|(0, p) ∈ B} for
some L-convex set B. Convex hulls of L-convex (L\-convex) sets are referred to as L-convex (L\-convex)
polyhedra. Theorem 9.15 in Murota (2003) implies that the set of optimal potential functions can be
represented as an L-convex polyhedron. Therefore, the set of competitive prices, which is a restriction of the
potential values to the coordinate plane, is an L\-convex polyhedron. L\-convex polyhedra exhibit lattice
structure.
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to a competitive equilibrium. Nor does it rely on any fixed-point arguments. Instead, the

competitive equilibrium allocation and prices are obtained directly in terms of primal/dual

optimal solutions of an optimization problem (i.e., the optimal flows and potential functions

in MSFP).

2.3.2. Multiple Identical Trades

In the trading network model one can interpret a trade as the sale of a unit of a good from

a seller to a buyer. For the case where there are multiple identical units of a good offered by

the seller, Hatfield et al. (2013) gave a sufficient condition for the existence of a competitive

equilibrium, where all “identical” trades receive the same price. The connection to MSFP is

used to extend this sufficient condition. I define what it means for two trades to be perfect

substitutes for each other.

Definition 2.3.1. Agent i’s trades e, e′ ∈ δ+(i) (similarly e, e′ ∈ δ−(i)) are perfect substi-

tutes if wi(X ∪ {e}) = wi(X ∪ {e′}) for all X ⊂ δ(i) \ {e, e′}.

This definition immediately implies that the value function of agent i depends only on

the number of trades chosen in an equivalence class of perfectly substitutable trades Y

associated with her, i.e., wi(X ∪ S) = wi(X ∪ S′) for all S, S′ ⊂ Y such that |S| = |S′| and

for all X ⊂ δ(i) \ Y .

In Hatfield et al. (2013) it was established that there exists a competitive equilibrium where

trades that are perfect substitutes receive the same price, provided that these trades are also

mutually incompatible, i.e., accepting more than two such trades leads to a payoff of −∞.

The next result shows that such an equilibrium still exists, when the mutual incompatibility

assumption is relaxed. Importantly, this relaxation allows the seller to produce and sell

multiple identical goods. A similar result, where each seller offers multiple identical goods

to each buyer, but offers distinct goods to distinct buyers, is given in Ikebe et al. (2015).

Theorem 7 generalizes this result by also allowing the sellers to offer identical goods to

different buyers. The proof of this result is a simple consequence of the MSFP formulation.
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Theorem 2.3.5. There exists a competitive equilibrium where any two trades that are

perfect substitutes for some agent receive the same price.

Proof. As before, I introduce a flow network F = (V,A), associated with the trading network

G. Recall that an M -concave function w′i is assigned to each agent with each argument

capturing the net outflow at a vertex u ∈ V i. Suppose that agent i has Li disjoint sets

of trades, and the trades in each set are perfect substitutes for each other. Specifically,

for every k ∈ {1, . . . , Li}, Y i
k ⊂ δ(i) denotes a set of trades incident to agent i, such that

any two trades in Y i
k are perfect substitutes for agent i. Denote by VY ik

⊂ V i the vertices

associated with trades Y i
k in F . Merge all vertices in VY ik

into a vertex vY ik
. Make each arc

incident to a vertex in VY ik
incident to vY ik

. I obtain a new set of vertices associated with

agent i given by V i
m =

(
V i \Ri

)
∪Lik=1 {vY ik}, where Ri = ∪Lik=1VY ik

.

Define a new function ŵi : ZV im → R such that

ŵi(y
i
V i\Ri , yY i1

, . . . , yY iLi
) = sup

{
w′i(y

i
V i\Ri , z)

∣∣∣∣ ∑
e∈Y ik

ze = yY ik
, ∀k ∈ {1, . . . , Li}

}
.

The function ŵi is generated by (repeated) aggregation of the original M -concave function

w′i. Aggregation preserves M -concavity (see Theorem 6.13 in Murota (2003)).

Consider the MSFP formulation associated with the network obtained after merging all

vertices in each VY ik
into a single vertex vY ik

and imposing the penalty function f̂() =

−
∑

i ŵi(). The optimal flow in this formulation corresponds to the set of trades in the

trading network, where the net outflow from a vertex vY ik
represents the total number of

trades executed in the set of trades Y i
k . Moreover, since all trades in Y i

k are perfectly

substitutable, by the construction of ŵi, the absolute value of the cost of the optimal flow

is equivalent to the maximum total welfare.

The theorem follows from the equivalence between potential values and competitive prices.

As argued before, Theorem 2.2.1 (3b) gives a potential function π which associates values
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with the vertices of the flow network that can be interpreted as prices. Moreover, under

these prices agents maximize their payoff by choosing the trades associated with the optimal

flow; i.e., the aforementioned trades and prices constitute a competitive equilibrium. By

construction, all arcs corresponding to trades in Y i
k are adjacent to a single vertex vY ik

.

Thus, there exists a unique potential value/price π(vY ik
) for trades Y i

k . Hence, it follows

that a competitive equilibrium where all trades in Y i
k receive identical prices exists.
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CHAPTER 3 : Applications of the Network Flow Approach in Trading Networks

Section 3.1 discusses the equivalence of various stability notions, Section 3.2 discusses al-

gorithms for obtaining competitive equilibria and testing (chain) stability, and Section 3.3

presents several comparative statics results. I conclude in Section 3.4.

3.1. Stable Outcomes

In this section I first review various notions of stability for trading networks proposed in

Hatfield et al. (2013). Informally, a stable outcome has the property that no subset of agents

has an incentive to deviate from it. Given a set of trades X, the prices of the corresponding

trades are denoted by pX , and the set of trades agent i demands once she is restricted to the

trades in X is denoted by Di(p
X) ⊂ X ∩ δ(i). I refer to the tuple (X, pX) as an outcome.

Call an outcome (X, pX) individually rational if

X ∩ δ(i) ∈ arg max
Y⊂X∩δ(i)

wi(Y ) +
∑

e∈Y ∩δ+(i)

pXe −
∑

e∈Y ∩δ−(i)

pXe ∀i ∈ N.

Definition 3.1.1. An outcome (X, pX) is stable if it is individually rational and is un-

blocked:

There is no feasible, nonempty blocking set Z ⊂ E, along with prices pZ , such that

1. Z ∩X = ∅, and

2. for all agents i involved in Z, for all Y i ∈ Di(p
Z∪X), we have Z ∩ δ(i) ⊂ Y i.

The closely related notion of strongly stable outcome is defined next.

Definition 3.1.2. An outcome (X, pX) is strongly stable if it is individually rational and

is strongly unblocked:

There is no feasible, nonempty blocking set Z ⊂ E, along with prices pZ , such that

1. Z ∩X = ∅, and
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2. for all agents i involved in Z, there exists a Y i ⊂ (Z∪X)∩δ(i) such that Z∩δ(i) ⊂ Y i

and

wi(Y
i)+

∑
e∈Y i∩δ+(i)

pZ∪Xe −
∑

e∈Y i∩δ−(i)

pZ∪Xe > wi(X∩δ(i))+
∑

e∈X∩δ+(i)

pXe −
∑

e∈X∩δ−(i)

pXe .

Clearly, a strongly stable outcome is stable.

The next notion of stability is analogous to pairwise stability in bipartite matching. I refer

to a set of consecutive arcs in a graph G, i.e., a set of m arcs S = {e1, . . . , em}, such that

e−i = e+
i+1 for all i = 1, . . . ,m− 1, as a chain.

Definition 3.1.3. An outcome (X, pX) is chain stable if it is individually rational and is

unblocked by a chain:

There is no feasible, nonempty blocking chain Z ⊂ E, along with prices pZ , such that

1. Z ∩X = ∅, and

2. for all agents i involved in Z, for all Y i ∈ Di(p
Z∪X), we have Z ∩ δ(i) ⊂ Y i.

The related notion of strong chain stability is defined below.

Definition 3.1.4. An outcome (X, pX) is strongly chain stable if it is individually rational

and is strongly unblocked by a chain:

There is no feasible, nonempty blocking chain Z ⊂ E, along with prices pZ , such that

1. Z ∩X = ∅, and

2. for all agents i involved in Z, there exists a Y i ⊂ (Z∪X)∩δ(i) such that Z∩δ(i) ⊂ Y i

and

wi(Y
i)+

∑
e∈Y i∩δ+(i)

pZ∪Xe −
∑

e∈Y i∩δ−(i)

pZ∪Xe > wi(X∩δ(i))+
∑

e∈X∩δ+(i)

pXe −
∑

e∈X∩δ−(i)

pXe .
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Clearly, a strongly chain stable outcome is chain stable. Definitions 3.1.1–3.1.4 also imply

that a (strongly) stable outcome is (strongly) chain stable, since if there exists no (strongly)

blocking set, there exists no such set with a chain structure.

Before I show the equivalence of these stability concepts, I focus on the case where not

executing any trades is inefficient. In this case it is shown that it is always possible to find

a chain that improves welfare. Intuitively, this preliminary result implies that it may be

possible to restrict attention to chains when searching for a blocking set. I subsequently

formalize this intuition in Corollary 3.1.2 for outcomes where no trade is executed.

Lemma 3.1.1. Consider a trading network G = (N,E). If not executing any trades is

inefficient, there exists a chain of trades that improve welfare.

Proof. Consider the MSFP formulation of the welfare-maximization problem in G, and let

(x, y) denote a feasible solution of the MSFP associated with flow network F = (V,A)

that corresponds to executing no trades, i.e., that associates zero flow with all arcs in A1,

and hence guarantees y = 0. Since executing no trades in G is inefficient, according to

Theorem 2.2.1 there exists a negative cycle in the auxiliary network F aux(x, y). Pick a

negative cycle K with the least number of arcs. Observe that this cycle visits each vertex

of F aux(x, y) at most once, as otherwise there would exist a negative cycle with fewer arcs.

I claim that there exists such a cycle K that satisfies the following conditions:

1. 0 >
∑
a∈K

cauxa (x, y) =
∑

(u,v)∈K∩Caux(y)

[f(y − χu + χv)− f(y)].

2. The cycle contains at most one special vertex or two incident special vertices.

3. If (u, v) ∈ K ∩Baux(x), then (v, u) ∈ A0.

4. For all arcs in h ∈ K ∩A1, there exist hs, hb ∈ K ∩Caux(y) such that hs− h− hb is a

sequence of arcs along K.

The first condition follows since K is a negative cycle, and arc costs are nonzero only for
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arcs in Caux(y). Suppose that the second condition is violated. Then there are two special

vertices that are not connected by an arc along K. Add the arcs with zero cost between

them to K. Then, we get two cycles with fewer arcs, such that at least one has negative

length. This contradicts the assumption that K is the negative cycle with the least number

of arcs.

To prove the third condition, observe that Caux(y) = {(u, v)|u, v ∈ V, f(y−χu +χv) <∞}

consists only of arcs (u, v), where (i) u, v ∈ V i for some agent i, and (ii) u ∈ {vie|e ∈

{0}∪ δ−(i)} and v ∈ {vie|e ∈ {0}∪ δ+(i)}. To see (i), note that y = 0, and, by construction,

f(z) <∞ only when the total net outflow at the vertices in V i is zero for all i. Thus, if this

claim does not hold, then f(y − χu + χv) =∞, indicating that (u, v) /∈ Caux(y). Similarly,

property (ii) follows since, by construction, f = −
∑

iw
′
i, and the definition of w′i implies

that f(y − χu + χv) =∞ unless this property holds.

Suppose by way of contradiction that (u, v) ∈ K ∩ Baux(x) and (v, u) ∈ A1. Observe that

(v, u) ∈ A1 implies that v ∈ {vie|e ∈ δ+(i)} for some agent i. Hence, the next arc (v, v′)

along K, cannot belong to Caux(y) (as this would violate (ii)). Since the arcs in A1 are

disjoint, this arc is given by (v, v′) = (v, u). By omitting both (u, v) and (v, u) from K, a

negative cycle with the same length but fewer arcs can be obtained, thereby leading to a

contradiction. Thus, the third condition follows.

For the fourth condition, fix h = (u, v) ∈ K ∩ A1. Since the arcs in A1 correspond to

disconnected components of F = (V,A), it follows that the next (similarly previous) arc

along K is either (v, u) ∈ Baux(x) or an element of Caux(y). The third condition together

with the fact that (u, v) ∈ A1 rules out the former case. The latter case implies the fourth

condition.

Theorem 9.22 in Murota (2003) implies that

f(y) > f(y)+
∑

(u,v)∈K∩Caux(y)

[f(y−χu+χv)−f(y)] ≥ f

y +
∑

(u,v)∈K∩(Aaux(x)∪Baux(x))

(χu − χv)

 ,
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since K is a negative cycle with the fewest arcs. The term on the right-hand side is the cost

of the flow obtained after modifying the original flow by sending one unit of flow on arcs

A1 ∩K and adjusting the flow on A0 according to K ∩ (Aaux(x)∪Baux(x)) so that the net

outflow at V i is zero for all i. Thus, I conclude that executing the set of trades associated

with arcs A1 ∩K improves welfare. I complete the proof by showing that this set of trades

constitutes a chain in the trading network.

Assume that K does not involve any special vertices. Consider an arc h ∈ K∩Caux(y), and

recall that both end points of this arc belong to V i for some agent i. Both the predecessor

and successor of this arc along K belong to A1, since the arcs in Caux(y) incident to a non-

special vertex either all have this vertex as their head or they all have it as their tail. This,

along with the fourth condition, implies that arcs along K alternate between Aaux(x) and

Caux(y). The successor of h connects a non-special vertex in V i to a non-special vertex in

V j for some j 6= i, thereby capturing trades between i and j. Since arcs along K alternate

between Aaux(x) and Caux(y), it follows that the next arc’s (say h′’s) end points belong to

V j . By the same argument it can be seen that the arc after h′ suggests a trade relation

between j and some other agent k. Thus, proceeding iteratively, I conclude that the set of

trades associated with arcs A ∩K constitutes a chain1 in G.

The same argument still holds when there is a single special vertex v ∈ V i for some i that

belongs to K. Arcs alternate between Aaux(x) and Caux(y), aside from the arcs adjacent

to v. Since v is connected to other special vertices and vertices in V i, and K visits a single

special vertex, it follows that there exist u, u′ ∈ V i such that (u, v)− (v, u′) belongs to K.

Since u, u′ are non-special vertices in V i, the earlier argument implies that the successor

(predecessor) of (v, u′) ((u, v)) belongs to A1. Thus, proceeding as before, I conclude that

the set of trades associated with arcs A ∩K constitutes a chain starting and ending at i.

Assume instead that K involves an arc between special vertices. Since K involves at most

1In this case, it can be seen that the aforementioned trades also constitute a cycle in G. This is because
special vertices are not visited.
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two special vertices, there can be only one such arc. Starting with such an arc, and pro-

ceeding as before, it follows that the remaining arcs along K suggest a chain of trades that

correspond to the arcs A ∩K.

Hence, I conclude that the trades identified by the smallest negative cycle induce a chain

of welfare-improving trades, as claimed.

The optimality conditions for MSFP and the structure of the flow network play a key role in

the proof of Lemma 3.1.1. This result also has a straightforward corollary that characterizes

blocking chains in terms of a minimal set T of trades that improve welfare, i.e., T such that

no subset of T improves welfare when compared to executing no trades.

Corollary 3.1.2. Consider a trading network G = (N,E). Assume that not executing any

trades is inefficient. Then,

(i) any minimal set of trades that improve welfare constitutes a chain, and

(ii) there exist prices that together with these trades constitute a blocking chain.

Proof. (i) Assume ∅ is not efficient in G, and let T ⊂ E be a minimal set of trades that

strictly improve welfare. Consider a trading network Ĝ = (N,T ), obtained by restricting the

original set of trades to T . Observe that ∅ is also not welfare-maximizing in Ĝ. Lemma 3.1.1

implies that there exists a welfare-improving set of trades that constitutes a chain in Ĝ.

Since T is the minimal (and only) set of trades that improves welfare, it follows that T is

a chain.

(ii) Since T is a minimal welfare-improving set of trades, it follows that in Ĝ = (N,T ) the

unique efficient set of trades is T .

Let ∆ > 0 be such that
∑

iwi(T ∩ δ(i))−2∆|T | >
∑

iwi(X ∩ δ(i))−2∆|X| for any X ( T .

It suffices to choose a ∆ > 0, such that 2∆|T | <
∑

iwi(T ∩ δ(i)) −
∑

iwi(∅) (recall that∑
iwi(X ∩ δ(i)) ≤

∑
iwi(∅) for any X ( T , since T is a minimal welfare-improving set
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of trades). Consider another economy with the same network structure Ĝ = (N,T ), but

with valuations2 w̄i(Z) = wi(Z)−∆|Z|, where Z ⊂ δ(i). Observe that for any set of trades

X ( T we have

∑
i

w̄i(T ∩ δ(i)) =
∑
i

(wi(T ∩ δ(i))−∆|T ∩ δ(i)|) =
∑
i

wi(T ∩ δ(i))− 2∆|T |

>
∑
i

wi(X ∩ δ(i))− 2∆|X| =
∑
i

w̄i(X ∩ δ(i)).
(3.1)

Thus, it follows that T is still the unique efficient set of trades in this economy. Denote a

competitive equilibrium in this economy by (T, pT ).

I claim that (T, pT ) is a competitive equilibrium in the economy with value functions

{wi}i∈N , where Di(p
T ) = {T ∩ δ(i)}. This is because, if a set of trades T ∩ δ(i) is de-

manded in the economy with value functions {w̄i}i∈N , for any S ( T ∩ δ(i) we have

ui(T ∩ δ(i), pT )−∆|T ∩ δ(i)| = ūi(T ∩ δ(i), pT ) ≥ ūi(S, pT ) = ui(S, p
T )−∆|S|, (3.2)

where ūi is the payoff function associated with w̄i. This implies that the payoff of agent i

for the trades in T ∩δ(i) is strictly greater than her payoff for any set of trades S ( T ∩δ(i).

Thus, I conclude that in the economy with value functions {wi}i∈N we have Di(pT ) =

{T ∩ δ(i)}. Hence, it follows that (T, pT ) is a blocking chain for the outcome (∅, p∅).

The definitions in this section imply that verifying stability of an outcome (X, pX) requires

focusing on trades that belong to E \X and establishing that there is no blocking set (or

chain) in E \ X. Thus, to study the stability of an outcome (X, pX) with X 6= ∅, it is

necessary to study the preferences of agents for trades in E \ X. To this end, the idea of

a contraction of an economy (see Hatfield et al. (2013)) is used. For an outcome (X, pX),

2The use of “modified valuations” was employed in Hatfield et al. (2013) to establish that a stable outcome
can be supported with appropriate prices to obtain a competitive equilibrium. I follow a similar construction
to show that if the efficient allocation is unique, then there exist competitive equilibrium prices under which
each agent strictly demands her equilibrium set of trades. Note, that this result is independent of the trading
network structure, and is a byproduct of strict complementarity in optimization.
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I define a new trading network GX = (N,E \X), where agent i ∈ N has a value function

ŵi : 2δ(i)∩(E\X) → R given as follows:

ŵi(S) = max
Y⊂X∩δ(i)

[wi(S ∪ Y ) +
∑

e∈Y ∩δ+(i)

pXe −
∑

e∈Y ∩δ−(i)

pXe ]. (3.3)

It follows from Murota (2003) (Theorem 6.13 (3), Theorem 6.15) that ŵi is M \-concave for

each i ∈ N . Refer to GX as the contraction of economy G, with respect to (X, pX).

3.1.1. Equivalence of Solution Concepts

Given a competitive equilibrium (X, p) I refer to the tuple (X, pX), obtained after restricting

the prices to the trades in X, as a competitive equilibrium outcome. It is next shown that all

notions of stable outcomes coincide with competitive equilibrium outcomes. My approach

involves the following two steps (established in Theorems 3.1.3 and 3.1.4, respectively):

1. A competitive equilibrium outcome is a (strongly) stable outcome.

2. A chain stable outcome is a competitive equilibrium outcome.

The first result follows from the definition of stability, while the second follows from

Lemma 3.1.1 and Corollary 3.1.2, which exploit the network flow formulation.

Theorem 3.1.3. (Theorem 5 in Hatfield et al. (2013)) If (X, p) is a competitive equilibrium

in trading network G and pX is the restriction of p to the arcs in X, then, (X, pX) is a

(strongly) stable outcome in G.

Proof. Since (X, p) is a competitive equilibrium, it follows that (X, pX) is individually

rational. To complete the proof, it suffices to show that there is no set of trades that

(strongly) blocks (X, pX). Let GX be the contraction with respect to (X, pX). Since

(X, p) is a competitive equilibrium in G, (∅, p(E\X)) is a competitive equilibrium in GX .

Theorem 2.3.2 implies that ∅ is an efficient set of trades in GX . Suppose, for a contradiction,

there exist trades and prices (Z, pZ) that (strongly) block (X, pX) in G. This would imply

that Z has higher welfare than ∅ in GX , which contradicts the efficiency of ∅.
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As any (strongly) stable outcome is (strongly) chain stable, Theorem 3.1.3 implies the

hierarchy displayed in Figure 4.

Next, I establish the equivalence of all the stability notions, by showing that in any chain

stable outcome (X, pX), it is possible to find prices for trades E \ X to support X as a

competitive equilibrium. Thus, the “weakest” and “strongest” equilibrium/stability notions

in Figure 4 are equivalent.

Theorem 3.1.4. Suppose that (X, pX) is a chain stable outcome in trading network G.

Then, there exists a price vector p ∈ RE , with pe = pXe for all e ∈ X, such that (X, p) is a

competitive equilibrium in G.

Proof. Consider the contraction GX of the trading network G with respect to (X, pX). I

claim that for some price vector p̂E\X , (∅, p̂E\X) is a competitive equilibrium in GX . Assume

not, then, it follows from Theorems 2.3.1 and 2.3.3 that ∅ is not welfare maximizing in GX .

Then, Corollary 3.1.2 implies that this outcome is not chain stable, and there exists a

set of trades T ⊂ E \ X, and prices pT that constitute a blocking chain in GX . This

implies that (T, pT ) also blocks (X, pX) in the original economy G. Thus, a contradiction

is obtained, and it follows that (∅, p̂E\X) is a competitive equilibrium in GX . Since (X, pX)

is chain stable and hence individually rational, this implies that in the economy G, under

prices (pX , p̂E\X), each agent i demands X ∩ δ(i). Hence, this outcome corresponds to a

competitive equilibrium, and the claim follows.
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3.2. Algorithms for Trading Networks

The MSFP formulation leads to computationally efficient algorithms for obtaining compet-

itive equilibria and stable outcomes. In this section, I first outline algorithms that can be

used to obtain competitive equilibria and various associated quantities. I then provide an

algorithm that can be used to check whether a given outcome is (chain) stable.

3.2.1. Competitive Equilibrium Computation

An algorithm for solving MSFP in time that is polynomial in input size is described in

Iwata et al. (2005). The transformation of the problem of finding an efficient set of trades

into an instance of MSFP also has polynomial complexity. Thus, it follows that an efficient

set of trades for trading networks can be obtained in polynomial time, by formulating and

solving3 the associated MSFP.

The algorithm outlined requires oracle knowledge of agents’ valuations. Alternatively, it is

possible to design a tâtonnement process that converges to competitive equilibria. Specif-

ically, it is possible to set prices, collect the set of demanded trades by each trader, and

adjust prices until convergence to a competitive equilibrium. Such iterative price update

schemes are privacy-preserving, in the sense that they do not necessitate knowledge of the

entire value function of the agents, and are employed in iterative auction design; see, e.g.,

Ausubel (2006).

Consider for instance Algorithm 1, which is initialized with arbitrary (integral) prices for

trades. At each stage, it collects agents’ demand reports, i.e., the sets of trades that are

demanded at the current price vector p. Then, Algorithm 1 checks whether it is possible to

choose a set of trades X that is consistent with agents’ demand reports; i.e., X assigns to

3The algorithm in Iwata et al. (2005) runs in strongly polynomial time; i.e. the number of arithmetic
operations performed does not depend on the magnitudes of agents’ valuations. Thus, it is possible to
compute the efficient set of trades in a number of operations and space bounded by a polynomial in input
size. Similarly, it can be shown that by computing the shortest distances from special vertices to the
remaining vertices of the auxiliary network, potential values that satisfy the difference constraints (2.5) and
(2.6) can be readily obtained. This can be accomplished in strongly polynomial time, using shortest-path
algorithms, e.g., the Bellman-Ford algorithm. Using these observations it is possible to strengthen all of
the results on the polynomial complexity in this and the next subsection. Specifically, it can be shown that
a competitive equilibrium can be obtained, and stability can be checked in strongly polynomial time for
trading networks.
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each agent demanded trades (X ∩ δ(i) ∈ Di(p) for each i).

ALGORITHM 1: Tâtonnement Process
1 Initialize price vector p = p0, where p0 ∈ ZE ;
2 Collect agents’ demand reports Di(p) ;
3 if no set of trades is consistent with demand reports then

4 {ε∗, S∗} ∈ arg min
ε∈{−1,1},S⊂E

∑
i∈N

 max
Zi∈Di(p)

{ ∑
e∈S∩Zi∩δ+(i)

ε−
∑

e∈S∩Zi∩δ−(i)

ε
};

5 p := p+ ε∗χS
∗

;
6 GOTO step 2;

7 else
8 return p;
9 end

Note that if such a set of trades X exists, then it is also efficient, and p is a vector of

competitive prices. Otherwise, Algorithm 1 increments/decrements the price of a set of

trades. Suppose that the algorithm chooses (ε∗, S∗) and updates the prices by ε∗χS
∗
, where

ε∗ ∈ {−1, 1} and χS ∈ {0, 1}E is a characteristic vector for set S; i.e., its entry corresponding

to e ∈ E is equal to one if and only if e ∈ S. Then, the quantity

max
Zi∈Di(p)

{ ∑
e∈S∗∩Zi∩δ+(i)

ε∗ −
∑

e∈S∗∩Zi∩δ−(i)

ε∗
}

captures the corresponding change in the maximum payoff of agent i from the previously

demanded sets in Di(p). Thus, Algorithm 1 updates the prices in a way that decreases the

aggregate payoff of agents from demanded bundles as much as possible.

Convergence of Algorithm 1 to a competitive equilibrium can be established by showing

that the price updates in the algorithm decrease the aggregate payoff of agents, given as

follows:

g(p) =
∑
i∈N

max
S⊂δ(i)

ui(S, p).

Thus, this function can be used as a Lyapunov function for establishing convergence. Note

that for the efficient set of trades X, by choosing S∗i = X ∩ δ(i), it can be seen that g(p) ≥∑
i ui(S

∗
i , p) =

∑
iwi(S

∗
i ). Thus, g is lower-bounded by the optimal welfare. Moreover,

this lower bound is achieved whenever ui(S
∗
i , p) = max

S⊂δ(i)
ui(S, p) for all i, or, equivalently,
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whenever p is a competitive equilibrium vector. Thus, when the algorithm converges, it

converges to a competitive equilibrium.

The fact that the unit price updates given in the algorithm decrease g(p) follows from

the duality theory of M -convex optimization. The function max
S⊂δ(i)

ui(S, p) = max
S⊂δ(i)

wi(S) −∑
e∈S∩δ−(i)

pe +
∑

e∈S∩δ+(i)

pe is the convex conjugate of −wi. Convex conjugates of M \-convex

functions, as well as their sums such as g, are L\-convex functions. A function h : Zn → R is

L-convex if (i) for p, q ∈ Zn we have h(p)+h(q) ≥ h(p∨q)+h(p∧q), and (ii) h(p+1) = r+h(p)

for some r ∈ R. A function h is L\-convex if h̃(p0, p) = h(p−p01) for some L-convex function

h̃. L\-convex functions have desirable properties. For instance, if p is not a minimizer of an

L\-convex function, then by jointly incrementing/decrementing a subset of the coordinates

of p, the value of the function can be decreased (see Section 7 in Murota, 2003). Note that

Algorithm 1 relies on such price updates. The details of convergence of this algorithm are

standard, and hence omitted. Note that similar algorithms have also been used to determine

competitive equilibria in two-sided markets (Sun and Yang, 2009; Murota, 2003).

I close this section by providing an approach for testing whether a given payoff vector can

be supported in equilibrium. Formally, given σ ∈ RN , I investigate whether there exists a

competitive equilibrium (X, p) such that σi = ui(X ∩ δ(i), p) for all i ∈ N .

Let X denote an efficient set of trades. Theorem 2.3.3 implies that (X, p) is a competitive

equilibrium for any equilibrium price vector p. Since in a competitive equilibrium agents

demand trades that maximize their payoff, it also follows that all competitive equilibria

with price vector p share the same payoff vector; i.e., agent i ∈ N receives the same payoff

in all such equilibria. Thus, to characterize the set of payoff vectors that can be induced in

equilibrium, it suffices to fix an efficient set of trades X and consider different equilibrium

price vectors.

Recall that an efficient set of trades can be obtained by using the MSFP formulation. Let

(x, y) denote an optimal solution of this problem, and let X denote the corresponding
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efficient set of trades. Consider the auxiliary network F aux(x, y) associated with (x, y), and

recall that the reduced cost optimality conditions can be expressed as in (2.5) and (2.6). As

discussed in Section 2.3, when the potential values of the special vertices in the flow network

({vi0}i∈N ) are set to zero, the potential values satisfying (2.5) and (2.6) characterize the set

of all competitive equilibrium price vectors. In particular, given a solution π to this system

by setting the price of any trade e ∈ E to pe = π(ve
+

e ) (= π(ve
−
e )) yields a competitive

equilibrium price vector and vice versa.

Using these observations it follows that the payoff vector σ can be supported in equilibrium

if and only if the following system has a solution π:

wi(X ∩ δ(i)) +
∑

e∈X∩δ+(i)

π(vie)−
∑

e∈X∩δ−(i)

π(vie) = σi ∀i ∈ N

π(v)− π(u) ≤ 0 ∀(u, v) ∈ Aaux(x) ∪Baux(x)

π(v)− π(u) ≤ f(y − χu + χv)− f(y) ∀(u, v) ∈ Caux(y)

π(vi0) = 0 ∀i ∈ N,

(P)

where f is defined as in Section 2.3 (see the discussion following (2.3)).

Thus, I conclude that by first obtaining an optimal solution (x, y) to the MSFP formulation

(and the associated efficient set of trades X), and then checking whether (P) admits a

feasible solution (π), it can be determined whether σ constitutes a competitive equilibrium

payoff vector or not. The latter step can be accomplished by solving a linear program.

Moreover, both this linear program and the MSFP formulation can be solved in time that

is polynomial in the number of trades in the economy. Therefore, I have established the

following corollary:

Corollary 3.2.1. It is possible to check in time that is polynomial in |E| whether a given

vector σ ∈ RN constitutes an equilibrium payoff vector.
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3.2.2. Determining a Blocking Chain

Recall that an outcome is chain stable if it is individually rational and does not admit a

blocking chain. I describe below a polynomial-time algorithm, Algorithm 2, for identifying

a blocking chain for a given outcome or for certifying that none exists. This algorithm can

also be used to test chain stability in polynomial time.

Fix an outcome (X, pX). To verify individual rationality of this outcome it suffices to

ensure that ui(X ∩ δ(i), pX) is greater than ui((X ∩ δ(i)) \ {e}, pX) for all e ∈ X ∩ δ(i),

and ui((X ∩ δ(i) \ {e1, e2}), pX) for all e1 ∈ X ∩ δ+(i), e2 ∈ X ∩ δ−(i) and i ∈ N . This

follows from Theorem 6.26 in Murota (2003), together with the fact that the value functions

and hence ui(X ∩ δ(i), pX) are M \-concave. Thus, individual rationality can be checked by

comparing X ∩ δ(i) with polynomially many sets of trades incident to agent i, for all i.

Assume that outcome (X, pX) is individually rational. Then, Algorithm 2 can be used to

identify a blocking chain or certify that none exists. In the description of the algorithm the

shorthand (x, y) = RḠ(X) is used to denote the flow/net outflow that is consistent with a

given set of trades X, in the flow network associated with a trading network Ḡ.

Algorithm 2 proceeds in two phases. Phase one focuses on the contraction GX (with respect

to (X, pX)), corresponding value functions {ŵi}i∈N (see (3.3)), and set of trades ∅. It uses

the auxiliary network associated with GX , and finds a minimal welfare-improving chain T

if one exists. If none exists, then there is no blocking chain. Otherwise, the second phase

returns the prices pT , which together with T constitute a blocking chain for the empty

outcome in GX , and, equivalently, outcome (X, pX) in G.

The algorithm relies on three functions: aux.construct(), greedyX(), BellmanFord(). It

starts phase one by considering the trading network Ḡ = GX , and flow (x, y) = RḠ(∅) in

the corresponding flow network. Function aux.construct(Ḡ, (x, y)) constructs the associated

auxiliary network. The auxiliary network has at most O(|N |+|E|) vertices (since it contains

two vertices for each trade and a special vertex for each agent) and O(|N |2 + |E|2) arcs
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ALGORITHM 2: Determining a Blocking Chain
Input: Trading network G = (N,E), valuations {wi}i∈N , and outcome (X, pX ).

Output: Blocking chain T with prices pT .
1

2 Ḡ = GX ; (x, y) = RḠ(∅); Faux(x, y) = aux.construct(Ḡ, (x, y));
3 foreach (u, v) ∈ Aaux(x) ∪ Baux(x) do caux

(u,v)(x, y) = 0;

4 foreach i ∈ N do

5 foreach u ∈ V i do

6 foreach v ∈ V i do

7 caux
(u,v)(x, y) = greedyX(wi, y

i)− greedyX(wi, y
i − χu + χv);

8 end

9 end

10 end
11 foreach u ∈ V do
12 foreach v ∈ V do
13 W [u, v, 1] = caux

(u,v)(x, y);

14 end

15 end
16 for m = 2→ |V | do
17 foreach u ∈ V do
18 foreach v ∈ V do
19 W [u, v,m] = W [u, v,m− 1];
20 foreach t ∈ V do
21 W [u, v,m] = min{W [u, v,m],W [u, t,m− 1] + caux

(t,v)(x, y)};
22 end

23 end

24 end

25 end
26 Find smallest m such that W [u, u,m] < 0 for some u and negative cycle K from matrix of predecessors;
27 if not found then
28 return No Blocking Chain;
29 else
30 set T = {e ∈ E|the corresponding arc in the auxiliary network belongs to K ∩ Aaux(x)};
31 end
32

33 Ĝ = (N, T ); (x, y) = R
Ĝ

(T ); Faux(x, y) = aux.construct(Ĝ, (x, y)) ;

34 foreach (u, v) ∈ Aaux(x) ∪ Baux(x) do caux
(u,v)(x, y) = 0;

35 foreach i ∈ N do

36 foreach u ∈ V i do

37 foreach v ∈ V i do

38 caux
(u,v)(x, y) = greedyX(wi, y

i)− greedyX(wi, y
i − χu + χv);

39 end

40 end

41 end

42 Set ∆ = 1
4|T | ;

43 foreach a ∈ Caux(y) do
44 if a is adjacent to a special vertex then
45 caux

a (x, y) = caux
a (x, y)−∆;

46 else
47 caux

a (x, y) = caux
a (x, y)− 2∆;

48 end

49 end
50 Pick a special vertex s in Faux(x, y);
51 d = BellmanFord(Faux(x, y), s);
52 foreach e ∈ T do

53 pT [e] = d[ve
+

e ];
54 end

55 return (T, pT );

(where the cardinality of Aaux(x)∪Baux(x) is O(|N |2 + |E|), and the cardinality of Caux(y)

is O(|E|2), since it is bounded by
∑

i∈N (|δ(i)| + 1)2). Note that traders who do not have

any incident arcs cannot affect the stable outcome/blocking chains. Thus, in this analysis

without loss of generality, such agents are omitted from the trading network, and I consider

settings where G = (N,E) is (weakly) connected4 and satisfies |E| ≥ |N | − 1. Hence, the

4If G is not connected then the algorithm can examine each connected component separately.
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number of arcs in the auxiliary network is O(|N |2 + |E|2) = O(|E|2).

Algorithm 2 assigns costs to all arcs in Caux(y), using greedyX(). As the auxiliary network

is associated with the contraction GX , these costs are a function of {ŵi}i∈N . Algorithm 2

does not need to explicitly determine {ŵi}i∈N . It suffices to evaluate these functions for

each arc in the auxiliary network in Caux(y) to determine the arc costs. Specifically, recall

that each arc (u, v) ∈ Caux(y) is such that u, v ∈ V i for some i ∈ N , and thus caux(u,v)(x, y) =

f(y − χu + χv) − f(y) = ŵ′i(y
i) − ŵ′i(yi − χu + χv), where ŵi

′ is the M -concave function

associated with ŵi (recall the definition in (2.2)). The definition of {ŵi}i∈N in (3.3) and

M \-concavity of wi imply that for a given y, it is possible to compute ŵ′i(y) with a greedy

algorithm (greedyX()) in polynomial5 time (Shioura, 2004). The complexity of computing

this quantity, and hence caux(u,v)(x, y) for each (u, v) ∈ Caux(y), is O(|X|2), which is bounded

by O(|E|2). Thus, the overall complexity of computing all arc costs and constructing the

auxiliary network is O(|E|4) (recall that the cardinality of Caux(y) is bounded by O(|E|2)).

Recall that a negative cycle with the least number of arcs in the auxiliary network reveals

a (minimal) chain of trades that improve welfare, which constitutes a blocking chain T (see

Lemma 3.1.1 and Corollary 3.1.2). To find such a negative cycle, it suffices to compute the

array W , whose (u, v,m) entry, W [u, v,m], is the smallest length achieved by a directed

path from vertex u to vertex v using at most m arcs. If W [u, u,m] is nonnegative for each u

and m ≤ |V |, then the first phase of Algorithm 2 terminates by concluding that no negative

cycle exists, and hence not executing any trades in GX is efficient (Theorem 2.2.1). Thus,

there is no blocking chain. Otherwise, the negative cycle with the least number of arcs is

given by the element W [u, u,m] which is negative for the smallest possible m. The arcs

along the negative cycle can be found by keeping track of the arcs added to the shortest

paths at the computation of W (i.e., the arcs (t, v) whose length determines W [u, v,m] in

line 20). In this case, the first phase of the algorithm terminates with a blocking chain T .

Computing W and finding a blocking chain T (or establishing that it does not exist) takes

5In our case this greedy algorithm is strongly polynomial, since domf ⊂ {−1, 0, 1}V .
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O(|V |4) = O((|N |+ |E|)4) = O(|E|4) steps.

In phase two I construct the prices pT accompanying the blocking chain T . The algorithm

focuses on trading network Ĝ = (N,T ), value functions {ŵi}i∈N , and set of trades T , and

constructs the prices following the approach in the proof of Corollary 3.1.2. Specifically, it

first perturbs the value functions {ŵi}i∈N by ∆ > 0 (which is chosen to satisfy the conditions

imposed in the proof of Corollary 3.1.2) to obtain valuations w̄i(Z) = ŵi(Z)−∆|Z|. Then,

it computes a competitive equilibrium in the economy with respect to {w̄i}i∈N . As in

Corollary 3.1.2, a competitive equilibrium in this economy yields prices pT such that under

these prices, each agent i strictly demands T ∩ δ(i) in GX , thereby implying that (T, pT ) is

a blocking chain for outcome (X, pX) in G.

To compute the competitive equilibrium prices, the algorithm focuses on the flow network of

Ĝ, and the flow consistent with executing trades T . Then, it constructs the corresponding

auxiliary network and its arc costs (according to {w̄i}i∈N ), which takes O(|E|4). To see

this, note that arc costs according to {w̄i}i∈N and those according to {ŵi}i∈N are closely

related.

In particular, since we start with a flow consistent with executing all trades T in Ĝ, each

arc in Caux(y) corresponds to dropping one existing trade (if incident to a special vertex)

or two existing trades (such that an agent is a buyer in one and a seller in the other). In

the former case (assuming trade e is dropped), the arc cost is given by:

w̄i(T )− w̄i(T \ {e}) = ŵi(T )−∆|T | − ŵi(T \ {e}) + ∆(|T | − 1) = ŵi(T )− ŵi(T \ {e})−∆.

Thus, the arc cost according to {w̄i}i∈N is obtained by subtracting ∆ from the arc cost

according to {ŵi}i∈N . In the latter case, since the arc is not incident to a special vertex,

the algorithm follows a similar approach and computes the arc costs by subtracting 2∆ from

the arc costs associated with {ŵi}i∈N . Instead of constructing the functions {ŵi, w̄i}i∈N

explicitly, the algorithm relies on greedyX() to evaluate the arc costs according to {ŵi}i∈N .

50



This step has complexity O(|E|4). Then, it perturbs these by ∆ and 2∆ as appropriate, to

construct the arc costs according to {w̄i}i∈N . Since the cardinality of Caux(y) is O(|E|2),

the overall complexity of constructing the auxiliary network and accompanying arc costs

according to {w̄i}i∈N is O(|E|4).

Given the auxiliary network and arc costs, if potential values satisfying conditions (2.5)

and (2.6) are known, they will be equilibrium prices pT . Such potential values can be

obtained by solving a linear program. Alternatively, consider the shortest distances from a

special vertex to all vertices of the auxiliary network. Observe that these distances readily

satisfy conditions (2.5) and (2.6), and hence give pT . For an auxiliary network F aux(x, y)

and (special) vertex s, the function BellmanFord(F aux(x, y), s) of the algorithm computes

the shortest path distances on F aux(x, y) from vertex s using the Bellman-Ford algorithm.

Constructing the prices following this approach has complexity O(|V ||A|) = O(|E|3).

In sum, the overall complexity of the algorithm is O(|E|4 + |E|4 + |E|3) = O(|E|4). Hence,

using Algorithm 2 it is possible to identify a blocking chain or to certify that none exists in

polynomial time. Since individual rationality can also be checked in polynomial time, my

results imply that for trading networks chain stability can be tested in polynomial time.

3.3. Comparative Statics

The study of how the solutions of an economic model change as its parameters are changed

is important because most of the testable predictions of a model are comparative statics

predictions. Here, I first characterize how competitive equilibria change if (i) a new trade or

(ii) a new buyer is added to the underlying economy. I build on these results to characterize

how the addition of a collection of trades (possibly between more than two traders) may

change the equilibrium. Finally, I discuss possible applications of my comparative statics.

My characterization exploits how optimal flow/potential values change as the parameters

of the corresponding MSFP are modified.

Sensitivity results are available for the classic minimum-cost network flow problems (see,

e.g, Ahuja et al. (1993)). I provide a similar result for MSFP using the reduced costs
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associated with a given optimal flow and potential function.

Lemma 3.3.1. Consider a network F = (V,A) and let â be an arc with zero capacity, i.e.,

kâ = kâ = 0. Let (x, y) and π respectively denote an optimal solution of the MSFP and

vertex potential values that satisfy the optimality conditions in Theorem 2.2.1. Construct

the auxiliary network F aux(x, y), and let d : V → R be a function such that d(v) is the

length of the shortest path from â− to v ∈ V in F aux(x, y), where the length of each arc is

given by the reduced cost under π.

Consider the instance of MSFP when kâ is increased to one. For this problem an optimal

solution (x̂, ŷ) and an associated potential function π̂ that satisfies the optimality conditions

of Theorem 2.2.1 can be obtained as follows:

• Set π̂(v) = π(v) + d(v) for all v ∈ V .

• If cπâ + d(â+) ≥ 0, set (x̂, ŷ) = (x, y). Otherwise, let P be a shortest path (with

respect to the reduced costs) from â− to â+ in F aux(x, y) with the least number of

arcs. Obtain x̂ by augmenting the flow x in F along P , and sending one unit of flow

on arc â. Define ŷ as the associated net outflow.

Proof. Theorem 2.2.2 implies that in F , the vertex potential function π together with the

optimal solution (x, y) of the MSFP satisfy the reduced-cost optimality conditions. Let F̂

denote the network obtained after increasing the capacity of arc â in F by one unit. Observe

that the optimal flow (x, y) of F continues to be feasible for F̂ (since the capacities of arcs

do not decrease). Let F̂ aux(x, y) denote the auxiliary network associated with F̂ , and (x, y).

Note that F̂ aux(x, y) is obtained from F aux(x, y) by including arc â. Thus, it follows that

(x, y, π) satisfies the reduced-cost optimality conditions for all arcs in F̂ aux(x, y) except â.

Case 1 (cπâ + d(â+) ≥ 0): Construct a new potential function as defined in the statement

of the lemma: π̂(v) = π(v) + d(v) for all v ∈ V . Observe that for any arc a in F aux(x, y),

we have d(a−) ≤ d(a+) + cπa , i.e., the shortest path from â− to a− is at most the length
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of the shortest path to a+ plus the length of arc a. This implies that for all arcs a 6= â in

F̂ aux(x, y), the reduced costs under the new potential function, cπ̂a = cπa + d(a+) − d(a−),

remain nonnegative. As for arc a, the new reduced cost is nonnegative according to the

hypothesis of this case (since cπ̂â = cπâ + d(â+)). Thus, (x, y) and π̂ satisfy the reduced-cost

optimality conditions in F̂ . Therefore, by Theorem 2.2.2, (x, y) is an optimal solution of

the MSFP, and together with potential function π̂ it also satisfies the optimality conditions

of Theorem 2.2.1.

Case 2 (cπâ + d(â+) < 0): Update the potential function as in Case 1. Define a new

solution (x̂, ŷ) to the MSFP as described in the statement of the lemma. Denote by Âaux(x),

B̂aux(x), and Ĉaux(y), the subsets of the arcs in the auxiliary network F̂ aux(x, y) (as defined

in Section 2.2). As in the first case, under the new potential function π̂ any arc a 6= â in

F̂ aux(x, y) has a nonnegative reduced cost. Consider the new auxiliary network F̂ aux(x̂, ŷ)

obtained after the flow is updated, and define the associated reduced costs with respect to

the potential function π̂.

First focus on the arcs in Âaux(x̂) ∪ B̂aux(x̂). Following a similar approach to Case 1,

it can be shown that the reduced costs of arcs that were also present previously, i.e., in

Âaux(x) ∪ B̂aux(x), remain nonnegative. It follows from the construction of the auxiliary

network that the new arcs in F̂ aux(x̂, ŷ) (that do not belong to F̂ aux(x, y)) are those obtained

after reversing the arcs in P ∪ {â}. Observe that arc â is only present with an opposite

orientation, since in x̂ one unit of flow is sent on arc â. It can be readily seen that the

reduced-cost optimality condition on this arc, hereafter −â, is now satisfied since it is given

by cπ̂−â = −(cπâ + d(â+)) > 0, where the inequality follows from the assumption in this case.

For each arc a in P ∩ (Âaux(x)∪ B̂aux(x)), let −a denote the arc obtained after reversing a,

and recall that −a ∈ Âaux(x̂)∪ B̂aux(x̂). Since arc a is on the shortest path between â− and

â+, we have d(a−) = d(a+) + cπa . Consequently, cπ̂−a = −cπ̂a = −(cπa + d(a+) − d(a−)) = 0.

Thus, it follows that all arcs in Âaux(x̂) ∪ B̂aux(x̂) have nonnegative reduced cost.

To conclude the proof I establish that the reduced costs of arcs in Ĉaux(ŷ) are positive using
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the following lemma:

Lemma 3.3.2 (Lemma 3.2 in Moriguchi and Murota (2003)). Suppose that y ∈ arg min
z
f(z)−

p · z and that (u1, v1), (u2, v2), . . . , (ur, vr) ∈ Caux(y) have distinct end vertices. If (ui, vi) ∈

Caux(y)∩ {a|cpa = 0} for i = 1, . . . , r and (ui, vj) /∈ Caux(y)∩ {a|cpa = 0} for any i < j, then

ŷ = y +
r∑
i=1

(χvi − χui) ∈ arg min
z
f(z)− p · z.

Given flows x and x̂ in F̂ , focus on the associated outflow y and ŷ, and the corresponding

sets of arcs Ĉaux(y) and Ĉaux(ŷ). The hypotheses of this lemma can be verified by setting

pv = π̂(v) for all v ∈ V .

First, observe that under π̂ the reduced cost of any arc in F aux(x, y) is nonnegative. Hence,

under π̂ any arc a 6= â in F̂ aux(x, y) has a nonnegative reduced cost, and I conclude that

the reduced costs of all arcs in Ĉaux(y) are nonnegative. Note that the reduced cost of an

arc (u, v) ∈ Ĉaux(y) can be expressed as follows: cπ̂(u,v) = f̄(y + χv − χu)− f̄(y) ≥ 0, where

f̄(y) = f(y) −
∑
v∈V

π̂(v)yv. Since local optimality implies global optimality for M -convex

functions (see Murota (2003)), and Ĉaux(y) consists of all (u, v) for which f(y + χv − χu)

is bounded, it follows that y ∈ arg minz∈Z|V | f(z)−
∑
v∈V

π̂(v)zv.

Second, all arcs in P ∩ Ĉaux(y) have distinct end vertices. To show this, I examine how P

was formed in the auxiliary network F aux(x, y) with potential function π. The shortest path

P cannot go through a vertex twice, since all reduced costs are nonnegative. In addition,

there are no consecutive arcs (s, u)−(u, t) in P ∩Caux(y), since by M -convexity the reduced

cost of the shortcut (s, t) is less than the sum of the reduced costs in (s, u) and (u, t), which

would have revealed that there exists a shortest path from â− to â+ with fewer arcs than

P . Formally, let caux(u′,v′)(x, y) be the cost of arc (u′, v′) in F aux(x, y). Using the definition

in (2.1) and directly applying M -EXC[Z] on f , it can be seen that the triangle inequality

holds for the arc costs of the auxiliary network, i.e.,

caux(s,t)(x, y) ≤ caux(s,u)(x, y) + caux(u,t)(x, y). (3.4)
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It follows that the triangle inequality holds for the reduced costs as well:

cπ(s,u) + cπ(u,t) = caux(s,u)(x, y) + π(s)− π(u) + caux(u,t) + π(u)− π(t)

= caux(s,u) + caux(u,t) + π(s)− π(t)

≥ caux(s,t) + π(s)− π(t)

= cπ(s,t).

As explained above, we have cπ̂a = 0 for all a ∈ P∩Ĉaux(y). Now, suppose that P∩Ĉaux(y) =

{(u1, v1), . . . , (ur, vr)}, where the indexing is chosen with respect to the order of arcs in P .

It readily follows that there is no shortcut arc (ui, vj) ∈ Ĉaux(y) such that i < j and

cπ̂(ui,vj) = 0, since this would imply that cπ(ui,vj) = d(vj)− d(ui), which raises a contradiction

by revealing that in F aux(x, y) with potential function π there exists a shortest path from

â− to â+ with fewer arcs than P .

Thus, Lemma 3.2 in Moriguchi and Murota (2003) guarantees that ŷ ∈ arg minz∈Z|V | f(z)−∑
v∈V

π̂(v)zv. Global optimality implies local optimality, and I conclude that cπ̂a ≥ 0 for all

a ∈ Ĉaux(ŷ). Since I have also established that the reduced costs of arcs in Âaux(x̂) and

B̂aux(x̂) are nonnegative, by Theorem 2.2.2 the optimality of (x̂, ŷ) follows. Theorem 2.2.2

also implies that this optimal solution paired with the potential function π̂ satisfy the

optimality conditions of Theorem 2.2.1, as claimed.

This lemma implies that if a unit capacity arc is added to an instance of MSFP, the optimal

flow, as well as the supporting potential function, change in a predictable way. Specifically,

either the initial flow remains optimal, or a new optimal flow is obtained by augmenting

the flow on the new arc as well as the path connecting the end points of the aforementioned

arc, in the auxiliary network. Recall that in the MSFP formulation of Section 2.3, arcs

correspond to possible trades between the agents, and optimal flow provides equilibrium

trades. Thus, the change in equilibrium trades as a result of introducing new trades into

an economy can be characterized by using Lemma 3.3.1.
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3.3.1. Addition of a New Trade

I start by characterizing the change in competitive equilibrium trades with the introduc-

tion of a single new trade. I establish that after the introduction of the new trade, the

initial competitive equilibrium trades may still constitute an equilibrium. If not, the new

competitive equilibrium trades can be obtained by identifying a chain of trades in a slightly

modified trading network, and (i) including among equilibrium trades the trades of this

chain that do not belong to the initial equilibrium and (ii) removing the remaining trades

associated with the arcs in the chain from the set of equilibrium trades.

Theorem 3.3.3. Let X be a set of equilibrium trades in G, and G′ be a new trading

network obtained after adding a new trade e to G. Denote by Gres the trading network

obtained from G′ after reversing the orientations of the arcs in X. Either X continues to

be a set of equilibrium trades in G′ or there exists a chain C 3 e of trades in Gres such that

the new set of equilibrium trades is given by X ′ = Cf ∪X \ Cr, where Cr denotes the arcs

in G that are present in C with opposite orientations, and Cf denotes the remaining arcs

in C.

Proof. Since the value functions are M \-convex, the trading network can be transformed to

a flow network. I modify the internal network of each agent by introducing an additional

vertex for each agent/trade vertex in the flow network, where the agent is the buyer in

this trade. Call the new vertices terminal vertices. Each arc in the original flow network

corresponding to a trade is replaced by two arcs: one arc from the corresponding vertex

of the seller to the terminal vertex, and the other arc from the terminal vertex to the

corresponding vertex of the buyer. The former arc is uncapacitated, whereas the latter one

has a capacity of either 0 or 1 that encodes its absence or presence in the network. Nonzero

net outflow at terminal vertices has an infinite penalty (i.e., flow conservation is imposed at

these vertices), whereas the net outflow at the remaining vertices has penalties associated

with agents’ valuations, as before.
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An illustration can be found in Figure 5. The internal network of an agent, say i, appears

in (a). The dashed vertices correspond to trades where agent i is a buyer, the solid vertex

corresponds to a trade where i is a seller, and the dotted vertex is a special vertex. The

network in (b) depicts the transformed network.

Traders incident to e are not allowed to execute trade e in the original network. Thus, in

the corresponding flow network the terminal vertex and the seller’s vertex associated with

trade e are connected, but the buyer of the trade has a zero-capacity arc connecting the

terminal vertex associated with trade e to the rest of her internal network. Hence, initially,

no flow is sent on the arcs associated with trade e in the flow network, and the efficient set

of trades in G does not involve e. Let a0 denote the arc in the flow network between the

seller’s vertex associated with trade e and the associated terminal vertex. Similarly, denote

by a the arc between the terminal vertex and the vertex corresponding to the buyer.

V i

0, [−∞,+∞]

0, [−∞,+∞]

0, [−∞,+∞]

0, [−∞,+∞]

V i

0, [−∞,+∞] 0, [0, 1]

0, [0, 1]

0, [−∞,+∞]

0, [−∞,+∞]

0, [−∞,+∞]

Figure 5: (a) An Agent’s Internal Network. (b) The Agent’s Modified Network.

Fix a competitive equilibrium (X, p) in G. Denote the corresponding flow/net outflow in

the flow network by (x, y), which is obtained by sending one unit of flow on arcs that

correspond to trades in X. This is similar to the previous construction, except that we have

two arcs associated with each trade (due to the modification of the internal networks) and

both carry the same flow. For any trade f in G, set the potential values of the associated

vertices equal to pf , the potential values of a+
0 , a

−
0 = a+ equal to −M , and the potential
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value of a− equal to M , for some M � 0. Let π denote this potential function. As before,

it readily follows from the equilibrium conditions that (x, y) and π satisfy the reduced-cost

optimality conditions.

Next, assume that a new trade e is added to the economy. In the corresponding flow

network, increase the capacity of arc a from zero to one. Lemma 3.3.1 establishes that a

new optimal flow can be obtained from the original flow. There are two cases to consider. In

the first case, the original flow continues to be optimal. In the second case, an optimal flow

is obtained by sending a unit of flow on arc a, and augmenting the original flow by sending

one unit of flow from a− to a+ via the shortest path with the least number of arcs between

these vertices in the auxiliary network, as described in the lemma. Observe that this cycle

traverses at most two special vertices, since these vertices are connected by uncapacitated

zero-cost arcs. In other words, the new optimal flow is obtained by augmenting the original

flow along an improvement cycle that has at most one arc between the special vertices.

In both cases, the potential function updated as in Lemma 3.3.1 satisfies the reduced-cost

optimality conditions together with the updated flow. Thus, as before, the corresponding

trades/prices constitute a competitive equilibrium.

In the first case, the claim readily follows from these observations by setting C = ∅. To

prove the claim in the second case, first assume that no special vertices are visited. Then,

updating the flow along a cycle in the flow network corresponds to updating trades along

a cycle C in Gres, by executing some previously unexecuted trades, captured by Cf 3 e, in

the original network, and by dropping some executed trades (in cases where flow is sent in

the opposite direction through the auxiliary network) captured by Cr. If a single special

vertex is visited, the update structure is the same. If multiple special vertices are visited,

the update structure is similar, but the improvement cycle can be viewed as originating and

terminating at the special vertices. Hence, updating the flow along this cycle corresponds

to updating trades along a chain C in Gres that does not constitute a cycle. Moreover, in

both cases, the improvement cycle sends flow on arc a, thereby executing trade e. Hence,
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as claimed, the new set of equilibrium trades can be given by X ′ = Cf ∪X \ Cr, for some

chain C such that e ∈ C.

Suppose that a new trading opportunity emerges. A priori it is unclear how the equilibrium

trades would change and whether this change would exhibit any meaningful structural

properties. Surprisingly, my result implies that the change in equilibrium trades can be

captured in terms of chains of trades in the underlying network. This result exploits the

MSFP formulation of the problem of finding the efficient allocation and the sensitivity

analysis result for MSFP (Lemma 3.3.1). It highlights the power of using the network flow

formulation and its properties for obtaining novel comparative statics. In the next section,

this result is used as a building block to obtain more detailed comparative statics.

3.3.2. Addition of a New Buyer

Next, a new buyer is added to the economy with a set of possible trades ∆ and a value

function v : 2∆ → R. By sequentially introducing these trades the change in the set of

equilibrium trades can be characterized as in Theorem 3.3.3. In this section, I characterize

the change in equilibrium prices caused by adding a new buyer. The main result of this

section is that when a new buyer is introduced into the economy, the prices of all prior

trades (weakly) increase. I subsequently characterize the payoff implications of this change

on the equilibria.

When a new buyer enters the economy there are two effects. First, the traders she is

connected to enjoy higher demand, and start offering higher prices for all the trades in

which they participate as sellers. On the other hand, the addition of a new buyer increases

the competition between the traders serving her. This may lead to a decrease in some prices.

Theorem 3.3.4 below shows that the first effect dominates. What about the prices of trades

in which these traders participate as buyers? Surprisingly, the price increase is not limited

to the traders adjacent to the new buyer, but extends to the rest of the network. This is due

to the full substitutability of preferences, which guarantees that when the set of contracts in

which an agent participates as a seller expands, the agent starts demanding more contracts
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in which she participates as a buyer. This generates an increase in the equilibrium prices

of the corresponding trades.

Theorem 3.3.4. Assume that (X, p) is a competitive equilibrium in trading network G.

Assume that a new agent b joins the trading network, as a buyer of a set of trades ∆ whose

sellers belong to G. Denote the resulting trading network by G′.

There exists a competitive equilibrium (X ′, p′) in G′, such that p′e ≥ pe for all trades e not

incident to b.

Proof. Let v denote the value function of buyer b, X ′ denote a set of welfare-maximizing

trades in G′ once b is introduced to the economy, and S∗ = X ′ ∩∆ denote the set of trades

executed by agent b at X ′.

To derive competitive equilibrium prices p′ supporting X ′ in the economy with agent b, I first

characterize how the valuation and payoff of agent b change due to unit trade deviations6

from S∗, i.e., due to (i) adding a new trade to S∗, (ii) removing an existing trade from S∗,

and (iii) executing both steps simultaneously.

The proof has three steps.

1. I construct an alternative economy, Ĝ, where b is replaced with another buyer b̂,

with the same set of possible trades, and value function v̂ : 2∆ → R such that

v̂(S∗) = v(S∗). Buyer b̂’s value function is consistent with b in terms of unit trade

deviations from S∗. That is, changes in v̂ and v due to unit trade deviations coincide.

2. It is shown that X ′ constitutes an efficient set of trades in economy Ĝ. Moreover, any

equilibrium price vector p̂ supporting X ′ in the new economy, is also an equilibrium

price vector for G′.

3. It is shown that there exists an equilibrium price vector p̂ in Ĝ, where prices of all

6For M \-concave value functions, local optimality implies global optimality: if such unit trade deviations
do not decrease agent b’s payoff, then the bundle S∗ is payoff-maximizing for b.
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trades not incident to agent b̂ are weakly higher when compared to an equilibrium

price vector p in G.

Note that the last two steps jointly imply that p̂ is an equilibrium price vector for economy

G′, with weakly higher prices for all pre-existing trades.

Step 1: I define the value function v̂ of buyer b̂ in terms of the cost of a minimum-cost

flow in a network H = (VH , AH), hereafter referred to as the valuation network. Each

e ∈ ∆ gives rise to three vertices vine , v
1
e , v

0
e . The entire set of vertices in VH is given by

VH = {vout}∪Vin∪V1∪V0, where Vin = {vine |e ∈ ∆}, V1 = {v1
e |e ∈ ∆}, and V0 = {v0

e |e ∈ ∆}.

The vertices in {vout} ∪ Vin correspond to the vertices of the internal network of buyer b̂

(see Section 2.3), and are referred to as the terminal vertices of the valuation network. On

the other hand, V1, V0 are additional vertices whose incident arcs have costs that encode

agent b̂’s value function.

The set of arcs, AH , is such that for each trade e ∈ ∆, we have:

(a) a directed arc (vine , v
1
e) with capacity 1 and zero cost,

(b) a directed arc (v1
e , v

0
e), with capacity 1 and cost −v(S∗) + v(S∗ \ {e}) if e ∈ S∗, and

cost −v(S∗ ∪ {e}) + v(S∗) otherwise, and

(c) a directed arc (v0
e , v

out) with capacity k(v0
e ,v

out) = 1 and zero cost.

In addition, for each set of trades e, e′ ∈ ∆ such that e /∈ S∗, e′ ∈ S∗, we have:

(d) a directed arc (v1
e , v

1
e′) with capacity 1 and cost −v(S∗ ∪ {e} \ {e′}) + v(S∗).

The valuation v̂(S) of agent b̂ for a set S ⊂ ∆ of trades is given by the negative of the

minimum cost flow in H where each vine for e ∈ S has a supply of one unit, and the vertex

vout demands |S| units (and flow conservation is satisfied). Figure 6 depicts an example of

the construction.

In this construction, arc costs of the valuation network, and hence the value function v̂ are
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defined in terms of the value function v of agent b. The construction guarantees that b̂ is

consistent with b in terms of unit trade deviations from S∗. To see this, first note that

any feasible flow on H associated with S ⊂ S∗ (i.e., that imposes one unit of supply at

each vine for e ∈ S) uses all arcs (v1
e , v

0
e) for e ∈ S to capacity. This is because for e ∈ S∗,

vertices v1
e each have a single outgoing arc with capacity one. Similarly, any feasible flow

in H associated with S ⊃ S∗ uses all arcs (v1
e , v

0
e) for e ∈ S to capacity, since all vertices v1

e

for e ∈ S \ S∗ have outgoing arcs only to v0
e or a vertex v1

e′ for e′ ∈ S∗ (and the outgoing

arcs of the latter are used to capacity). These observations, together with the description

of v̂(S), imply that for S ⊂ S∗ and S ⊃ S∗, we have

v̂(S) = −

 ∑
e∈S∩S∗

(−v(S∗) + v(S∗ \ {e})) +
∑

e∈S\S∗
(v(S∗)− v(S∗ ∪ {e}))

 .

Hence, for e /∈ S∗ and e′ ∈ S∗ we have v̂(S∗) − v̂(S∗ ∪ {e}) = v(S∗) − v(S∗ ∪ {e}) and

v̂(S∗)− v̂(S∗ \ {e′}) = v(S∗)− v(S∗ \ {e′}); i.e., changes in v̂ coincide with changes in v in

terms of adding/removing a single trade.

Similarly, consider S = S∗ ∪ {e} \ {e′} for e /∈ S∗ and e′ ∈ S∗. As before, any feasible flow

associated with S in H uses all arcs (v1
e′′ , v

0
e′′) for e′′ ∈ S∗ \ {e′}. Moreover, a feasible flow

routes the supply at vine either along the path (vine , v
1
e) − (v1

e , v
0
e) − (v0

e , v
out) or along the

path (vine , v
1
e)− (v1

e , v
1
e′)− (v1

e′ , v
out) (since v1

e have outgoing arcs either to v0
e or v1

e′). These

paths respectively have costs v(S∗)− v(S∗ ∪ {e}) and v(S∗ \ {e′})− v(S∗ ∪ {e} \ {e′}). Due

to the M \-concavity of v, it follows that the latter is smaller, and hence the minimum cost

flow under S continues to send flow on arc (v1
e , v

1
e′), while also utilizing arc (v1

e , v
0
e). Thus,

I conclude that v̂(S) = v̂(S∗)− (−v(S∗ ∪ {e} \ {e′}) + v(S∗)) = v̂(S∗) + v(S)− v(S∗), and

that v̂ is consistent with v in terms of unit trade deviations.

In order to find the efficient set of trades in the new economy Ĝ, consider the corresponding

flow network, denoted hereafter by F̂ . To obtain F̂ , construct the flow network as in

previous sections, by connecting vertices that belong to the internal network of a trade’s
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buyer/seller via uncapacitated arcs. Similarly connect the special vertices so that between

any pair of special vertices there is exactly one uncapacitated directed arc. By convention I

assume that all arcs connecting agent b̂’s special vertex to other special vertices are outgoing.

This construction involves vertices {vout} ∪ Vin for agent b̂ in the flow network. For this

agent, also add the remaining vertices and arcs in the valuation network (which contains the

vertices of the internal network as a subnetwork). As before, for each agent other than b̂, I

associate a penalty function with the net outflow from the vertices of the internal network.

By contrast, for vertices of the valuation network of agent b̂, I impose flow conservation.

Note that the valuation of agent b̂ for a set of incident trades is still captured through the

arc costs in her internal network. Thus, the efficient set of trades can be found by solving

an M -convex submodular flow problem in F̂ .

e′

e

vine′ v1
e′

vine v1
e

v0
e′

v0
e

vout

0, [0, 1]

0, [0, 1]

−v(S∗) + v(S∗ \ {e′}), [0, 1]

v(S∗)− v(S∗ ∪ {e}), [0, 1]

−
v
(S
∗
∪
{e
}
\
{e
′ }

)
+
v
(S
∗
),

[0
,
1
]

0
,
[0
,
k v

0 e
′
,v

o
u
t
]

0,
[0,
k v

0
e
,v
ou

t
]

Figure 6: (a) Buyer b with Two Trades e /∈ S∗, e′ ∈ S∗ (b) Buyer b̂’s Valuation Network.
The vertices vine , v

in
e′ are connected to the sellers’ vertices associated with trades e and e′ in

the underlying trade network.

Step 2: Consider a competitive equilibrium (X ′, p′) in G′, and the corresponding optimal

flow and potential function (x′, π′) in the associated flow network, hereafter F ′. As before,

π′ is normalized such that it is zero on special vertices. Observe that F ′ has the same set of
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vertices and arcs as F̂ , other than the arcs and vertices of the valuation network of agent b̂.

Consider a flow-potential function pair (x̂, π̂) in F̂ such that it coincides with (x′, π′) on all

arcs and vertices common to F ′. By construction, the reduced-cost optimality conditions

are satisfied by arcs in F̂ , other than the arcs in the valuation network of b̂. I now argue

that the flows and potential values on arcs and vertices of b̂’s valuation network can be

set such that flow conservation and the reduced-cost optimality conditions are satisfied by

them as well. The construction will explicitly show that x̂ is optimal and corresponds to

the same set of trades X ′ in Ĝ.

Set the flow x̂ within b̂’s valuation network as follows:

• For each trade e′ ∈ S∗, one unit of flow is sent along the path (vine′ , v
1
e′) − (v1

e′ , v
0
e′) −

(v0
e′ , v

out).

• For each trade e /∈ S∗, set flow on path (vine , v
1
e)− (v1

e , v
0
e)− (v0

e , v
out) to zero.

• Set the flow on arcs (v1
e , v

1
e′) to zero.

Recall that each vertex vine′ has one unit of incoming flow if e′ ∈ S∗ and zero unit of incoming

flow if e′ /∈ S∗, since for arcs common to F ′, the flow in F̂ is set consistently with F ′. It is

easily verified that this construction satisfies flow conservation at the vertices of b̂’s valuation

network.

Set the potential values within b̂’s valuation network as follows:

• For each trade e ∈ ∆, set π̂(vine ) = p′e, π̂(v1
e) = p′e, and π̂(v0

e) = 0.

• Set π̂(vout) = 0.

Now it can be verified that the constructed flow and potential values satisfy the reduced-

cost optimality conditions on the arcs in the valuation network of b̂. Consider the auxiliary

network associated with F̂ under flow x̂. Observe that for any e ∈ ∆, we have cπ̂
(vine ,v

1
e)

= 0

since the end points of these arcs have the same potential value by construction, and the
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underlying arc cost is zero. Similarly, it can be seen that cπ̂(v0
e ,v

out) = 0. Thus, regardless

of the orientation of the arcs (vine , v
1
e), (v1

e , v
in
e ), (v0

e , v
out), and (vout, v0

e) in the auxiliary

network, the reduced-cost optimality conditions are satisfied. It remains to consider the

reduced costs of arcs whose end points belong to V0 ∪ V1:

• e′ ∈ S∗: The constructed solution sends one unit of flow from v1
e′ to v0

e′ , and hence

the auxiliary network has an arc from v0
e′ to v1

e′ . The associated reduced cost satisfies

cπ̂
(v0
e′ ,v

1
e′ )

= v(S∗) − v(S∗ \ {e′}) − p′e′ ≥ 0, since competitive equilibrium conditions

imply that v(S∗)− p′e′ ≥ v(S∗ \ {e′}); i.e., in equilibrium (x′, p′) of G′ agent b has no

incentive to drop trade e′ ∈ S∗.

• e /∈ S∗: The constructed solution does not utilize the arc from v1
e to v0

e , and hence

the auxiliary network has an arc from v1
e to v0

e . The associated reduced cost satisfies

cπ̂(v1
e ,v

0
e) = v(S∗)−v(S∗∪{e})+p′e ≥ 0, since competitive equilibrium conditions imply

that v(S∗) ≥ v(S∗∪{e})−p′e; i.e., in equilibrium (x′, p′) of G′, agent b has no incentive

to execute an additional trade e /∈ S∗.

• e′ ∈ S∗, e /∈ S∗: Since the constructed solution does not utilize the arc from v1
e to v1

e′ ,

the auxiliary network has an arc from v1
e to v1

e′ . The associated reduced cost satisfies

cπ̂
(v1
e ,v

1
e′ )

= −v(S∗ ∪ {e} \ {e′}) + v(S∗) + p′e − p′e′ ≥ 0, since competitive equilibrium

conditions imply that v(S∗)− p′e′ ≥ v(S∗ ∪{e} \ {e′})− p′e; i.e., in equilibrium (X ′, p′)

of G′, agent b has no incentive to execute an additional trade e /∈ S∗, while dropping

one of the equilibrium trades e′ ∈ S∗.

Thus, it follows that the constructed flow-potential function pair (x̂, p̂) (together with the

associated net outflow vector) satisfies the reduced-cost optimality conditions on all arcs,

and yields an optimal solution to the MSFP in F̂ . Since by convention this flow corresponds

to executing trades X ′, I conclude that X ′ is an efficient set of trades in Ĝ as well. This

completes the first claim in Step 2.

Consider any other equilibrium price vector p̂ in the economy Ĝ (with agent b̂), and observe
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that (X ′, p̂) is a competitive equilibrium (since any equilibrium price vector supports any

efficient set of trades). I show that any such p̂ is also a competitive equilibrium price vector

supporting X ′ in the economy G′.

Since (X ′, p̂) is a competitive equilibrium in Ĝ, in flow network F̂ , the flow x̂ corresponding

to X ′ (which is constructed following the same approach as before) satisfies the optimality

conditions with the optimal potential function π̂ associated with p̂ as well. Note that

this potential function (after normalizing the potential values of the special vertices to

π̂(vout) = 0) should be such that π̂(vout) = 0, π̂(vine ) = p̂e for any trade e ∈ ∆. Hence, the

reduced-cost optimality conditions imply the following:

• For each trade e′ ∈ S∗, the path vout−v0
e′−v1

e′−vine′ belongs to the auxiliary network.

Since, the reduced costs are nonnegative, we have 0 ≤ cπ̂
(vout,v0

e′ )
+cπ̂

(v0
e′ ,v

1
e′ )

+cπ̂
(v1
e′ ,v

in
e′ )

=

−(−v(S∗) + v(S∗ \ {e′}))− p̂e′ . Hence, v(S∗)− p̂e′ ≥ v(S∗ \ {e′}).

• For each trade e /∈ S∗, the path vine − v1
e − v0

e − vout belongs to the auxiliary network.

Since, the reduced costs are nonnegative, we have, 0 ≤ cπ̂
(vine ,v

1
e)

+ cπ̂(v1
e ,v

0
e) + cπ̂(v0

e ,v
out) =

v(S∗)− v(S∗ ∪ {e}) + p̂e. Hence, v(S∗) ≥ v(S∗ ∪ {e})− p̂e.

• For e′ ∈ S∗, e /∈ S∗, the path vine − v1
e − v1

e′ − vine′ belongs to the auxiliary network.

Since, the reduced costs are nonnegative, we have, 0 ≤ cπ̂
(vine ,v

1
e)

+ cπ̂
(v1
e ,v

1
e′ )

+ cπ̂
(v1
e′ ,v

in
e′ )

=

v(S∗)− v(S∗ ∪ {e} \ {e′}) + p̂e − p̂e′ . Hence, v(S∗) ≥ v(S∗ ∪ {e} \ {e′})− p̂e + p̂e′ .

These conditions imply that under the price vector p̂, agent b (with value function v) cannot

deviate from S∗ via a single improvement (i.e., dropping a trade, executing a new trade,

or both) and improve her payoff. Since v is M \-concave, it follows that S∗ is demanded by

agent b under price vector p̂. It readily follows that under this price vector agents other than

b also demand their equilibrium trades in X ′, since their payoffs are identical in economies

Ĝ and G′. Thus, it follows that if (X ′, p̂) is a competitive equilibrium in economy Ĝ, then

it is a competitive equilibrium in economy G′ as well.
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Step 3: I show that there exists an equilibrium price vector p̂ in the new economy Ĝ,

where the prices of all trades not incident to agent b̂ are weakly higher when compared to

an equilibrium price vector p in G. I do so by assuming that initially all arcs (v0
e , v

out) in

the flow network F̂ have zero capacity, i.e., k(v0
e ,v

out) = 0, and by sequentially increasing

them to one.

Recall that (X, p) is a competitive equilibrium in the economy G. Consider the associated

optimal flow x in F , which is the flow network associated with G. As before, a potential

function π that supports x can be derived by setting the potential value of all special vertices

to zero, and the potential value of vertices associated with any trade e to pe.

Next consider F̂ , but set capacity k(v0
e ,v

out) = 0 for all e ∈ ∆. Observe that all vertices/arcs

in F also belong to F̂ . Hence, x (after setting flow to zero on all arcs not belonging to F )

is still feasible in F̂ . Set the potential value of vertices of F̂ common to F according to π.

Next, extend π to define potential values at the remaining vertices of F̂ .

Let m = mine′∈S∗,e/∈S∗ v(S∗) − v(S∗ ∪ {e} \ {e′}). For e′ ∈ S∗, set π(vine′ ) = π(v1
e′) = −M

for sufficiently large M � 0, and for e /∈ S∗, set π(vine ) = π(v1
e) = −M − m. Similarly,

for any trade e ∈ ∆, set the potential value of the vertex associated with the seller of this

trade, hereafter se, equal to π(se) = π(vine ). Finally set π(v0
e) = −2M for any e ∈ ∆, and

π(vout) = 0. I next establish that flow x together with the constructed potential function

satisfies the reduced-cost optimality conditions on F̂ (with k(v0
e ,v

out) = 0 for all e ∈ ∆), and

hence constitutes an optimal flow-potential function pair.

Since (X, p) is a competitive equilibrium in economy G, it can be seen that potential function

π satisfies the reduced-cost optimality conditions for the arcs in the network that are not

incident to the vertices of agent b̂ (or vertices {se′ |e′ ∈ ∆}). For sufficiently large M , the

fact that π(v0
e) = −2M guarantees that any incoming arc to {v0

e |e ∈ ∆} in the auxiliary

network also satisfies the reduced-cost optimality conditions (which are equivalent to the

arcs in the flow network since all arcs associated with agent b̂ initially have zero flow).
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Since π(se) = π(vine ), it also follows that the reduced costs of arcs between these vertices

are equal to zero, and hence the optimality conditions are trivially satisfied. The fact that

π(se) ≤ −M � 0 implies that the incoming arcs to se satisfy the reduced-cost optimality

conditions. Finally, for any e ∈ ∆, for arc (vine , v
1
e) in the auxiliary network we have

cπ
(vine ,v

1
e)

= 0. Hence, the reduced cost optimality conditions hold for these arcs as well.

Thus, to establish optimality of x, it suffices to verify that any arc (v1
e , v

1
e′) satisfies the

reduced-cost optimality conditions for e /∈ S∗, e′ ∈ S∗. To see this note that cπ
(v1
e ,v

1
e′ )

=

v(S∗) − v(S∗ ∪ {e} \ {e′}) + π(v1
e) − π(v1

e′) = v(S∗) − v(S∗ ∪ {e} \ {e′}) − m ≥ 0, where

the inequality follows from the definition of m. Therefore, it follows that the constructed

flow-potential pair satisfies the reduced cost optimality conditions when k(v0
e ,v

out) = 0 for

all e ∈ ∆, and hence is optimal.

I next sequentially increase the capacity of each arc (v0
e , v

out) to k(v0
e ,v

out) = 1, and charac-

terize the change in the optimal flow-potential function pair using Lemma 3.3.1. At each

step the optimal flow-potential function pair prior to the update is denoted by (xold, πold)

and after the update is denoted by (xnew, πnew). After finishing the updates for all e ∈ ∆

an optimal flow-potential function pair (x̂, π̂) is obtained.

Consider a single step of the above process, and focus on the change in potential values

as given by Lemma 3.3.1. The lemma states that the potential value of any vertex v is

updated at each step as follows:

πnew(v) = πold(v) + d(v),

where d are the shortest path distances from vout with respect to the reduced cost of arcs in

the auxiliary network corresponding to (xold, πold). Note that d(v) ≥ 0 since (xold, πold) is

optimal prior to capacity increase, and hence satisfies the reduced cost optimality conditions

(see Theorem 2.2.2). Also observe that the special vertices still have a potential value of

zero, since all special vertices are connected by uncapacitated zero reduced-cost arcs to vout.
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Similarly, two vertices of the flow network that correspond to the same trade in the trading

network are connected by a zero length arc, since in the flow network the corresponding arc

is uncapacitated. Thus, equality between the potential values of the end points of an arc

representing a trade that is not incident to b̂ is preserved, and can still be interpreted as the

price of the trade. I conclude that the potential values of all vertices in the network (weakly)

increase, and those of the special vertices remain at zero. In particular, the potential value

of a vertex in the flow network associated with a trade e that is not incident to b̂ increases,

thereby implying that the price for trade e increases.

By updating the capacities sequentially, an optimal flow in the flow network F̂ is con-

structed, where all vertices associated with trades not incident to b̂ have (weakly) higher

potential values than before. I conclude that there exists an equilibrium in Ĝ, where any

trade e not incident to b̂ has higher prices when compared to p, i.e., p̂e ≥ pe.

By Step 2, we know that p̂ is also a competitive equilibrium price vector in G′. Hence, it

follows that (X ′, p̂) constitutes a competitive equilibrium in G′. Since p̂e ≥ pe for any trade

e that is not incident to b̂, the claim follows.

The above theorem makes use of the sensitivity analysis result on MSFP given in Lemma 3.3.1

to characterize how prices change when a new buyer joins the economy. I next examine the

impact of such price changes on agents’ payoffs.

Corollary 3.3.5. Let (X, p) be a competitive equilibrium in G. Assume that under X,

agent a1 only participates in trades where she is a seller, and agent a2 only participates in

trades where she is a buyer. Let σa1 , σa2 be the payoffs of these agents at (X, p).

Suppose that a new buyer is introduced. Then, there exists a competitive equilibrium

(X ′, p′) of the induced trading network G′, where the corresponding payoffs σ′a1
, σ′a2

satisfy:

• σa1 ≤ σ′a1
, and

• σa2 ≥ σ′a2
, unless a2 starts participating in new trades as a seller under X ′.
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Proof. Theorem 3.3.4 implies that there exists a competitive equilibrium (X ′, p′) such that

all prices (weakly) increase.

Note that if agent a1 still participates in her optimal trades in X (which are not necessarily

optimal under the new prices), her payoff increases (since she participates in those trades as

a seller, and the prices have increased). Since under her new equilibrium trades, her payoff

is weakly higher, it follows that her equilibrium payoff also increases.

Suppose that under X ′ agent a2 only participates in trades S2, where she is a buyer. Observe

that her payoff for S2 is higher prior to introducing the new buyer, since the prices of these

trades were weakly lower. Since her equilibrium payoff (prior to the update) was weakly

higher than her payoff for the bundle of trades S2, it follows that the payoff of a2 decreases,

if she continues to participate in trades only as a buyer.

Similar results follow when a new seller is introduced into the economy. Mimicking the

proof of Theorem 3.3.4, it can be shown that there exists a new competitive equilibrium

where all prices decrease and the buyers in the initial economy enjoy higher payoffs.

Qualitatively, these results suggest that when more “downstream” agents (buyers) are added

to the economy, the payoffs of “upstream” agents (sellers) improve and vice versa. It is

natural to expect the same when the set of agents is fixed but more trades connecting

upstream and downstream agents are added to the economy. The next example shows this

to be false, even when the new trades correspond to paths that bypass a “middleman”

who adds no value. This example highlights the nontrivial behavior of equilibria in trading

networks, and the special effect of adding a buyer/seller to the economy. It also implies

that while the addition of a new seller improves the payoffs of the buyers in the economy,

the change in the payoff need not be monotone in the arcs added to the economy.

Example. In the trading network displayed in Figure 7, agent i has a single good to offer,

and incurs a cost of 0 for providing it. Agent l has a value of 10 for consuming the good.

Agent j is an intermediary, who has a value of 0 for the good but can facilitate the transfer
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of the good between i and l at zero cost. Agent k has a value of 1 for consuming the

good, and she can also transfer the good between i and l at zero cost. Initially the solid

arcs belong to the trading network, and I examine the change in the equilibrium outcome

when the dashed arc (i, k) is added to the trading network. An equilibrium in the initial

i

j

k

l

Figure 7: Payoff of buyer l may decrease as more paths to seller i emerge.

network involves trading the good along the (i, j)− (j, l) path at a price of zero. This yields

a payoff of 10 units for agent l and zero for the remaining agents. On the other hand, after

trade (i, k) is introduced, agent k is willing to pay at least 1 unit to agent i to acquire

the good. Consequently, agent i can guarantee at least 1 unit of payoff. Since the total

payoff in the efficient set of trades is still 10 units, it follows that the payoff of agent l

reduces in any equilibrium in the new network. Thus the addition of a trade might raise

the prices downstream and reduce the payoff of the final buyer. It is straightforward to

construct other examples where the addition of the new trade increases the payoff of the

buyer and/or decreases the payoff of the seller.

3.3.3. Addition of Trades between Multiple Buyers and Sellers

The results thus far are restricted to settings where all new trades in the economy are

incident to a single agent. Next, they are used as building blocks to characterize how

equilibria change with new trades involving multiple buyers/sellers.

The key idea is that a set of agents in a trading network can be replaced with a single

representative agent without impacting the equilibrium prices of the trades in the economy

for trades non-incident to the aforementioned set of agents. This result is formalized in

Lemma 3.3.7. Using it together with the findings of the previous subsections, I characterize

the equilibrium impact of adding a set of trades that connect two groups of agents in the
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underlying trading network (Theorem 3.3.8).

I start by formalizing the notion of a representative agent. Suppose that a trading network

G = (N,E) is given, and consider a set of agents N̂ ⊂ N . Given an arc e ∈ E as before,

let e+ and e− denote the tail and head of this arc, respectively. Denote by EN̂ = {e ∈

E|e+, e− ∈ N̂} the arcs that are among the members of N̂ . Let δ(N̂) = ∪i∈N̂δ(i) \ EN̂
denote the set of arcs that have an end point in N̂ and another in N \ N̂ . Similarly, let

δ+(N̂) (δ−(N̂)) denote the set of arcs in δ(N̂) that are outgoing from (incoming to) N̂ .

I construct another trading network G′ = (N ′, E′) by replacing N̂ with the representative

agent n̂ such that N ′ = (N \ N̂) ∪ {n̂}. For any i ∈ N ′, denote the incident arcs in G′

by δ′(i) and the outgoing and incoming arcs by δ′+(i) and δ′−(i), respectively. Note that

E′ = ∪i∈N ′δ′(i). The arcs in G′ that are not incident to n̂ are precisely the arcs in G that

are not incident to N̂ . On the other hand, each arc that is incident to n̂ in G′ corresponds

to an arc in δ(N̂) in G. Formally, there is a bijective map β : δ′(n̂)→ δ(N̂) such that

1. β(δ′+(n̂)) = δ+(N̂), β(δ′−(n̂)) = δ−(N̂),

2. for ê ∈ δ′+(n̂) and e = β(ê) (similarly f̂ ∈ δ′−(n̂) and f = β(f̂)) we have ê− = e−

(similarly f̂+ = f+).

Note that under this construction the arcs incident to each vertex can be given as follows:

δ′(i) = (δ(i) \ δ(N̂)) ∪ β−1(δ(N̂) ∩ δ(i)) for i ∈ N ′ \ {n̂}, and δ′(n̂) = β−1(δ(N̂)).

Define the value function ŵi of agent i ∈ N ′ \ {n̂} in G′ such that for any S ⊂ δ′(i), we

have:

ŵi(S) = wi(S \ δ′(n̂) ∪ β(S ∩ δ′(n̂))).

That is, the valuation of i for a set of incident trades S in G′ is equivalent to the valuation

she has for the corresponding trades in G. Define the value function of n̂ such that

ŵn̂(S) = max
X⊂EN̂

∑
i∈N̂

wi((X ∪ β(S)) ∩ δ(i)), (3.5)
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for any S ⊂ δ′(n̂). Intuitively, each trade between N̂ and N \ N̂ corresponds to a trade

between the representative agent n̂ and N \ N̂ , and the maximum aggregate value of agents

in N̂ when a subset of these trades is executed (and the trades among members of N̂ are

chosen in the best possible way), is equal to the payoff of the representative agent n̂ for the

same set of trades.

Since for i ∈ N ′ \ {n̂}, the valuation for a set of trades is defined as the valuation the

agent has for the corresponding trades in the original economy, it readily follows that ŵi

is M \-concave. Despite being less obvious, the same conclusion also holds for agent n̂, as

the next lemma7 establishes. For this lemma, as well as for subsequent results, I follow the

same convention as before and express ŵi (wi) as a function on Zδ′(i) (Zδ(i)).

Lemma 3.3.6. ŵn̂ : Zδ′(n̂) → R is M \-concave.

Proof. Let h : ×i∈N̂Z
δ(i) → R be such that:

h(y) =
∑
i∈N̂

wi(y
i),

where y = {yi}i∈N̂ and yi ∈ Zδ(i). Since h is a sum of M \-concave functions with disjoint

arguments, it follows that it is M \-concave. I define another function g : Zδ′(n̂) ×ZEN̂ → R

such that:

g(yδ′(n̂), zEN̂ ) = max
yE
N̂

{h(yδ′(n̂), yEN̂ ) | ye+e + ye
−
e = ze for e ∈ EN̂}. (3.6)

Here, I split the argument y of h into yδ′(n̂) and yEN̂ such that yδ′(n̂) ∈ Zδ′(n̂) = Zδ(N̂)

consists of the entries of y that correspond to the arcs between the vertices in N̂ and the

vertices in N \ N̂ , while yEN̂ = {ye+e , ye−e }e∈EN̂ ∈ ZEN̂ × ZEN̂ consists of the remaining

entries of y, and zEN̂ represents a vector in ZEN̂ . Observe that if {yi}i∈N̂ is consistent

7The operation used to define the payoff of the representative agent in (3.5) is mathematically similar to
(but different from) the operation used in the definition of contraction of an economy introduced in (3.3).
In the proof, it is established that the former operation also preserves M \-concavity.

73



with a set of trades X ⊂ EN̂ (i.e., for each i ∈ N̂ , yi encodes the trades in X in which i

participates as a buyer by −1 and those in which i participates as a seller by 1), then we

have ye
+

e + ye
−
e = 0 for all e ∈ EN̂ . Note that ŵn̂ is defined in terms of a set of trades

X ⊂ EN̂ that solves the optimization problem given in (3.5). Leveraging this observation,

I conclude that agent n̂’s value function satisfies

ŵn̂(yδ′(n̂)) = g(yδ′(n̂), 0EN̂ ), (3.7)

for yδ′(n̂) ∈ Zδ′(n̂), where 0EN̂ is a vector whose entries are all equal to zero.

The maximization in (3.6) used to define g is referred to as the aggregation operation.

In (3.7), ŵn̂ is expressed in terms of g by setting some of the entries equal to zero – an

operation referred to as restriction. Both aggregation and restriction preserve M \-concavity

(Theorem 6.15 in Murota (2003)). These observations imply that ŵn̂ is M \-concave, and

the claim follows.

Let (X, p) denote a competitive equilibrium in G = (N,E). I refer to the tuple (X ′, p′) as

the projection of this equilibrium onto G′ if X ′ = X \ (EN̂ ∪ δ(N̂)) ∪ β−1(X ∩ δ(N̂)) ⊂ E′

and p′ ∈ R|E′| is such that p′e = pe for e ∈ E′ \δ′(n̂) and p′f = pβ(f) for f ∈ δ′(n̂). Intuitively,

(X ′, p′) is a projection of (X, p), if (i) X ′ consists of the trades in G′ that correspond to the

trades X \EN̂ in G and (ii) prices p′ for trades in G′ match the prices of the corresponding

trades in G. The next lemma establishes that (X, p) and (X ′, p′) are closely related.

Lemma 3.3.7. Consider trading network G = (N,E), and the network G′ = (N ′, E′)

obtained after replacing N̂ ⊂ N by the representative agent n̂.

(i) If (X, p) is a competitive equilibrium in G, then its projection (X ′, p′) is a competitive

equilibrium in G′.

(ii) Conversely, if (X ′, p′) is a competitive equilibrium in G′, then there exists a competi-

tive equilibrium (X, p) in G, whose projection yields (X ′, p′).
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Proof.

Proof of (i). I first prove that the projection (X ′, p′) is an equilibrium in G′. To establish

this, it suffices to show that for any i ∈ N ′ the payoff-maximizing trades are given by

X ′ ∩ δ′(i) under price vector p′. Recall that by the definition of the projection, for any

i ∈ N \ N̂ ⊂ N ′, the adjacent trades in X ′ correspond to those in X. Furthermore, the

valuation of agent i ∈ N \ N̂ for any subset of adjacent trades in G is the same as her

valuation for the corresponding trades in G′, and the prices of these trades are identical

under p and p′. Finally, since (X, p) is a competitive equilibrium, in G under price vector

p the set of payoff-maximizing trades for agent i ∈ N \ N̂ is given by X ∩ δ(i). These

observations imply that in G′, for i ∈ N \ N̂ the set of payoff-maximizing trades under price

vector p′ is given by X ′ ∩ δ′(i).

It remains to prove that in network G′ under price vector p′ the payoff-maximizing trades

for n̂ are given by X ′ ∩ δ′(n̂) I claim that the following inequalities hold:

ŵn̂(X ′ ∩ δ′(n̂)) +
∑

e∈X′∩δ′+(n̂)

p′e −
∑

e∈X′∩δ′−(n̂)

p′e ≥
∑
i∈N̂

[wi(X ∩ δ(i))] +
∑

e∈X∩δ+(N̂)

pe −
∑

e∈X∩δ−(N̂)

pe

=
∑
i∈N̂

[wi(X ∩ δ(i)) +
∑

e∈X∩δ+(i)

pe −
∑

e∈X∩δ−(i)

pe]

≥
∑
i∈N̂

max
Y i⊂δ(i)

[wi(Y
i) +

∑
e∈Y i∩δ+(i)

pe −
∑

e∈Y i∩δ−(i)

pe]

≥ max
Y⊂E

∑
i∈N̂

[wi(Y ∩ δ(i)) +
∑

e∈Y ∩δ+(i)

pe −
∑

e∈Y ∩δ−(i)

pe]

≥ max
Y⊂E

∑
i∈N̂

[wi(Y ∩ δ(i))] +
∑

e∈Y ∩δ+(N̂)

pe −
∑

e∈Y ∩δ−(N̂)

pe

= max
S⊂δ′(n̂)

[ŵn̂(S) +
∑

e∈S∩δ′+(n̂)

p′e −
∑

e∈S∩δ′−(n̂)

p′e].

Here, the first inequality follows since X ∩ EN̂ is a feasible solution to the maximization

problem (3.5), and by the definition of projection we have β(X ′∩δ′(n̂)) = X ∩δ(N̂), as well

as p′e = pe for e ∈ E′ \ δ′(n̂) and p′f = pβ(f) for f ∈ δ′(n̂). The second line follows by noting
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that for any e ∈ X ∩ EN̂ there exists one agent in N̂ for whom the corresponding price pe

appears with a positive sign in the summations in the first line and another agent in N̂ for

whom the same term appears with a negative sign. Thus, they cancel out. The third line

follows since (X, p) is a competitive equilibrium, and hence X ∩ δ(i) is a payoff-maximizing

set of trades for agent i in G under price vector p. The fourth line follows by switching the

order of max operators and the summations. The fifth line follows once again by canceling

out common price terms. By the definition of the projection and (3.5), it can be seen that

the expression in this line is equivalent to the payoff-maximization problem of agent n̂ in G′

under price vector p′. Therefore, the last line follows. On the other hand, these expressions

imply that for agent n̂ the payoff-maximizing trades are indeed given by X ′ ∩ δ′(n̂). Hence,

I conclude that (X ′, p′) is a competitive equilibrium, as claimed.

Proof of (ii). I next prove the second part of the claim. Suppose that (X ′, p′) is a

competitive equilibrium in G′. I construct an equilibrium (X, p) in G such that (X ′, p′) is

a projection of this equilibrium. To that end, set pe = p′e for e ∈ E \ (δ(N̂) ∪ EN̂ ) and

pf = p′β−1(f) for f ∈ δ(N̂). Similarly, set X \ EN̂ = (X ′ \ δ′(n̂)) ∪ β(X ′ ∩ δ′(n̂)). I will

construct the prices {pe}e∈EN̂ and the equilibrium trades in EN̂ (i.e., X ∩ EN̂ ) in the rest

of the proof.

To construct the remaining equilibrium quantities, I first consider another trading network

G̃ = (N̂ , EN̂ ), which is obtained by restricting attention to the subnetwork of G involving

agents in N̂ . In G̃, let the value function w̃i : 2EN̂∩δ(i) → R of i ∈ N̂ be such that

w̃i(S) = max
T∈δ(N̂)

[wi((T ∪ S) ∩ δ(i)) +
∑

e∈T∩δ+(i)

pe −
∑

e∈T∩δ−(i)

pe], (3.8)
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for S ⊂ EN̂ ∩ δ(i). Note that we have

max
X̃⊂EN̂

∑
i∈N̂

w̃i(X̃ ∩ δ(i)) = max
X̃⊂EN̂

∑
i∈N̂

max
T∈δ(N̂)

[wi((T ∪ X̃) ∩ δ(i)) +
∑

e∈T∩δ+(i)

pe −
∑

e∈T∩δ−(i)

pe]

= max
T∈δ(N̂)

max
X̃⊂EN̂

∑
i∈N̂

[wi((T ∪ X̃) ∩ δ(i)) +
∑

e∈T∩δ+(i)

pe −
∑

e∈T∩δ−(i)

pe]

= max
T∈δ′(n̂)

ŵn̂(T ) +
∑

e∈T∩δ′+(n̂)

p′e −
∑

e∈T∩δ′−(n̂)

p′e

= ŵn̂(X ′ ∩ δ′(n̂)) +
∑

e∈X′∩δ′+(n̂)

p′e −
∑

e∈X′∩δ′−(n̂)

p′e.

Here, the first equality is by the definition of {w̃i}i∈N̂ . Note that the max operation can be

pushed out of the summation, since the arguments related to each agent are disjoint; i.e.,

the collection {δ(N̂)∩ δ(i)}i∈N̂ consists of disjoint sets. Hence, the second equality follows.

The third one follows from (3.5) and the definition of prices {pe}e∈δ(N̂). The last equality

follows since (X ′, p′) constitutes an equilibrium in G′. Observe that an efficient set of trades

X̃? in G̃ solves the optimization problems in the first line. Let (X̃?, p̃) be an equilibrium in

G̃. Note that the last equality also implies that T = β(X ′ ∩ δ′(n̂)) solves the optimization

problems on the right-hand side of the first line where T appears. Equivalently, it implies

that for any i ∈ N̂ and S = X̃? ∩ δ(i) an optimal solution of the optimization problem in

(3.8) is given by T = β(X ′ ∩ δ′(n̂)).

Let X ∩ EN̂ = X̃?. Together with the construction of X \ EN̂ , this implies that X =

X̃? ∪ (X ′ \ δ′(n̂))∪β(X ′ ∩ δ′(n̂)). Setting pe = p̃e for e ∈ EN̂ I also finalize the construction

of the price vector p. I claim that (X, p) is an equilibrium in G. To establish this, I will

show that in G, the trades X ∩ δ(i) are payoff-maximizing for all i ∈ N under price vector

p.

To see this first consider i ∈ N \ N̂ . Note that, by construction, trades X ∩ δ(i) in G

correspond to trades X ′∩δ′(i) in G′. Furthermore, as before, the valuation of agent i ∈ N\N̂

for any subset of adjacent trades in G is the same as her valuation for the corresponding
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trades in G′, and the prices of these trades are identical under p and p′. Since (X ′, p′) is an

equilibrium in G′, it follows that X ′∩ δ′(i) is payoff-maximizing in G′ under price vector p′.

On the other hand, since these trades correspond to X ∩ δ(i) in G, and the prices of trades

adjacent to i are identical in both networks, it follows that X ∩ δ(i) maximizes the payoff

of i ∈ N \ N̂ under price vector p.

Consider next i ∈ N̂ . Since (X̃?, p̃) is an equilibrium in G̃, it follows that trades X̃? ∩ δ(i)

are payoff-maximizing for i in G̃ under price vector p̃, i.e.,

w̃i(X̃
? ∩ δ(i)) +

∑
e∈X̃?∩δ+(i)

p̃e −
∑

e∈X̃?∩δ−(i)

p̃e ≥ max
S⊂EN̂∩δ(i)

w̃i(S) +
∑
e∈S

p̃e −
∑
e∈S

p̃e. (3.9)

Recall that for S = X̃? ∩ δ(i), an optimal solution of the optimization problem in (3.8)

is given by T = β(X ′ ∩ δ′(n̂)). Using this observation and the definition of {pe}e∈EN̂ , the

left-hand side of (3.9) is given by:

wi(Y ∩ δ(i)) +
∑

e∈Y ∩δ+(i)

pe−
∑

e∈Y ∩δ−(i)

pe = wi(X ∩ δ(i)) +
∑

e∈X∩δ+(i)

pe−
∑

e∈X∩δ−(i)

pe, (3.10)

where Y = (β(X ′∩ δ′(n̂))∪ X̃?). Here, the equality follows since the definition of X implies

that for i ∈ N we have Y ∩ δ(i) = X ∩ δ(i). Similarly, using (3.8), the right-hand side of

(3.9) is given by

max
S⊂EN̂∩δ(i)

max
T∈δ(N̂)

[wi((T ∪ S) ∩ δ(i)) +
∑

e∈(T∪S)∩δ+(i)

pe −
∑

e∈(T∪S)∩δ−(i)

pe]. (3.11)

It follows from (3.9)–(3.11) that X ∩ δ(i) is payoff maximizing for agent i in network G

under price vector p. Finally, it readily follows from the construction of (X, p) that its

projection yields (X ′, p′). Hence, the claim follows.

I proceed with establishing the first comparative static of this section. In particular, suppose

that the initial trading network has two components Gs and Gb that possibly consist of

multiple traders and trades among them (see Figure 8). Suppose that new trades from Gs
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to Gb that are incident to multiple traders from Gs and Gb are added to the economy. What

is the impact of these trades on the competitive equilibrium?

Gs Gb

k

r

t

∆

Figure 8: Comparative statics involving multiple buyers/sellers. Initial economy has com-
ponents Gs/Gb that are connected by the new trades (dashed arcs).

Theorem 3.3.8. Suppose that trading network G consists of two components Gs =

(N s, Es) and Gb = (N b, Eb), and let (X, p) denote an equilibrium in this network. Suppose

that a set ∆ of trades whose sellers belong to N s and buyers belong to N b are added to the

economy. Then,

• there exists an equilibrium (X ′, p′) in the new economy such that p′e ≥ pe for e ∈ Es.

• there exists an equilibrium (X ′′, p′′) in the new economy such that p′′e ≤ pe for e ∈ Eb.

Proof. Theorem 3.3.8 is proven by leveraging Lemma 3.3.7 together with the earlier com-

parative statics results. In particular, replace agents in Gb (similarly Gs) with a single

representative buyer (seller). Then, analyzing the impact of the addition of new arcs re-

duces to analyzing the addition of a (representative) buyer (similarly seller) to the economy.

The impact of the addition of a new buyer to the economy was characterized in Section 3.3.2.

The theorem follows by leveraging this characterization.

Denote the trading network obtained after adding trades ∆ to G by G′. Denote by Ĝ the

trading network obtained from G after replacing Gb with a representative agent b. Observe
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that adding trades ∆ to G is equivalent to adding the same trades between b and the vertices

that belong to Gs in Ĝ. Denote the trading network induced by adding the aforementioned

trades to Ĝ by Ĝ′. In networks Ĝ and Ĝ′ the value function of the representative agent b is

defined as in (3.5), in terms of the value functions of the agents in Gb (which capture the

valuations of these agents for trades in ∆). Note that Ĝ′ can equivalently be obtained from

G′ by replacing Gb with the representative agent b.

Let (X, p) denote an equilibrium in G. By Lemma 3.3.7 there exists an equilibrium (X̂, p̂) in

Ĝ that is a projection of (X, p). Theorem 3.3.4 implies that Ĝ′ has an equilibrium (X̂ ′, p̂′),

where the prices of trades in Es weakly increase relative to the corresponding prices in p̂.

By Lemma 3.3.7 there is an equilibrium (X ′, p′) in G′, where the prices of trades outside

Gb are the same as those in p̂′. These observations imply that p′e = p̂′e ≥ p̂e = pe for all

e ∈ Es. Thus, the first part of the theorem follows.

The proof of the second part is similar and is omitted. The key difference is that the proof

now involves replacing Gs with a representative agent s (as opposed to replacing Gb with

b), and using an analogous result to Theorem 3.3.4 that shows that the addition of a new

seller (as opposed to a buyer) decreases (as opposed to increases) the prices in the rest of

the economy.

Note that Corollary 3.3.5 generalizes to the setting of Figure 8. Suppose that there exists

an equilibrium of the original economy where some agent in Gb participates only as a buyer

(e.g., agent r in Figure 8). Theorem 3.3.8 implies that there exists an equilibrium in the

new economy where the payoff of this agent weakly increases. Similar characterizations hold

for agents who participate only as sellers in Gb, as well as for such agents in Gs. Perhaps

more interestingly, it is possible to reason about the impact of new trading opportunities on

the payoffs of a set of agents. For instance, if there is a set of agents N̂ b in Gb = (N b, Eb)

who in the initial equilibrium participate as buyers in trades between N̂ b and N b \ N̂ b,

the aggregate equilibrium payoff of these agents increases from the addition of the new

trades. For instance, the total payoff of agents k, r, t increases as a result of the addition
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of the dashed arcs in Figure 8. Since these observations on payoff changes follow from

Theorem 3.3.8 in a straightforward way by mimicking the approach of Corollary 3.3.5 I do

not state them formally.

The characterization in this subsection so far focuses on settings where the initial network

has two disconnected components. I next generalize this characterization, by allowing for

arcs between Gb and Gs.

Theorem 3.3.9. Let Gs = (N s, Es) and Gb = (N b, Eb) denote two induced subnetworks

of the trading network G = (N,E). Suppose that E = Eb ∪Es ∪ L ∪R, where trades in L

(R) have sellers in N s (N b) and buyers in N b (N s).

Let (X, p) denote an equilibrium in G where all trades in R are executed and no trade in L

is executed. Assume that a set ∆ of trades whose sellers belong to N s and buyers belong

to N b are added to the economy. Then, the results of Theorem 3.3.8 continue to hold.

Proof. To establish the result, I consider a sequence of transformations to the underlying

network, as illustrated in Figure 9, and study how the competitive equilibria change as a

result of these transformations. All these networks share the same set of vertices, N . Ḡ is

obtained from G by replacing each arc (trade) in R with an arc between the same vertices

but with opposite orientation. The set of arcs that replace those in R is denoted by R̄. Ĝ is

obtained from Ḡ by removing the arcs in L∪ R̄. G̃ is obtained from Ĝ by adding L∪ R̄∪∆.

Finally, G′ is obtained from G̃ by replacing the arcs in R̄ with those in R. Note that G′ can

also be directly obtained from G by adding arcs ∆ to G. However, considering the sequence

of transformations in Figure 9 allows us to reason about how competitive equilibria change

in a more straightforward way. In particular, I will show that after each transformation

it is possible to obtain a competitive equilibrium where the prices of trades in Es weakly

increase. Note that this readily implies that the first result of Theorem 3.3.8 continues to

hold in the setting described in Theorem 3.3.9, as claimed.

I first describe the transformation G → Ḡ where all arcs in R are replaced with arcs in R̄
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G Ḡ

G̃G′

Ĝ

Figure 9: A sequence of transformations. The networks on the left (G,G′) involve R,
whereas the ones in the middle (Ḡ, G̃) involve R̄. The lower networks (G̃,G′) involve ∆ and
the ones above (G, Ḡ) do not. Ĝ does not involve any of the arcs in ∆, L,R, or R̄.

that have the opposite orientation (see Figure 10). Let Ē denote the set of arcs in Ḡ, and

GGs Gb

∆

R

L

ḠGs Gb

∆

R̄

L

Figure 10: ∆ denotes the set of new arcs (trades) in the trading network. In the initial
equilibrium in G, the trades associated with the arcs in R are executed. R̄ is obtained from
R by reversing the orientation of each arc in R.

δ̄(i) ⊂ Ē denote the set of (directed) arcs incident to i in this network. Define a bijective

map γ : E → Ē such that:

1. γ(e)+ = e+ and γ(e)− = e− for all e ∈ E \R,

2. γ(e)+ = e− and γ(e)− = e+ for all e ∈ R.

Similarly, define a bijective map ζ : 2E → 2Ē , such that for any Y ⊂ E we have

1. e ∈ Y ⇔ γ(e) ∈ ζ(Y ) for all e ∈ E \R,

2. e ∈ Y ⇔ γ(e) /∈ ζ(Y ) for all e ∈ R.
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Next, the equilibrium (X, p) in G is used to construct the valuations of the agents in Ḡ. In

particular, let

w̄i(Ȳ ) = wi(ζ
−1(Ȳ ) ∩ δ(i))−

∑
e∈R∩δ−(i)

pe +
∑

e∈R∩δ+(i)

pe,

for all Ȳ ∈ δ̄(i) and i ∈ N . Consider the representation of w̄i as a function on Zδ̄(i) = Zδ(i).

It readily follows from the definition of w̄i and ζ that:

w̄i(z) = wi(zE\R, zR̄+
− 1R̄+

, zR̄− + 1R̄−)−
∑

e∈R∩δ−(i)

pe +
∑

e∈R∩δ+(i)

pe,

for any z ∈ Zδ̄(i). Here, zE\R denotes the entries of z that correspond to the arcs in

E \ R = Ē \ R̄. I use the shorthand notation R̄+ (similarly R̄−) to denote R̄ ∩ δ̄+(i)

(R̄ ∩ δ̄−(i)), and define zR̄+
and zR̄− similarly to zE\R. 1S is used to denote the vector

of ones in ZS for S ∈ {R̄+, R̄−}. Also, when I write wi(zE\R, zR̄+
− 1R̄+

, zR̄− + 1R̄−), I

follow the convention that zR̄+
−1R̄+

(zR̄− + 1R̄−) is associated with the part of the domain

of wi that corresponds to δ−(i) (δ+(i)). Note that this convention is consistent with the

construction, since the arcs δ̄+(i) (δ̄−(i)) in Ḡ correspond to the arcs δ−(i) (δ+(i)) of G.

Since −
∑

e∈R∩δ−(i)

pe+
∑

e∈R∩δ+(i)

pe is a constant and wi is M \-concave, it readily follows from

Theorem 6.15 in Murota (2003) that w̄i is M \-concave.

Next, I construct a competitive equilibrium (X̄, p̄) in Ḡ. Set X̄ = ζ(X), and let the prices

remain the same for all arcs, i.e., p̄γ(e) = pe for all e ∈ E. To establish that (X̄, p̄) is a

competitive equilibrium, I next argue that for any agent i, in Ḡ under price vector p̄ the

set of payoff-maximizing trades is given by δ̄(i) ∩ X̄.

First, consider an agent i ∈ N such that δ(i)∩R = ∅; i.e., i is not adjacent to the trades R

in G. It readily follows that the adjacent trades and their prices are identical for agent i in

network G (under price vector p) and in network Ḡ (under price vector p̄). Since (X, p) is

a competitive equilibrium, we know that X ∩ δ(i) is a set of payoff-maximizing trades for
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agent i in G. These observations immediately imply that in Ḡ, under price vector p̄, the

payoff-maximizing trades for i are given by δ̄(i) ∩ X̄.

Next consider i ∈ N such that δ(i) ∩ R 6= ∅. In Ḡ, under price vector p̄, for any Ȳ ⊂ δ̄(i)

the payoff of agent i can be written as follows:

ūi(Ȳ , p̄) = w̄i(Ȳ ) +
∑

e∈Ȳ ∩δ̄+(i)

p̄e −
∑

e∈Ȳ ∩δ̄−(i)

p̄e

= wi(ζ
−1(Ȳ ) ∩ δ(i))−

∑
e∈R∩δ−(i)

pe +
∑

e∈R∩δ+(i)

pe +
∑

e∈Ȳ ∩δ̄+(i)

p̄e −
∑

e∈Ȳ ∩δ̄−(i)

p̄e

= wi(ζ
−1(Ȳ ) ∩ δ(i))−

∑
e∈R∩δ−(i)

pe +
∑

e∈R∩δ+(i)

pe +
∑

e∈(Ȳ \R̄)∩δ̄+(i)

p̄e −
∑

e∈(Ȳ \R̄)∩δ̄−(i)

p̄e

+
∑

e∈Ȳ ∩R̄∩δ̄+(i)

p̄e −
∑

e∈Ȳ ∩R̄∩δ̄−(i)

p̄e,

(3.12)

where ūi denotes the payoff function of agent i in Ḡ. Here, the first equality follows from

the definition of the payoff function. The second one follows from the definition of w̄i. The

third equality is obtained by rewriting the summations that involve the prices after splitting

Ȳ into Ȳ ∩ R̄ and Ȳ \ R̄.

Recall that p̄γ(e) = pe for all e ∈ E. In addition, the definition of ζ implies that ζ−1(Ȳ \R̄) =

ζ−1(Ȳ ) \R and

Ȳ ∩ R̄ = {γ(e)|e ∈ R \ ζ−1(Ȳ )}.

Using these observations together with (3.12), I obtain:

ūi(Ȳ , p̄) = wi(ζ
−1(Ȳ ) ∩ δ(i))−

∑
e∈R∩δ−(i)

pe +
∑

e∈R∩δ+(i)

pe +
∑

e∈(ζ−1(Ȳ )\R)∩δ+(i)

pe −
∑

e∈(ζ−1(Ȳ )\R)∩δ−(i)

pe

+
∑

e∈(R\ζ−1(Ȳ ))∩δ−(i)

pe −
∑

e∈(R\ζ−1(Ȳ ))∩δ+(i)

pe

= wi(ζ
−1(Ȳ ) ∩ δ(i)) +

∑
e∈ζ−1(Ȳ )∩δ+(i)

pe −
∑

e∈ζ−1(Ȳ )∩δ−(i)

pe

= ui(ζ
−1(Ȳ ) ∩ δ(i), p).
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Here, the second equality follows by collecting common terms together, and the last equality

follows from the definition of the payoff function. Note that by setting Ȳ = X̄ ∩ δ̄(i), we

have

ūi(X̄∩δ̄(i), p̄) = ui(ζ
−1(X̄∩δ̄(i))∩δ(i), p) = ui(X∩δ(i), p) ≥ ui(ζ−1(Y ′)∩δ(i), p) = ūi(Y

′, p̄),

(3.13)

for any Y ′ ⊂ δ̄(i). Here the second equality follows from the definition of X̄, and the

inequality follows since (X, p) is an equilibrium in G. On the other hand, since (3.13) holds

for any Y ′ ⊂ δ̄(i), I conclude that X̄ ∩ δ̄(i) is a payoff-maximizing set of trades in Ḡ under

price vector p̄. Thus, it follows that (X̄, p̄) is an equilibrium in Ḡ.

Observe that, by construction, X̄ ∩ (L ∪ R̄) = ∅, and hence the trades in L ∪ R̄ are not

demanded in the competitive equilibrium (X̄, p̄) in Ḡ. Thus, removing these trades without

changing the prices of the remaining trades yields another equilibrium. Note that Ĝ is

obtained by excluding trades L ∪ R̄ from Ḡ. Denote the set of arcs in Ĝ by Ê, and note

that Ê ∪ L ∪ R̄ = Ē. Let X̂ = X̄, and denote by p̂ the price vector obtained by restricting

p̄ to Ê, i.e., p̂e = p̄e for e ∈ Ê. The above observation implies that (X̂, p̂) is an equilibrium

in Ĝ.

Next, add L ∪ R̄ ∪∆ to Ĝ to obtain G̃. It follows from Theorem 3.3.8 that there exists a

new equilibrium (X̃, p̃) in G̃ for which p̃(e) ≥ p̂(e) for all trades in Es.

Finally, by replacing the trades in R̄ with those in R, and replicating the approach I used

when I transformed G to Ḡ, it follows that there exists an equilibrium (X ′, p′) in G′ such

that the prices of trades in Es ∪Eb are the same as the corresponding prices in equilibrium

(X̃, p̃) in Ĝ.

In sum, the equilibria that were constructed for the sequence of trading networks presented

in Figure 9 are such that

pe = p̄e = p̂e ≤ p̃e = p′e
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for any e ∈ Es. Thus, I conclude that addition of the trades in ∆ to G yields an equilibrium

where the prices of trades in Es weakly increase. Hence, it follows that the first result of

Theorem 3.3.8 continues to hold in the setting described in the theorem statement.

Under an almost identical approach (but this time using the second finding of Theorem 3.3.8

in the transformation from Ĝ to G̃), it follows that the second result of Theorem 3.3.8 also

carries over to the setting described in the theorem statement. Hence, the claim follows.

It can be readily seen that Theorem 3.3.8 is a special case of Theorem 3.3.9 with L = R = ∅.

Qualitatively, this result suggests that the presence of unused trades (L) that have the

same orientation as the trades added to the economy and the executed trades (R) in the

opposite orientation do not impact the comparative statics in Theorem 3.3.8. In fact,

this claim is formalized in the proof of Theorem 3.3.9. More precisely, I first show that the

equilibrium in the initial trading network is identical to the equilibrium in a trading network

where trades in R are replaced with trades with the opposite orientation (after a valuation

transformation). In the equilibrium in the new network, the aforementioned trades are not

executed. Leveraging this observation, I reduce the analysis of the impact of the trades in

∆ on the competitive equilibrium of the initial network, to the setting of Theorem 3.3.8.

My findings suggest that leveraging the MSFP formulation is valuable for deriving nontrivial

comparative statics and certain monotonicity properties of equilibrium prices. In addition

to the change in the equilibrium prices, it is possible to characterize the change in the

equilibrium payoff of an agent (or a group of agents). The latter is omitted here for brevity.

3.3.4. Discussion: Other Comparative Statics and Applications

I have illustrated how a competitive equilibrium changes with the addition of new trades/agents

to the trading network. I close this section by outlining another set of comparative statics

that the MSFP formulation can generate, as well as possible applications of my results.

In the classic network flow problem, it is possible to characterize the impact of the changes

in (i) the arc capacities and (ii) the arc costs, on the optimal flow and vertex potential values
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(see, e.g., Ahuja et al. (1993)). Above I furnish results analogous to (i) in the context of

MSFP (e.g., Lemma 3.3.1). The same techniques allow one to provide results analogous to

(ii) as well. Following the proof of Lemma 3.3.1, one can show that in MSFP as the arc

cost ca for arc a ∈ E decreases, either the optimal flow does not change (e.g., if the flow

on a is equal to the capacity of the arc), or the flow on this arc increases by one unit, and

the new optimal flow can be found by complementing the initial one with the shortest path

with the least number of arcs from a− to a+ in the underlying auxiliary network. In the

latter case, the new optimal vertex potential values can also be obtained by computing the

length of the shortest path from a− to the remaining arcs, similar to Lemma 3.3.1.

When I constructed the flow network associated with the underlying trading network, I

set all arc costs of the flow network equal to zero (see Section 2.3). However, allowing

positive arc costs enables one to model a variety of trade frictions, e.g., transportation costs

or excise8 taxes. In the presence of such trade frictions, a competitive equilibrium can be

obtained by solving a version of the MSFP formulation with nonzero arc costs. Moreover,

all of the results on the existence of a competitive equilibrium and its equivalence to (chain)

stability immediately generalize to this setting. This equivalence fails in the non-quasilinear

setting; see Fleiner et al. (2018).

Perhaps more interestingly, by combining the MSFP characterization of competitive equilib-

ria and the sensitivity analyses outlined in the previous paragraph, it is possible to reason

about the change in the equilibrium prices/payoffs as the aforementioned trade frictions

increase/decrease. For instance, the impact of targeting some sectors of an economy with

carbon taxes, on the market prices of the output of different sectors can be studied by

combining the MSFP formulation and these sensitivity results (similar to the analysis of

marginal tax changes in King et al. (2019)).

The comparative statics provided in this section also have immediate application to trade

8These taxes are independent of the transaction prices, and are imposed on oil, tobacco, alcohol, and
certain chemicals like carbon; see, e.g., Wasserman et al. (1991) and Barthold (1994).
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quotas. For instance, suppose that there is no trade between two countries (i.e., quotas

are set equal to zero for all goods). Suppose that quotas are raised to facilitate trade

of certain goods; what is the impact on the prices of different goods/services in the two

countries/economies? The setting studied in the previous section – after interpreting Gs

and Gb as the trading networks internal to different countries – precisely answers this

question. For instance, Theorem 3.3.8 implies that when economy Gb raises quotas (for

incoming goods), the buyers in this economy enjoy lower prices. Moreover, if these quotas

are fully used and economy Gs in turn raises quotas, Theorem 3.3.9 implies that this results

in an increase in the payoff of the buyers in economy Gs. I view the analysis of the impact

of more realistic changes in quotas on the competitive equilibrium, using the machinery

developed in this section, as an interesting future direction.

3.4. Concluding Remarks and Future Applications

In this work, I show that the problem of finding efficient sets of trades in trading networks

can be formulated as an MSFP in a suitable network. The network flow formulation and the

associated optimality conditions readily imply the known results on competitive equilibria

in trading networks, such as their existence and equivalence to (chain) stability. This for-

mulation also leads to algorithms for finding competitive equilibria and identifying blocking

chains, when they exist. Moreover, by leveraging sensitivity analysis ideas from network

flows I provide new comparative statics for trading networks.

In this work, the focus has been on quasilinear utilities/payoffs. For more general settings

without transferable utilities, full substitutability of preferences is not sufficient for the

existence of (chain) stable outcomes and its equivalence to the competitive equilibrium

outcome (Hatfield et al., 2019b). For such settings, alternative solution concepts have been

proposed in the literature; see, e.g., Fleiner et al. (2018). Exploring possible applications of

network flow formulations in such more general settings is an interesting future direction.
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CHAPTER 4 : Analytical Tools for Prophet Inequalities

Prophet Inequalities are a way to quantify the value of perfect information in optimal stop-

ping problems that are distribution-free. The first prophet inequality was derived in the

classic paper of Krengel and Sucheston (1977) in the context that I will call the basic stop-

ping problem. Consider a sequence of n random variables that are interpreted as rewards.

The random variables are sampled sequentially, and at each step, a decision-maker has to

decide whether to stop and receive the reward or continue. The question of maximizing the

expected reward constitutes the on-line problem. On the other hand, a prophet possesses

complete clairvoyance of the rewards, i.e., has perfect information. The off-line problem is

straightforward: select the largest realized reward. A prophet inequality bounds the ratio

of the expected value of the on-line problem to the off-line problem from below. The higher

this ratio, the less important perfect information is. Over time a huge literature has devel-

oped devoted to sharpening the original prophet inequality or deriving similar inequalities

for other stopping problems. An interesting survey of results and techniques can be found

in Hill and Kertz (1992) and later developments are presented by Lucier (2017).

In this chapter, a variety of different techniques that have been used to derive prophet

inequalities are summarized. This will serve as a contrast to two new linear programming

approaches that I have developed. The first is a primal approach, based on scaling the

reduced form of the prophet’s strategy. The second is a dual approach inspired by Davis

and Karatzas (1994).

4.1. Basic Stopping: A Linear Programming Approach

In the basic stoppping problem, a sequence of n random variables, indexed by I = {1, . . . , n}

and interpreted as rewards, are sampled sequentially, i.e., they are not known in advance.

Reward ri is revealed on step i. The realized rewards are independent. For most of this

dissertation, I will assume that the rewards can take values from a finite set Ri, where the
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probability that reward ri is realized is denoted by fi(ri).
1 r refers to a full profile of

rewards r = (r1, . . . , rn). Denote by r≤i the profile of rewards up to and including step i.

r<i denotes the profile of rewards up to but not including step i.

A decision consists of a stopping rule based on the realized rewards up to the current

step. A stopping rule specifies the probability zi(ri) that the decision-maker stops at step

i conditional on the event that she has not stopped in previous steps. Specifically, zi(ti) =

Pr[select ri|1, . . . , i − 1 not stopped]. This fully captures the set of stopping rules, since

independence implies that there is no need to condition the decision to stop on i upon r<i.

A linear programming representation can be given by considering path-dependent decisions.

Let qi(r≤i) be the probability of stopping on i ∈ I given the profile of rewards r≤i was

realized. These are called ex-post variables. The set of feasible stopping rules can be

represented by a set of nonnegative values q such that the sum of the variables relevant to

a full profile of rewards adds up to one. In more detail, the optimal stopping rule can be

found as a solution to a linear program (LP), defined below.

V = max Er[
∑
i∈I

riqi(r≤i)]

s.t.
∑
i∈I

qi(r≤i) ≤ 1 ∀r

q ≥ 0.

(LP)

The optimal stopping rule can be implemented by dynamic programming. It selects a

reward ri if it greater than the expected reward in future rounds.

Definition 4.1.1. Let vi be the expected reward of the optimal stopping rule starting from

i. A dynamic program will proceed backwards, computing the values v1, . . . , vn recursively

as follows,

vi = Eri max{ri, vi+1}, (4.1)

1However, it is sometimes convenient to work with continuous distributions in that certain quantities can
be given succinct expressions.
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with initial condition vn+1 = 0. With these values in hand, the optimal stopping rule can

be easily implemented. The optimal stopping rule selects a reward ri in step i if and only

if ri ≥ vi+1.

In this chapter, I will also consider the prophet’s strategy. The prophet, possessed of

complete clairvoyance on the rewards, selects the maximum reward for each full profile of

rewards, therefore, given a profile of rewards r, the prophet gains max
i
ri. The prophet’s

expected reward is

M = Er[max
i
ri] (4.2)

In a similar fashion to (LP), the prophet’s strategy can be represented by a set of variables

{wi(r)}i∈I,r∈R, such that for all profiles
∑
i
wi(r) ≤ 1. Let w∗ be the prophet’s strategy,

such that for each profile of rewards r all variables are set to zero but the one with the

largest reward.

In the following sections, I study the optimal stopping rule, along with alternative strategies.

A number of strategies that return a reward comparable to the prophet’s expected reward

will be presented.

4.2. Balanced Thresholds

I first consider rules based on setting a fixed threshold. The decision-maker selects a realized

reward of ri whenever it exceeds the fixed threshold. Several thresholds can be used to derive

the prophet inequality. For simplicity, in this section, I assume that the rewards are sampled

from a continuous distribution. The results hold for all types of distributions, subject to a

few technicalities.

For the basic stopping problem, the total reward can be split between the value of the

threshold and the decision-maker’s surplus. Let τ(r) be the stopping time when profile r

is realized. Let p = Pr[max
i
ri ≥ T ]. Then, the total reward of the above selection rule is
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bounded from below as follows,

V = pT + Er[(rτ(r) − T )+] = pT + Er[
∑
i

(ri − T )+I(τ(r) = i)]

= pT + Er[
∑
i

(ri − T )+I(τ(r) > i− 1)] = pT + Er[
∑
i

(ri − T )+]P[τ(r) > i− 1]]

≥ pT + (1− p)
∑
i

Eri [(ri − T )+].

(4.3)

I summarize different thresholds that have appeared in the literature, and attempt to match

(4.3) with the properties of each threshold. The thresholds appear in Table 4.2.

TH TH =
∑
i
Eri [(ri − TH)]+

TL TL = Er[max
i
ri − TL]+

TKW
1
2Er[max

i
ri]

TSK Pr[max
i
ri ≤ TmLOS ] ∼ 1

2

Table 1: Balanced Thresholds

The basic stopping problem has an interpretation in terms of dynamic posted prices. Agents

arrive sequentially. Agent i has a reservation value ri, drawn from a distribution indepen-

dently of the other agents. The threshold can be interpreted as a take-it-or-leave-it price.

If the current agent’s ri is below the threshold, no sale takes place, and the seller moves to

the next agent. If it is above, a sale is made, and the process stops. The expected payoff of

optimal stopping or a threshold-based strategy is the expected payoff of the seller posting

the prices plus the buyers’ surplus. The expected payoff of the prophet corresponds to the

expected payoff of a seller who knows the reservation values of each buyer in advance and

can, therefore, charge them their full value.

4.2.1. Median of Largest Order Statistic and an Interval of Prices (Samuel-Cahn, 1984)

Samuel-Cahn (1984) provides a single threshold TSK , and examines the reward of a decision-

maker who stops when she observes a reward ri ≥ TSK . Set the threshold such that

Pr[max
i
ri < TSK ] ≤ 1

2
and Pr[max

i
ri > TSK ] ≤ 1

2
.
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From the assumption of continuous distributions, it follows that, p = 1 − p = 1
2 . Let

s =
∑
i
Eri [ri − TSK ]+. The proof follows,

V ≥ pTSK + (1− p)
∑
i

Eri [(ri − TSK)+] = pTSK + (1− p)s

=
1

2
(TSK + s) ≥ 1

2
(TSK + Er[max

i
ri − TSK ]+)

=
1

2
Er[max

i
ri] =

1

2
M.

Interestingly, Samuel-Cahn (1984) also provides a separate interval of numbers [TL, TH ] such

that all the numbers in the interval can serve as thresholds to derive the prophet inequality.

Consider two thresholds TL, TH which can be given as fixed points of two different functions

φL, φH , respectively, i.e., TL = φL(TL) and TH = φH(TH). The two functions are

• φL(T ) = Er[(max
i
ri − T )+] and

• φH(T ) = Er[
∑
i

(ri − T )+].

Both of the functions admit fixed points, since the continuity of the distribution functions

implies the continuity of the functions φL, φH .

The two thresholds are related and bounded from below as shown in Lemma 4.4.

Lemma 4.2.1. TL is always less than TH and bounded from below by 1
2M , i.e.,

TH ≥ TL ≥
1

2
M (4.4)

Proof. Suppose that TL > TH . This implies that

TL > TH = Er[
∑
i

(ri − TH)+] ≥ Er[max
i
ri − TH ]+ ≥ Er[(max

i
ri − TL)+] = TL,

which is a contradiction.
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A similar proof can be given for the lower bound. Suppose that TL <
1
2M . Then,

1

2
M > TL = Er[max

i
ri − TL]+ ≥ Er[max

i
ri −

1

2
M ]+ ≥ Er[max

i
ri −

1

2
M ] =

1

2
M,

which is a contradiction.

I combine 4.4 with inequality 4.3 to show that, for any threshold T ∈ [TL, TH ], the expected

reward is at least half of the prophet’s rewards,

V ≥ pT + (1− p)
∑
i

Eri [(ri − T )+] ≥ pTL + (1− p)
∑
i

Eri [(ri − T )+]

≥ pTL + (1− p)TH ≥ TL ≥
1

2
M.

4.2.2. Half the Largest Order Statistic (Kleinberg and Weinberg, 2019)

Kleinberg and Weinberg (2019) also provide a (different) threshold in order to derive the

classic prophet inequality. The strategy of the decision-maker is as before. The threshold

is set to

TKW =
1

2
Er[max

i
ri].

Observe that Er[(max
i
ri− TKW )+] ≥ Er[max

i
ri− TKW ] = TKW , where the equality follows

from the linearity of expectations and the definition of TKW . Thus, I conclude that

V ≥ pTKW + (1− p)Eri [(ri − TKW )+] ≥ pTKW + (1− p)TKW

=
1

2
Er[max

i
ri] =

1

2
M.

Remark. Both proofs discussed are threshold-based. Given that a threshold is a price, both

proofs initially separate the agents’ surplus and the payoff generated by the decision-maker.

Then each quantity can be bounded below, which gives the prophet inequality. Given that

the thresholds differ, the two proofs differ in the way they lower bound the two quantities.

However, in all cases, a balance is attained, which is more evident in the second proof. On
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the other hand, the threshold in the first case is more robust to outlier values.

4.3. Duality Theory

I provide an alternative proof of the classic prophet inequality, leveraging duality theory.

The analysis directly extends to continuous distributions and linear functional program-

ming. First, a linear program describing the optimal stopping rule is presented, along with

its dual and auxiliary representations of them. Then, strong duality and properties of the

optimal dual variables are utilized to derive the classic prophet inequality.

Consider an alternative representation of the optimal on-line resource allocation problem,

denoted by (ALP).

V = max Er[
∑
i

riwi(r)]

s.t.
∑
i

wi(r) ≤ 1 ∀r

wi(r) = qi(r1, . . . , ri) ∀i ∀r

w, q ≥ 0

(ALP)

The formulation is due to Davis and Karatzas (1994). Here the set of variables is expanded

by including a set of variables w that depend on future rewards too and a set of new

constraints restricting them to have the same value when the history is the same.

Consider a partial dual function L(λ), denoted by (LLP).

L(λ) = max Er[
∑
i

(ri + λi(r))wi(r)]−
∑
i

Er1,...,ri [Eri+1,...,rn [λi(r)]qi(r1, . . . , ri)]

s.t.
∑
i

wi(r) ≤ 1 ∀r

w, q ≥ 0.

(LLP)

Weak duality implies that the dual function serves as an upper bound to the optimal solution

V . However, strong duality implies that for optimal dual variables the upper bound matches

the optimal value, i.e., there exists λ∗ such that L(λ∗) = V .
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Optimal dual variables can be found utilizing the dual problem denoted by (DP).

min Er[π(r)]

s.t. π(r) ≥ λi(r) + ri

Eri+1,...,rn [λi(r)] ≥ 0

π ≥ 0

(DP)

By examining (DP) it is clear that solving it reduces to computing optimal variables π.

(DP) can be projected to the space of π and the dual variables λ can be chosen maximally

to support them. In more detail, given an optimal solution π∗, optimal dual variables λ∗

can be chosen as follows,

λ∗i (r) = π∗(r)− ri. (4.5)

The projection of the dual problem to the space of π variables is denoted by (PDP).

min Er[π(r)]

s.t. Eri+1,...,rn [π(r)] ≥ ri ∀i ∀r1, . . . , ri

π ≥ 0

(PDP)

Finally, consider the function

g(λ,w) = Er[
∑
i

(ri + λi(r))wi(r)]. (4.6)

The above primal-dual definitions are used to provide a proof of the prophet inequality.

First, a few helpful lemmas are presented.
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Lemma 4.3.1. Given an optimal solution λ∗, the optimal value V can be given by

V = max Er[
∑
i

(ri + λ∗i (r))wi(r)]

s.t.
∑
i

wi(r) ≤ b ∀r

w ≥ 0.

(ALLP)

Proof. The proof is short. Since λ∗ is optimal, it is clear from (DP) that Eri+1,...,rnλ
∗
i (r) ≥ 0

for all i and r1, . . . , ri. Hence, the optimal q in (LLP) is zero. Hence, the second term in

the objective cancels out, and (LLP) reduces to the form stated in the lemma.

Lemma 4.3.2. An optimal solution to (DP) is given by

π∗(r) =
∑
i

[ri − vi+1]+,

λ∗i (r) = π(r)− ri =
∑
i

[ri − vi+1]+ − ri.
(4.7)

Proof. The above values can be constructed inductively by iteratively adding increments

to the variables π to satisfy the constraints. However, I prove their optimality by showing

that they are feasible and the objective becomes equal to V .

First, it is shown that the proposed π∗ is a feasible solution to (PDP).

Eri+1,...,rn [π(r)] =
∑
j≤i

[rj − vj+1]+ +
∑
j>i

Erj [rj − vj+1]+

≥ [ri − vi+1]+ +
∑
j>i

Erj [rj − vj+1]+

= [ri − vi+1]+ +
∑
j>i

(vj − vj+1)

= [ri − vi+1]+ + vi+1

≥ ri.
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The first equality follows by linearity of expectations and the first inequality follows by

omitting positive terms before i. The second equality comes from the definition of the

values vi+1, . . . , vn and the third equality by canceling terms in the summation. The last

inequality is straightforward. Furthermore, λ∗ is feasible too, by definition.

Last, the objective is equal to

Er[π(r)] = Er[
∑
i

[ri − vi+1]+]

=
∑
i

Eri [ri − vi+1]+

= V.

The last equality holds because a dynamic program will choose i if the current reward is

larger than the expected reward in future rounds. This completes the proof.

Lemma 4.3.3. Consider λ∗, as proposed in (4.7), and let w∗ be the prophet’s decision.

Then

Er[
∑
i

λi(r)w
∗
i (r)] ≥ −V. (4.8)

Proof. λ∗i (r) can be lower bounded for all i and r. Specifically,

λ∗i (r) =
∑
j

[rj − vj+1]+ − ri

≥ [ri − vi+1]+ − ri +
∑
j>i

[rj − vj+1]+

= [ri − vi+1]+ − ri +
∑
j>i

(vj − vj+1)

= [ri − vi+1]+ − ri + vi+1

≥ − vi+1 ≥ −V.
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To complete the proof,

Er[
∑
r

λi(r)w
∗
i (r)] ≥ −V Er[

∑
i

w∗i (r)] ≥ −V.

The first inequality holds since w∗ is nonnegative and the second inequality holds because∑
i
w∗i (r) ≤ 1 for all r.

By leveraging the above lemmas the prophet inequality can be derived.

Theorem 4.3.4. The reward of the optimal stopping rule is at least half of the prophet’s

reward in expectation, i.e., V ≥ M
2 .

Proof. A few more steps of analysis will suffice to bound the optimal expected reward from

below.

V ≥ g(λ∗, w∗) = Er[
∑
i

riw
∗
i (r) +

∑
i

λ∗i (r)w
∗
i (r)]

= M + Er[
∑
i

λ∗i (r)w
∗
i (r)] ≥M − V

The first inequality comes from Lemma 4.3.1 and the feasibility of w∗, the second equality

comes form the definition of the prophet’s reward, and the last inequality comes from

Lemma 4.3.3. The above inequality gives an approximation guarantee of 1
2 .

The proof is closely related to the one by Davis and Karatzas (1994). They first show the

equivalence of (ALP) and (ALLP), by explicitly constructing the dual variables and the

associated stopping rules. I sidestep this part by showing that the equivalence is a simple

byproduct of strong duality. For the remainder, both of the proofs are based on bounding

the dual variables from below. Davis and Karatzas (1994) manages to do so for a suitable

choice of dual variables. Here a different set of dual values is provided, which is chosen

maximally. My hope is that these additional insights will be useful to address the problem

in more general settings.
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Remark. Notice that most of the steps along the proof can be extended to the case of

multiple resource constraints. The crucial step in the above analysis is pinning down the

optimal dual variables π∗. This is the step that requires careful thought when generalizing

to multiple constraints. The application of strong duality as well as determining optimal

dual variables λ∗ carry on.

4.4. The Reduced-Form Representation

I describe a more compact primal formulation using a new set of variables {Qj(rj)}i∈I,ri∈Ri .

The new set of variables are related to the ex-post variables q as follows,

Qj(rj) = Er1,...,rj−1 [qj(r1, . . . , rj)].

The variables Qj(rj) are sometimes called interim variables. A formulation of the stopping

problem in terms of the interim variables is called the reduced-form representation. This

is the first work to express the reduced-form representation of the basic stopping problem.

Similarly, a more compact formulation of the prophet’s problem can be given using variables

{Wj(rj)}i∈I,ri∈Ri , related to the prophet’s ex-post variables as follows,

Wj(rj) = Er−j [wj(r)].

The above set of variables provide a tractable description of the decision-maker’s and

prophet’s problems, in the form of a polytope in polynomially many variables.

Given the above set of reduced variables, I examine the reduced-form representation of the

decision-maker’s and prophet’s problems. When it comes to the prophet’s problem, the

answer has already been given in (C Border, 1991), where a set of constraints is formed

using Hall’s theorem to match interim allocations with ex-post allocations. The formulation
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is given in PRF.

max
∑
i

Eri [riWi(ri)]

s.t.
∑
i

∑
ri∈Si

fi(ri)Wi(ri) ≤ 1−
∏
i

(1−
∑
ri∈Si

fi(ri)) ∀S ⊆ R

W ≥ 0.

(PRF)

I now examine the projection of (LP) to the interim space. The use of interim variables is

possible because of the independence of the rewards. The objective can be written in terms

of the interim variables quite easily as the aggregate weighted average of the rewards in

each round scaled by the interim variables. The projection of (LP) to the space of interim

variables can be formulated as a set of constraints parameterized by the reward in each

round.

Lemma 4.4.1. A set of interim values Q is feasible if and only if for all i and ri,

Qi(ri) +
∑
j>i

Erj [Qj(rj)] ≤ 1. (4.9)

Proof. Consider a set of decisions z supporting Q. For each i and ri the interim value is

given by Qi(ri) = zi(ri)Er<i [
∏
j<i

(1− zj(rj))]. Hence,

zi(ri) =
Qi(ri)

Er<i [
∏
j<i

(1− zj(rj))]
.

I will prove by induction that

Er≤i [
∏
j≤i

(1− zj(rj))] = 1−
∑
j≤i

Erj [Qj(rj)].

For i = 1, the equality reduces to Er1 [1 − z1(r1)] = 1 − Er1 [Q1(r1)], which holds since
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Q1(r1) = z1(r1). Given that the equality holds for i, I prove the equality for i+ 1,

Er≤i+1
[
∏
j≤i+1

(1− zj(rj))] = Eri+1 [(1− zi+1(ri+1))]Er≤i [
∏
j≤i

(1− zj(rj))]

= (1− Eri+1 [zi+1(ri+1)])Er≤i [
∏
j≤i

(1− zj(rj))]

= Er≤i [
∏
j≤i

(1− zj(rj))]− Eri+1 [zi+1(ri+1)]Er≤i [
∏
j≤i

(1− zj(rj))]

= 1−
∑
j≤i

Erj [Qj(rj)]− Eri+1 [Qi(ri+1)]

= 1−
∑
j≤i+1

Etj [Qj(tj)].

The first equality follows from independence, the second equality follows from linearity of

expectations, and the fourth equality follows from the inductive step and the definition of

the interim variables. Hence, a set of interim values points out to a strategy z such that for

all i and ri,

zi(ri) =
Qi(ri)

1−
∑
j<i

Erj [Qj(rj)]
.

The only constraint tying z is zi(ri) ≤ 1. After substituting with the expression of interim

values, the desired inequality is revealed.

The reduced form representation of (LP) is described as follows,

max
∑
i

Eri [riQi(ri)]

s.t. Qi(ri) +
∑
j>i

Erj [Qj(rj)] ∀i ∀ri

Q ≥ 0.

(RF)

102



4.4.1. Weakly Coupled LP Relaxations

I describe a proof of the classic prophet inequality, attributed to Guha and Munagala

(2007), which utilizes a weakly coupled linear programming relaxation of the prophet’s

problem (PRF). Threshold TH will be chosen, as in Samuel-Cahn (1984), such that

TH =
∑
i

Eri [(ri − TH)+].

The threshold might be the same as in the previous proof, but the proof differs. I will

assume that the distribution functions are continuous to guarantee that TH exists.

The proof of an approximation guarantee for the above rule makes use of an linear pro-

gramming relaxation of (PRF). Let Wi(ri) be the probability that i is selected given that

ri is realized. The linear programming relaxation is denoted by (RPRF).

max
∑
i

EririWi(ri)

s.t.
∑
i

EriWi(ri) ≤ 1

0 ≤Wi(ri) ≤ 1 ∀i ∀ri

(RPRF)

Let T be the dual variable corresponding to the first constraint. A partial dual function of

RPRF is given by

L(T ) = max T +
∑
i

Eri [(ri − T )Wi(ri)]

s.t. 0 ≤Wi(ri) ≤ 1 ∀i ∀ri

Solving the maximization problem implies that L(T ) = T +
∑
i
Eri [(ri−T )+]. Weak duality

implies that L(T ) ≥M . Recall from Lemma 4.4 that TH =
∑
i
Eri [(ri − TH)+] ≥ 1

2M .

The approximation guarantee comes from an amortized analysis of the final reward. The
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expected reward is bounded below,

V ≥ pTH + (1− p)
∑
i

Eri [(ri − TH)+] =

= p
1

2
M + (1− p)1

2
M ≥ 1

2
M.

4.4.2. New Algorithms utilizing the Reduced Form

I now describe a novel approach utilizing the reduced-form representation of the prophet’s

strategy to devise approximately efficient strategies. I will devise three new algorithms

that perform well in three different settings, the basic stopping problem, a case where the

rewards are sampled from the same distribution, and a case where the decision-maker can

first order the agents appropriately and then start selecting in that order.

Basic Setting

For the classic setting, consider the strategy QA which scales the prophet’s strategy by half,

i.e., for all i and rewards ri,

QAi (ri) =
1

2
W ∗i (ri).

The above algorithm is crude but achieves approximate efficiency. The approximation

guarantee achieved carries on to the optimal stopping rule, as a consequence.

Theorem 4.4.2. Algorithm A achieves at least 1/2 of the prophet’s reward in expectation.

Proof. It is clear that the objective function with respect to the reduced form for both

problems is linear and coincides. Thus, a simple scaling approximates the optimal objective,

∑
i∈I

Eri [Q
A
i (ri)ri] =

1

2

∑
i∈I

Eri [W
∗
i (ri)ri].

The proposed solution is feasible for the stopping problem. In detail, QAi (ri)+
∑
j<i

Erj [QAj (rj)] =

1
2W

∗
i (ri) + 1

2

∑
j<i

Erj [W ∗j (rj)] ≤ 1. The last inequality holds since W ∗i (ri) ≤ 1 and the prob-
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ability of stopping in the first i− 1 steps is also less than 1.

IID Setting

If one imposes restrictions on the distribution over rewards one might expect improved

prophet inequalities. For the case when the distributions are identical, I show how using

the optimal interim variables of the off-line problem can lead to informative proofs of the

prophet inequality. For the IID setting, consider a rule B based on stopping on i with

reward ri with probability zBi (ri) = W ∗i (ri). The algorithm achieves approximate efficiency

when compared to the prophet’s reward, but it is not the best bound found in the literature.

A first reference on the problem can be found in Hill and Kertz (1982), where the prophet

inequality presented matches the one presented here. For the latest developments on the

basic stopping problem with identical distributions, see Abolhassani et al. (2017).

Theorem 4.4.3. Algorithm B achieves at least 1− 1
e of the prophet’s reward in expectation.

Proof. Consider a symmetric version of the prophet’s strategy, such that W ∗i (r) = W ∗j (r) =

W ∗(r) for all i and ri. The prophet’s expected reward is equal to M = nEr[W ∗(r)]. The

reward gained by B can be bounded from below as follows,

V B =
∑
i

Eri [riW
∗(ri)]

∏
j<i

(1− Erj [W
∗(rj)])

=
∑
i

Er[rW ∗(r)](1− Er[W ∗(r)])i−1

= Er[rW ∗(r)]
∑
i

(1− Er[W ∗(r)])i−1

=
M

n

∑
i

(1− 1

n
)i−1 = (1− (1− 1

n
)n)M

≥ (1− 1

e
)M.
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Variable Arrival Order Setting

The basic stopping problem where the decision-maker can choose the arrival order of the

rewards was presented by Yan (2011). I show an alternative proof of the prophet inequality

for this case, which matches the best possible. Consider a strategy C that selects the

order of the rewards processed and then proceeds with examining the sequence of rewards

and deciding which to select. The decision-maker orders the agents in decreasing order of

ki =
Eri [riW

∗
i (ri)]

Eri [W
∗
i (ri)]

. Conditionally on the event of reaching i, the decision-maker selects ri

with probability zi(ri) = W ∗i (ri). The expected reward is bounded below by a fraction of

the prophet’s expected reward.

Theorem 4.4.4. Algorithm C achieves at least 1− 1
e of the prophet’s reward in expectation.

Proof. I assume that the rewards are ordered such that ki ≥ ki+1 for all i. As before I

analyze the interim values under C,

QCi (ri) = W ∗i (ri)
∏
j<i

(1− ErjW
∗
j (rj)).

Let ai = Eri [riW ∗i (ri)], bi = Eri [W ∗i (ri)], and ci =
∏
j<i

(1 − Erj [W ∗j (rj)]) =
∏
j<i

(1 − bj). The

prophet’s reward can be written as M =
∑
i
ai. The expected reward of C is given by

V C =
∑
i

Eri [W
∗
i (ri)]

∏
j<i

(1− Erj [W
∗
j (rj)]) =

∑
i

aici

≥
∑
i

ai
∑
i

bici = M
∑
i

bici = M
∑
i

bici

= M
∑
i

bi
∏
j<i

(1− bj) = M(1−
∏
i

(1− bi))

≥M(1−
∏
i

e−bi) = M(1− e
−

∑
i
bi

) ≥ (1− 1

e
)M.

The first two equalities come from the definition of C and the definition of a, c. I claim

that the first inequality holds, which I will prove shortly. The third equality follows
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from the definition of M in terms of a and the forth equality follows since by optimal-

ity
∑
i
Eri [W ∗i (ri)] = 1. The fifth equality follows by the definition of c in terms of b and the

sixth equality by simplifying the expression. The second inequality follows by the standard

trick, and the last inequality again follows since the prophet always utilizes the resource.

It remains to prove that
∑
i
aici ≥

∑
i
ai
∑
i
bici. I will use the fact that ki = ai

bi
and ci are

both decreasing sequences. The inequality is rewritten in a better form,

∑
i

bi
ai
bi

[ci −
∑
j

bjcj ] ≥ 0.

Set xi = ci and yi = ai
bi

for all i. Let h be an increasing function satisfying yi = h(xi) for

all i. This is possible because both sequences x and y are increasing. The inequality holds,

as follows,

∑
i

bi
ai
bi

[ci −
∑
j

bjcj ] =
∑
i

biyi[xi −
∑
j

bjxj ] =
∑
i

bih(xi)[xi −
∑
j

bjxj ]

=
∑
i

bi(h(xi)− h(
∑
j

xj)))(xi −
∑
j

bjxj) ≥ 0.

The first equality follows from the definition of x and y, and the second equality follows

from the definition of h. The third equality holds because
∑
i
bi(xi −

∑
j
bjxj) = 0. The

inequality holds because h is increasing, i.e., (xi −
∑
j
bjxj)(h(xi) − h(

∑
j
bjxj)) ≥ 0 for all

i.
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CHAPTER 5 : Optimal On-line Verification Rules

In many large organizations, scarce resources must be allocated internally without the

benefit of prices. Examples include the headquarters of a firm that must choose between

multiple investment proposals from each of its division managers and funding agencies

allocating a grant among researchers. In these settings, the private information needed

to determine the right allocation resides with the agents, and the principal must rely on

verification of agents’ claims, which can be costly. I interpret verification as acquiring

information (e.g., requesting documentation, interviewing an agent, or monitoring an agent

at work), which can be costly. The headquarters of the diversified firm can hire an external

firm to conduct an assessment of any division manager’s claims, for example. The funding

agency must allocate time to evaluate the claims of the researcher applying for a grant.

Furthermore, in these settings, the principal can punish an agent if his claim is found to be

false. For example, the head of personnel can reject an applicant, fire an employee, or deny

promotion. Funding agencies can cut off funding.

Prior work considered an off-line version of this problem. Specifically, there is a principal

who has to allocate one indivisible object among a finite number of agents, all of whom

are present. The value to the principal of assigning the object to a particular agent is the

private information of the agent. Each agent prefers to possess the object than not. The

principal would like to give the object to the agent who has the highest value to her. Ben-

Porath et al. (2014), the first to pose the question, assumes punishment is unlimited in the

sense that an agent can be rejected and not receive the resource. Punishment can be limited

because verification is imperfect or information arrives only after an agent has been hired

for a while. In Mylovanov and Zapechelnyuk (2017), verification is free, but punishment is

limited. Li (2020) generalizes both papers by incorporating costly verification and limited

punishment.

This section introduces and analyzes an on-line version of this problem in which the agents
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arrive and depart one at a time, and the decision to allocate the object to an agent must

be made upon the arrival of an agent. If the principal declines to allocate the object to an

agent, the agent departs and cannot be recalled. If the principal allocates the object to an

agent, the decision is irreversible. The problem is analogous to the problem of choosing a

selling mechanism when facing a stream of buyers who arrive over time (see, for example,

Gershkov and Moldovanu (2014)), except we do not have access to monetary transfers.

If each agent were to truthfully report the value to the principal, the principal faces the

stopping problem. The goal is to select a single element with maximum value. An element

of the sequence must be selected or discarded upon its arrival, and this decision is irre-

vocable. Recall that the solution involves a sequence of thresholds, indexed by the agent,

and the principal allocates the object to the first agent whose reported value exceeds their

corresponding threshold.

If the principal were to adopt such a policy in this setting, it would encourage all agents

to exaggerate their values. To discourage this, the principal can ration at the top of the

distribution of values or verify an agent’s claim and punish him if his claim is found to be

false. The first reduces allocative efficiency while the second is costly. This work aims to

find the optimal way to provide incentives via these two devices in an on-line setting. The

contributions of this work are as follows:

1. A reformulation of the on-line problem as a compact linear program that may be

useful in other applications.

2. This reformulation allows us to derive a prophet inequality for the on-line version of

the verification problem.

This setting is related to three lines of work. The first is on costly verification that begins

with Townsend (1979). This work and others that followed such as Gale and Hellwig (1985),

and Mookherjee and Png (1989), analyze off-line settings with transfers, which I rule out.
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The second is on partial but costless verification, see for example Caragiannis et al. (2012)

or Ball and Kattwinkel (2019), for example. In these models, verification is costless but

imperfect. In my model, verification is perfect but costly. At a high level, the two are related

because one can think of partial verification as being costly, but the cost is endogenous,

depending on the nature of the realized allocation. In my case, the cost is exogenous.

Finally, it is related to the extensive literature on on-line selection problems. The absence

of money in my setting means that the results from these papers do not apply.

In Section 5.1, I introduce my setting and the linear programming formulation. In Sec-

tion 5.2, I characterize the form of the optimal mechanism and provide a corresponding

prophet inequality. In Section 5.3, I study the variation of the problem with limited pun-

ishment.

5.1. Model

There is a single indivisible good to allocate among a set of agents denoted by I = {1, . . . , n}.

The type of agent i ∈ I is ti which is the value to the principal of allocating the object to

agent i. I assume that the agents’ types are independently distributed. The distribution of

agent’s i type has strictly positive density fi over the interval Ti = [ti, ti]. The preferences of

the agents are simple: each prefers to possess the object to not. The actual private benefit

enjoyed by an agent from receiving the object does not need to be specified.

Agents arrive one after the other and report their type, not necessarily truthfully. The

principal can verify the reported type of agent i at cost c > 0 and determine perfectly if

the agent has lied. In the event an agent is discovered to have lied, the object is withheld

from them. This is the case of unlimited punishment. The case of limited punishment is

considered later.

By the revelation principle we can restrict attention to direct mechanisms. Denote by

t≤i the profile of reported types made by all agents up to and including agent i. I write

t<i to denote the profile of reported types made by all agents up to but not including
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i. A direct mechanism specifies for each profile of type reports, an allocation rule and

an verification rule for each agent i. The allocation rule specifies the probability zi(ti)

he is allocated the good conditional on the event that the good is not already allocated.

Specifically, zi(ti) = Pr[choose ti|1, . . . , i − 1 not allocated]. This fully captures the set of

on-line allocation rules, since independence means there is no need to condition the decision

to allocate the good to agent i upon t<i. The verification rule is the probability that agent

i is assigned the good and inspected conditional on the event that the good is not already

allocated and denoted ai(ti). Therefore:

0 ≤ ai(ti) ≤ zi(ti) ≤ 1 ∀i ∈ I ∀ti ∈ Ti. (5.1)

Definition 5.1.1. A direct mechanism M = (T1, . . . , T|I|, {zi(·), ai(·)}i∈I) restricts the

strategy set of each agent i to Ti, and returns an allocation rule qi : Ti → [0, 1] and a

verification rule ai : Ti → [0, 1] for each agent i ∈ I.

Definition 5.1.2. A direct mechanismM = (T1, . . . , T|I|, {zi(·), ai(·)}i∈I) is incentive com-

patible if each agent i has an incentive to truthfully report her type, i.e.

zi(ti) ≥ zi(t′i)− ai(t′i) ∀i ∈ I ∀ti, t′i ∈ Ti. (5.2)

The left-hand side of (5.2) is the probability of receiving the good with a truthful report.

The right-hand side is the probability of receiving the good with a misreport adjusted

downwards for the possibility of being inspected and punished for misreporting.

The principal would like to choose the allocation and verification probabilities z and a

satisfying (5.1) and (5.2) to maximize:

∑
i∈I

Et<i [
∏
j<i

(1− zj(tj))]Eti [tizi(ti)− cai(ti)].
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5.1.1. Reduced-Form Representation

I work with a reduced-form representation of the allocation and verification rules (see for

example C Border (1991); Vohra (2012); Li (2020)). Given an allocation and verification

rule, (z, a), let Qi(ti) = zi(ti)Et<i [
∏
j<i

(1 − zj(tj))] and Ai(ti) = ai(ti)Et<i [
∏
j<i

(1 − zj(tj))]

be the interim allocation and verification probabilities respectively. The interim allocation

and verification probabilities are related to the allocation and verification probabilities as

follows:

Lemma 5.1.1. Let Q,A, z, a be the interim as well as actual allocation and verification

rules of a direct mechanism. Then the interim and actual rules are related as follows:

zi(ti) =
Qi(ti)

1−
∑
j<i

Etj [Qj(tj)]
(5.3)

ai(ti) =
Ai(ti)

1−
∑
j<i

Etj [Qj(tj)]
(5.4)

Proof. As shown in the proof of Lemma 4.4.1 for the stopping problem,

Er≤i[
∏
j≤i

(1− zj(rj))] = 1−
∑
j≤i

Erj [Qj(rj)].

It is now easy to relate the allocation and verification rules. By the definition of Q,A,

• Qi(ti) = zi(ti)Et<i [
∏
j<i

(1− zj(tj))]⇒ zi(ti) = Qi(ti)
1−

∑
j<i

Etj [Qj(tj)]
,

• Ai(ti) = ai(ti)Et<i [
∏
j<i

(1− zj(tj))]⇒ ai(ti) = Ai(ti)
1−

∑
j<i

Etj [Qj(tj)]
.
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It follows from Lemma 5.1.1 that the set of constraints (5.1) can be reduced to

Qi(ti) +
∑
j<i

Etj [Qj(tj)] ≤ 1 ∀i ∈ I ∀ti ∈ Ti

0 ≤ Ai(ti) ≤ Qi(ti) ∀i ∈ I ∀ti ∈ Ti

Using the reduced form I can formulate the principal’s problem as the following linear

program (denoted (VLP)):

max
Q,A

∑
i∈I

Eti [tiQi(ti)− cAi(ti)]

s.t. Qi(ti) +
∑
j<i

Etj [Qj(tj)] ≤ 1 ∀i ∀ti ∈ Ti

Qi(ti) ≥ Qi(t′i)−Ai(t′i) ∀i ∈ I ∀ti, t′i ∈ Ti

0 ≤ Ai(ti) ≤ Qi(ti) ∀i ∈ I ∀ti ∈ Ti

(VLP)

5.2. The Optimal Mechanism

In this section, I derive the optimal interim allocation and verification rules. The interim

verification rule will be derived as a function of the optimal interim allocation rule. The

optimal interim allocation rule will be given as a solution to a linear program. The actual

allocation and verification rules can be obtained from the interim ones via Lemma 5.1.1.

Given the optimal interim allocation rule, the optimal interim verification rule can be de-

duced from the incentive constraints in (LP). They can be reduced to the following:

min
ti
Qi(ti) ≥ Qi(t′i)−Ai(t′i) ∀i ∈ I ∀t′i ∈ Ti (5.5)

Therefore, at optimality,

Ai(ti) = Qi(ti)−min
t′i

Qi(t
′
i). (5.6)

(5.6) is used to eliminate the verification variables from (LP). I also introduce a new set
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of variables {φi}i∈I accounting for the minimum interim allocation per agent. For a given

{φi}i∈I , the optimal interim allocation rule is given by the following linear program denoted

LP(φ):

V (φ) = max
Q

∑
i∈I

Eti [(ti − c)Qi(ti)] + cφi (5.7)

s.t. Qi(ti) +
∑
j<i

Etj [Qj(tj)] ≤ 1 ∀i ∀ti ∈ Ti

Qi(ti) ≥ φi ≥ 0 ∀i ∈ I ∀ti ∈ Ti

Whenever
∑
i
φi ≤ 1, V (φ) is well defined, otherwise there is no feasible solution. This is

because 1 ≥
∑

i Eti [Qi(ti)] ≥
∑

i φi should hold. Hence, the problem of finding the optimal

mechanism reduces to

max
φ:

∑
i∈I

φi≤1
V (φ),

which is also a linear program. I now characterize the optimal interim allocation and

verification rules given φ.

Lemma 5.2.1. The optimal solution of LP(φ) is monotonic in type, i.e.

Qi(ti) ≤ Qi(t′i) ∀i ∈ I ∀ti ≤ t′i

Proof. Suppose not. Then, there is an i and pair (ti, t
′
i) such that Qi(ti) > Qi(t

′
i). I pick

an ε > 0 such that

• Qi(ti)− ε
fi(ti)

≥ Qi(t′i),

• Qi(t′i) + ε
fi(t′i)

≤ Qi(ti).

If Qi(ti) is reduced by ε
fi(ti)

and Qi(t
′
i) is increased by ε

fi(t′i)
, feasibility is preserved. The

objective function value increases by ε(t′i − ti) > 0, which is a contradiction.
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Hence, there exists a threshold t̂i for all i such that Qi(ti) = φi for ti ≤ t̂i and Qi(ti) ≥ φi

otherwise.

I show that the optimal strategy is a threshold strategy in each round. A transformation

of variables will prove convenient:

Qi(ti) = φi + xi(ti) (5.8)

Given φ, the optimal strategy can be found by identifying the solution to the following

linear program:

max
x

∑
i∈I

Eti [xi(ti)(ti − c)] (XP)

s.t. xi(ti) +
∑
j<i

Etj [xj(tj)] ≤ 1−
∑
j≤i

φj ∀i ∈ I ∀ti ∈ Ti

xi(ti) ≥ 0 ∀i ∈ I ∀ti ∈ Ti

(XP) is a simplified version of LP(φ) given by the transformation defined in (5.8).

Lemma 5.2.2. Suppose that Q is the optimal solution to LP(φ). Then, for each agent i,

there exists a threshold t̂i, such that

Qi(ti) =


1−

∑
j<i

Etj [Qj(tj)] if ti ≥ t̂i

φi otherwise

(5.9)

Proof. Suppose we are interested in the allocation and verification rules when we reach
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agent i. Fix all other variables. We are interested in solving the following linear program

max
xi

Eti [xi(ti)(ti − c)]

s.t. xi(ti) ≤ 1−
∑
j≤i

φj −
∑
j<i

Etj [xj(tj)] ∀i ∈ I ∀ti ∈ Ti

Eti [xi(ti)] ≤ 1−
∑
j≤k

φj − xk(tk)−
∑

j<k,j 6=i
Etj [xj(tj)] ∀k > i ∀tk ∈ Tk

xi(ti) ≥ 0 ∀i ∈ I ∀ti ∈ Ti

Now, it is clear that the optimal solution can actually be characterized by a threshold. All

high types will be assigned their upper limit till the constraint on the aggregate allocation

binds. Thus, the optimal solution x is given by

xi(ti) =


1−

∑
j≤i

φj −
∑
j<i

Etj [xj(tj)] if ti ≥ t̂i

0 otherwise

Returning back to Q variables completes the proof.

Lemma 1 allows us to derive the actual allocation and verification rules given the interim

ones. I also provide the form for the actual allocations, given the characterization of the

optimal interim allocation in terms of parameters φ, t̂,

Corollary 5.2.3. For each agent i there exists a threshold t̂i and constant αi, such that

the optimal actual allocation can be written as follows:

zi(ti) =

 1 if ti ≥ t̂i

αi otherwise
ai(ti) =

 1− αi if ti ≥ t̂i

0 otherwise
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Proof. Lemma 5.1.1 is used to derive the form of the actual allocation:

zi(ti) =
Qi(ti)

1−
∑
j<i

Etj [Qj(tj)]
=


1−

∑
j<i

Etj [Qj(tj)]

1−
∑
j<i

Etj [Qj(tj)]
if ti ≥ t̂i

φi
1−

∑
j<i

Etj [Qj(tj)]
otherwise

=

 1 if ti ≥ t̂i

αi otherwise

where αi = φi
1−

∑
j<i

Etj [Qj(tj)]
.

The form for the actual verification rule follows by (5.6).

Before continuing, I summarize the roadmap for determining the optimal allocation and

verification rules:

1. Solve the linear program max
φ:

∑
i∈I

φi≤1
V (φ) to find the optimal interim allocation rule Q.

2. Derive the optimal interim verification rule A from equation (5.6).

3. Derive the optimal actual allocation and verification rules q, a from the interim ones

Q,A, via Lemma 5.1.1.

5.2.1. Prophet Inequality

A prophet inequality is derived for the setting with verification using the reduced form.1 It

scales the optimal off-line solution so as to make it a feasible solution for the on-line setting.

This technique can also be used in the standard setting.

Theorem 5.2.4. The optimal on-line algorithm achieves at least 1/2 of the performance

of the optimal off-line algorithm in expectation.

Proof. LetQ∗i (ti) be the interim expected probability with which agent i with type ti receives

the item in the optimal off-line solution. Let φ∗i = inf
ti
Q∗i (ti) as proposed in Ben-Porath

1This result does not assume that the distribution of types is IID.
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et al. (2014). The expected total value to the principal is given by

∑
i∈I

[Eti [Q
∗
i (ti)(ti − c)] + φ∗i c].

Pick on-line values Qi(ti) = 1
2Q
∗
i (ti) and φi = 1

2φ
∗
i . It is clear that the objective function

with respect to the reduced form for both problems is linear and coincides. Thus, a simple

scaling approximates the optimal objective:

∑
i∈I

[Eti [Qi(ti)(ti − c)] + φic] =
1

2

∑
i∈I

[Eti [Q
∗
i (ti)(ti − c)] + φ∗i c]

It suffices to prove that the proposed solution is feasible for the on-line problem.

• Qi(ti) +
∑
j<i

Etj [Qj(tj)] = 1
2Q
∗
i (ti) + 1

2

∑
j<i

Etj [Q∗j (tj)] ≤ 1: This holds since Q∗i (ti) ≤ 1

and the expected off-line allocation for the first i− 1 agents is also less than 1.

• Qi(t) ≥ φi: The constraint coincides with the off-line constraint. Nothing changes by

scaling both sides of the inequality.

5.3. Limited Punishment

The punishment is limited if the principal cannot reduce an agent’s payoff to his outside

option by punishing him. If we interpret verification as acquiring information, then pun-

ishment can be limited because information is imperfect.2 I assume that punishment is

proportional to the private benefit enjoyed by the agent from receiving the object. If vi is

the private benefit enjoyed by agent i, punishment is kivi, where each ki ∈ [0, 1]. These

are the same assumptions as in Li (2020). As I show below, limited punishment will cause

the principal to ‘ration at the top’ as well. All types above some threshold face the same

2Verification cost and punishment level are taken as exogenous, but it is possible that the principal can
get more precise information by incurring a higher information acquisition cost, which, in turn, leads to a
more severe expected punishment. The results in this work readily extend to the case where the principal
can jointly optimize over verification cost and punishment level.
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probability of receiving the good.

By the Revelation Principle, we can focus on direct mechanisms. In this case, if an agent

is inspected, it is optimal to penalize him if and only if he is found to have lied. After the

allocation is made, the planner will observe the agent’s type and destroy a fraction ki of the

agent’s payoff. A direct mechanism specifies for each profile of type reports the probability

zi(ti) that the good is assigned to agent i conditional on the event that it is not already

assigned. These variables must satisfy the following feasibility conditions:

0 ≤ zi(ti) ≤ 1 ∀i ∈ I ∀ti ∈ Ti (5.10)

The incentive compatibility constraints are as follows:

vizi(ti) ≥ (vi − kivi)zi(t′i)⇒

zi(ti) ≥ (1− ki)zi(t′i) ∀i ∈ I ∀ti, t′i ∈ Ti (5.11)

The principal would like to choose the allocation probabilities q to maximize:

∑
Et<i [

∏
j<i

(1− zj(tj))Eti [tizi(ti)].

As before I work with a reduced-form representation. This allows us to formulate the

optimal mechanism as the following linear program :

max
Q

∑
i∈I

Eti [tiQi(ti)]

s.t. Qi(ti) +
∑
j<i

Eti [Qi(ti)] ≤ 1 ∀i ∀ti ∈ Ti

Qi(ti) ≥ (1− ki)Qi(t′i) ∀i ∀ti ∈ Ti ∀t′i ∈ Ti

Qi(ti) ≥ 0 ∀i ∀ti ∈ Ti
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5.3.1. The Optimal Mechanism

The incentive constraint is simplified, as in Mylovanov and Zapechelnyuk (2017). The proof

is included for completeness.

Lemma 5.3.1. An allocation rule satisfies incentive compatibility if and only if for all i

there exists χi such that

(1− ki)χi ≤ Qi(ti) ≤ χi ∀ti ∈ Ti (5.12)

Proof. If incentive compatibility holds then (5.12) holds with χi = sup
ti

Qi(ti). Conversely,

if (5.12) holds for some χi, then it also holds with χ′i = sup
ti

Qi(ti), which implies incentive

compatibility.

I now write down a linear program which finds the optimal strategy. We know that for

optimal χ this linear program is going to return the optimal strategy.

max
Q,χ

∑
i∈I

Eti [tiQi(ti)]

s.t. Qi(ti) +
∑
j<i

Eti [Qi(ti)] ≤ 1 ∀i ∈ I ∀ti ∈ Ti

(1− ki)χi ≤ Qi(ti) ≤ χi ∀i ∈ I ∀ti ∈ Ti

Qi(ti) ≥ 0 ∀i ∈ I ∀ti ∈ Ti

The optimal strategy is now described.

Lemma 5.3.2. Suppose that Q is the optimal on-line solution. Let χi = sup
ti∈Ti

Qi(ti). Then

for each agent i, there exists a threshold t̂i such that

Qi(ti) =

 χi if ti ≥ t̂i

(1− ki)χi otherwise
(5.13)
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Proof. Suppose we are interested in the allocation rule when we reach agent i. Fix all other

variables at their optimal value. We are interested in solving the following linear program:

max
Qi

Eti [tiQi(ti)]

s.t. Qi(ti) ≤ 1−
∑
j<i

Etj [Qj(tj)] ∀i ∈ I ∀ti ∈ Ti

Eti [Qi(ti)] ≤ 1−Qk(tk)−
∑

j<k,j 6=i
Etj [Qj(tj)] ∀k > i ∀tk ∈ Tk

(1− ki)χi ≤ Qi(ti) ≤ χi ∀ti ∈ Ti

Qi(ti) ≥ 0 ∀ti ∈ Ti

Now, it is clear that the optimal solution can be characterized by a threshold policy. All

high types will be assigned their upper limit till a constraint for the aggregate allocation

binds. The optimal on-line solution has the following form:

Qi(ti) =


min{χi, 1−

∑
j<i

Etj [Qj(tj)]} if ti ≥ t̂i

(1− ki)χi otherwise

(5.14)

The upper limit can be simplified. I prove that

χi ≤ 1−
∑
j<i

Etj [Qj(tj)] ∀i ∈ I.

Suppose otherwise. Pick χ′ = 1−
∑
j<i

Etj [Qj(tj)]. This makes the constraints less strict since

the upper bound remains the same, but the lower bound reduces. Thus, the allocation for

lower types can be reduced and the allocation of higher types can be increased while holding

the aggregate allocation steady. This is a contradiction since such a change will increase

total welfare.

In the limited penalties case the actual allocation will have a slightly different form.
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Corollary 5.3.3. For each agent i there exists a threshold t̂i, and constant βi, such that

the optimal actual allocation rule can be written as follows:

zi(ti) =

 βi if ti ≥ t̂i

(1− ki)βi otherwise

Proof. Lemma 5.1.1 is used to get the form of the actual allocation rule:

zi(ti) =
Qi(ti)

1−
∑
j<i

Etj [Qj(tj)]
=


χi

1−
∑
j<i

Etj [Qj(tj)]
if ti ≥ t̂i

(1−ki)χi
1−

∑
j<i

Etj [Qj(tj)]
otherwise

=

 βi if ti ≥ t̂i

(1− ki)βi otherwise

where βi = χi
1−

∑
j<i

Etj [Qj(tj)]
.

5.3.2. Prophet Inequality

The same machinery as before is used to further illustrate that extra constraints that restrict

the optimal solution in both off-line and on-line cases, do not have an effect on the prophet

inequality.

Theorem 5.3.4. The optimal on-line algorithm achieves at least 1/2 of the performance

of the optimal off-line algorithm on expectation.

Proof. Let Q∗i (ti) be the interim probability with which agent i with type ti receives the

item in the optimal off-line solution. Let χ∗i = sup
ti∈Ti

Q∗i (ti) as proposed in Mylovanov and

Zapechelnyuk (2017). The expected total value to the principal is given by

∑
i∈I

Eti [tiQ
∗
i (ti)]

Pick on-line values Qi(ti) = 1
2Q
∗
i (ti) and χi = 1

2χ
∗
i for all i ∈ I. It is clear that the objective

function with respect to the reduced form for both problems is linear and coincides. Thus,
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a simple scaling approximates the optimal objective:

∑
i∈I

Eti [tiQi(ti)] =
1

2

∑
i∈I

Eti [tiQ
∗
i (ti)]

it suffices to prove that the proposed solution is feasible for the on-line problem.

• Qi(ti) +
∑
j<i

Etj [Qj(tj)] = 1
2Q
∗
i (ti) + 1

2

∑
j<i

Etj [Q∗j (tj)] ≤ 1: This holds since Q∗i (ti) ≤ 1

and the expected off-line allocation for the first i− 1 agents is also less than 1.

• (1−ki)χi ≤ Qi(t) ≤ χi: The constraint coincides with the off-line constraint. Nothing

changes by scaling both sides of the inequalities.
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CHAPTER 6 : Prophet Inequalities with Complex Constraints

In this chapter, an extension of the basic stopping problem is introduced, which involves

selecting a point in a polyhedron where the value of each coordinate must be chosen se-

quentially. The prescribed polyhedra can be described by a collection of inequalities, e.g.,

knapsack or polymatroid.

A version of this problem was proposed by Feldman et al. (2016). In that paper, there

is one unit of a divisible resource that is interpreted as a service level. Each agent can

be allocated a level of service in [0, 1]. For example, this could represent the duration an

agent’s advertisement is displayed. The draw ri denotes the marginal value of the agent

i for service. The goal is to allocate service levels so as to maximize the expected total

reward enjoyed. A polyhedral selection problem, where the constraint set is characterized

by a polymatroid, was examined by Dütting and Kleinberg (2015). A significant portion

of the existing literature has shown interest in a combinatorial setting, where additional

integrality restrictions are imposed on the coordinates. Such problems are called on-line

selection problems.

In the next section, a general version of the on-line polyhedral selection problem is intro-

duced. A few special cases of interest are described. I will emphasize the on-line fractional

knapsack selection problem and provide a possible application in computational sprinting.

Then, a reduced-form representation of it is proposed in order to derive a new prophet

inequality. Unfortunately, the technique cannot be generalized to an arbitrary set of con-

straints. Last, I argue that the prophet inequality derived for on-line matroid selection

problems in the integer and fractional cases might have an intriguing connection. It is

shown that the linear programming formulations for the simple settings of a uniform and

cardinal matroid carry through to the combinatorial setting. This establishes that the

possible prophet inequalities to derive in each case are the same. Previous results in the

literature observe ways to transform algorithms from one case to the other. To the best of

124



my knowledge, this is the first formal relation.

6.1. On-line Polyhedral Selection

Let qi(r≤i) be the level of service offered to agent i ∈ I given the profile of rewards r≤i

was realized, where I = {1, . . . , n}. These are called ex-post allocation variables. The

agents arrive sequentially and the decision-maker decides at the spot for the level of service

awarded to each agent. For all i ∈ I, let

q(r) = [q1(r1), . . . , qi(r≤i), . . . , qn(r)].

To describe the set of feasible ex-post allocations let A be a non-negative m×n matrix and

b a m× 1 non-negative vector. Then, q is feasible if for all profiles of rewards r,

Aq(r) ≤ b.

Formally the best selection is given as a solution to (PSLP),

max Er[riqi(r≤i)]

s.t.
∑
i∈I

akiqi(r≤i) ≤ bk ∀k ∀r

q(r) ≥ 0 ∀r

(PSLP)

Now a linear programming formulation for the prophet’s problem is given, i.e., the off-line

version. For reasons that will become clear later, notation similar to the above will be used.

In the prophet’s problem, the level of service offered to agent i is based on the entire profile

of rewards. Denote by wi(r), the ex-post level of service offered to agent i at reward profile

r. Let w(r) = [w1(r), . . . , wn(r)]. Here r−i denotes the profile (r1, . . . , ri−1, ri+1, . . . , rn).
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The prophet’s problem can be expressed as follows:

max Er[
∑
i∈I

riwi(r)]

s.t.
∑
i

akiwi(r) ≤ bk ∀k ∀r

w ≥ 0 ∀r

(PPSLP)

Denote the optimal solution to the prophet’s problem by w∗.

Consider the interim allocation variables {Qi(ri)}i∈I,ri∈Ri defined as follows,

Qi(ri) = Er<j [qj(r≤j)].

A formulation of the on-line polyhedral selection problem in terms of the interim allocations

is called the reduced-form representation. Similarly, the interim allocation variables are

defined,

Wi(ri) = Er−i [wi(ri, r−i)].

An interim allocation Q is implementable if there exists an ex-post allocation q satisfying

the set of constraints (IMP[Q]), defined below.

n∑
i=1

akiqi(r≤i) ≤ bk ∀k ∀r

Er<i [qi(r≤i)] ≥ Qi(ri) ∀i ∈ I ∀ri

q(r) ≥ 0 ∀r

(IMP[Q])

The objective function of the stopping problem in terms of an interim allocation is
∑
i∈I

Eri [riQi(ri)].

Denote the optimal solution to the reduced-form representation of the on-line selection prob-

lem by Q∗. Denote the optimal solution to the reduced-form representation of the prophet’s

problem by W ∗.
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6.1.1. Normalization

In fact, the parameterization of the problem can be slightly changed. The LHS on each of

the constraints can be scaled by the RHS, such that all new right hand sides are equal to

one. The prophet’s feasible polytope can now be redefined as follows,

∑
i

akiwi(r) ≤ 1 ∀k ∀r

wi(r) ≥ 0 ∀r

Similarly, the implementation problem (IMP[Q]) can be rewritten as follows,

∑
i

akiqi(r≤i) ≤ 1 ∀k ∀r

Er<i [qi(r≤i)] ≥ Qi(ri) ∀i ∈ I ∀ri

q ≥ 0 ∀r

6.1.2. Examples

The on-line polyhedral selection problem describes a quite general setting with complex

constraints. Several special cases are worth noting, with the hope that their special structure

could lead to different types of results. I go through a few examples.

Example. The basic stopping problem described in Chapter 4 is a special case. A single

constraint is applied to the variables for each profile. The relevant constraints will be

∑
i

qi(r≤i) ≤ 1 ∀r. (6.1)

The relevant constraints will be

∑
i

wi(r) ≤ 1 ∀r. (6.2)
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Note that here, in comparison to the basic stopping problem, integrality constraints on

the variables are not imposed. As we will see in the end of this chapter, this is without

loss of generality, since the optimal solution will be integer. Intuitively, a decision-maker

selects either the current reward or the future expected reward, i.e., fractional values are

not reward-maximizing.

Example. The on-line fractional knapsack selection problem, first introduced by Feldman

et al. (2016), relates to a knapsack with one unit of capacity and n items with weights

a1, . . . , an and one unit of supply. The knapsack constraint and items’ supply constraints

for the on-line problems follow:

∑
i

aiqi(r≤i) ≤ 1 ∀r

qi(r≤i) ≤ 1 ∀i ∀r≤i.
(6.3)

Similarly, the prophet’s problem can be summarized by a quite similar set of constraints,

∑
i

aiwi(r) ≤ 1 ∀r

wi(r) ≤ 1 ∀i ∀r.
(6.4)

Note that this settings subsumes another interesting setting where each item has the same

weight.

Example. The polymatroid setting involves polymatroid constraints. The relevant con-

straints for the on-line setting follow:

∑
i∈S

qi(r≤i) ≤ f(S) ∀S ∀r, (6.5)

where f is a submodular function. The prophet’s problem can be summarized by a similar

set of constraints, ∑
i∈S

wi(r) ≤ f(S) ∀S ∀r, (6.6)
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This is the setting examined by Dütting and Kleinberg (2015).

The literature contains some stylized applications of these selection problems, such as spa-

tially distributed markets or position auctions. Below, the first concrete application of the

on-line fractional knapsack selection problem, that I am aware of, is given.

Computational Sprinting. Recent chip microarchitecture developments make it possible

to expedite processes running in the processor. The technique is called sprinting, and it is

a class of mechanisms that provides a short but significant performance boost while tem-

porarily exceeding the thermal design point of the processors. Huang et al. (2019) propose a

software runtime that manages sprints by dynamically predicting utility and modeling ther-

mal headroom. The authors also compare their set of mechanisms experimentally against

an “oracular policy”, which matches the notion of a prophet in our setting.

Computational sprinting can be modeled as an on-line fractional knapsack selection prob-

lem. Each epoch consists of a large number of instructions and can be categorized accord-

ingly. When the computation reaches an epoch, the mechanism can predict the gains from

sprinting accurately. The mechanism has to decide the extent of increasing the temperature

beyond the thermal design point in each epoch. Apart from the thermal headroom available

in each period, there is a limit on the number of periods that the processor can perform

over the thermal design point. The intertemporal limitation on heat increase is modeled as

a knapsack constraint. An allocation for the fractional knapsack constraint could serve as

a guide to pace sprints to maximize long-run performance under thermal constraints.

6.2. A Prophet Inequality for the On-line Fractional Knapsack Selection Problem

In this section, I will leverage algorithm A to derive a new prophet inequality for the on-line

fractional knapsack selection problem. Algorithm A first computes the optimal prophet’s

interim allocations, scales them by a factor, and then constructs an on-line allocation that

supports the scaled interim allocations. Let W ∗ be the prophet’s interim allocation and α

the scaling factor. It will be shown that this strategy using a factor α = 1
2 is implementable,

providing a prophet inequality with an approximation guarantee of 1
2 . When the setting was
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first introduced, Feldman et al. (2016) derived a prophet inequality with an approximation

guarantee of 1
11.657 . Later, Duetting et al. (2017) described a new algorithm that outputs an

on-line allocation with precision ε and delivers a prophet inequality with an approximation

guarantee of 1
2+ε .

Lemma 6.2.1. Scaling the prophet’s optimal interim allocation W ∗ by a factor of 1
2 is

implementable.

Proof. The implementation problem can be stated as a linear feasibility problem as in

(IMP[Q]). Let (FP(i)) be the implementation problem with respect to 1
2W

∗
1 , . . . ,

1
2W

∗
i . It is

shown inductively that given feasibility of (FP(i)) a solution to FP(i+1) can be constructed.

Formally, FP(i) is given by

Er<j [qj(r≤j)] ≥
1

2
W ∗j (rj) ∀rj ∀j ≤ i∑

j≤i
ajqj(r≤j) ≤ 1 ∀r≤i

0 ≤ qj(r≤j) ≤ 1 ∀j ≤ i ∀r≤j

(FP(i))

A function is defined which can be interpreted as the maximum available allocation for

round i+ 1 after implementing the interim allocations 1
2W

∗
1 , . . . ,

1
2W

∗
i . The function will be

parameterized by a constant α as a cap for the supply in round i + 1. The parameterized

function is given in (6.7).

hi(α) = max Er≤i [z(r≤i)]

s.t. Er<j [qj(r≤j)] ≥
1

2
W ∗j (rj) ∀rj ∀j ≤ i

z(r≤i) ≤ α ∀r≤i

ai+1z(r≤i) +
∑
j≤i

ajqj(r≤j) ≤ 1 ∀r≤i

0 ≤ qj(r≤j) ≤ 1 ∀r≤j ∀j ≤ i

z(r≤i) ≥ 0 ∀r≤i

(6.7)
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Note that hi(1) produces a feasible solution for FP(i+1) if hi(1) ≥ 1
2W

∗
i+1(ri+1) for all ri+1.

Consider two separate cases for ai+1 ≥ 1 and ai+1 < 1. In the first case, the unit supply

constraint for period i + 1 is redundant, since the knapsack constraint is more restrictive

towards variables z. As a consequence, when it comes to the prophet’s allocationW ∗i+1(ri+1),

it is bounded above by 1
ai+1

. Furthermore, for the optimal solution in (6.7) for α = 1, it

follows that the variables z will be set such that they fill out the knapsack constraint, i.e.,

z(r≤i) =
1−

∑
j≤i

ajqj(r≤j)

ai+1
for all profiles r≤i. It readily follows that h(1) can be bounded from

below,

hi(1) = Er≤i [
1−

∑
j≤i

ajqj(r≤j)

ai+1
] =

1−
∑
j≤i

ajEr≤j [qj(r≤j)]

ai+1

=

1− 1
2

∑
j≤i

ajErj [W ∗j (rj)]

ai+1
≥ 1

2ai+1
.

Thus, it follows that hi(1) ≥ 1
2ai+1

≥ 1
2W

∗
i+1(ri+1) for all ri+1.

On the other hand, when ai+1 < 1, the knapsack constraint allows for larger z which

must be restricted by the unit supply. In this case, the prophet’s allocation W ∗i+1(ri+1) is

bounded above by 1. Consider an optimal solution (ẑ, q̂) to (6.7) for α = 1
ai+1

. The supply

constraint (parameterized by α = 1
ai+1

) is redundant since it is less restrictive than the

knapsack constraint. As before, the optimal value can be bounded from below as follows,

hi(
1

ai+1
) = Er≤i [ẑ(r≤i)] = Er≤i [

1−
∑
j≤i

aj q̂j(r≤j)

ai+1
]

=

1−
∑
j≤i

ajEr≤j [q̂j(r≤j)]

ai+1
=

1− 1
2

∑
j≤i

ajErj [W ∗j (rj)]

ai+1
≥ 1

2ai+1
.

Set q = q̂ and z = ai+1ẑ. (z,q) is a feasible solution to (6.7) for α = 1, since z(r≤i) =

ai+1ẑ(r≤i) ≤ ai+1
1

ai+1
= 1 for all profiles r≤i and all other constraints trivially continue to

hold. Furthermore, the objective function can be bounded below as follows,

Er≤i [z(r≤i)] = ai+1Er≤i [ẑ(r≤i)] ≥ ai+1
1

2ai+1
=

1

2
.
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By feasibility of (z,q), it follows that hi(1) is bounded from below by the solution’s objective,

i.e., hi(1) ≥ Er≤i [z(r≤i)] ≥ 1
2 . This implies that hi(1) ≥ 1

2 ≥
1
2W

∗
i+1(ri+1) for all ri+1, which

completes the proof for this case too.

The prophet inequality for the fractional knapsack setting holds as a simple corollary of

Lemma 6.2.1.

Theorem 6.2.2. Let VA be the reward gained by A in the fractional knapsack selection

setting. VA accounts to half the reward gained by the prophet,

VA =
1

2
M.

The applicability of algorithmA in a more general setting, as well as that of other algorithms

presented in Section 4.4, are left for future research. Furthermore, the task of understanding

prophet inequalities in more general polyhedral selection problems is left for further research.

6.3. Continuous vs Combinatorial Settings

On-line polyhedral selection problems with integrality constraints are referred to in the

literature as on-line selection problems. I revisit the basic stopping problem and cardinal

matroid selection. I point out that the linear programming formulations of the optimal

stopping rule and the prophet’s problem in a continuous domain coincide with the ones for

the combinatorial domain. As a consequence, the approximation factor driving the prophet

inequalities in these two domains must coincide. It is of interest and left for future research

to generalize the question for polymatroids, where the prophet’s problem is guaranteed to

follow the same pattern (Schrijver, 2003), i.e., the greedy algorithm optimizing a linear

function over a polymatroid with integer values is optimal and always returns an integer

solution.
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Unit Supply

First, a linear program for the fractional case is defined without using the interim variables.

The optimal on-line allocation for the fractional case is given by (LP ).

max
∑
i

Eri [riEr1,...,ri−1 [qi(r≤i)]]

s.t.
∑
i

qi(r≤i) ≤ 1 ∀r

qi(r≤i) ≥ 0 ∀i ∀r≤i

(LP )

There exists an optimal solution to (LP ) which is integral. To prove the statement an

integer optimal solution is constructed given an optimal solution q∗.

Theorem 6.3.1. There exists a solution q̄ to (LP ) which is integral, i.e., for all i and all

profiles r≤i, q̄i(r≤i) ∈ {0, 1}.

Proof. A process that constructs an optimal intger solution given an optimal solution q∗

will be provided.

Start with each r1, step by step. Construct two solutions q1, q2 as follows: For all profiles

starting with r1:

1. q1
1(r1) := 1 and q1

i (r≤i) := 0 for all i ≥ 2 and r2, . . . , ri,

2. q2
1(r1) := 0 and q2

i (r≤i) := 1
1−q∗1(r1) for all i ≥ 2 and r2, . . . , ri.

q1, q2 are both feasible. By construction, it follows q∗ = q∗1(r1)× q1 + (1− q∗(r1))× q2. By

linearity of expectations the above relation carries on to their values,

V ∗ = V (q∗) = q∗1(r1)× V (q1) + (1− q∗(r1))× V (q2).

This completes the proof because either q1 or q2 with value V ∗. The new solution will
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have a smaller number of non-integer values. By repeatedly applying the above process, an

integer solution with value V ∗ is created.

The above theorem reduces the prophet inequality discovery to the one for the fractional

problem. The optimal integer on-line solution is better than the optimal on-line fractional

solution, which is better than 1
2 of the optimal off-line fractional solution, which is better

than the optimal off-line integer solution.

Multi-Unit Supply

I first define the problem for the fractional case without using the interim variables. The

optimal on-line allocation for the fractional case is given by (MLP ).

max
∑
i

Eri [riEr<i [qi(r≤i)]]

s.t.
∑
i

qi(r≤i) ≤ k ∀r

0 ≤ qi(r≤i) ≤ 1 ∀i ∈ I ∀r≤i

(MLP )

There exists an optimal solution to (MLP ) which is integral. In order to prove this, one

will be constructed given an optimal solution q∗.

Theorem 6.3.2. There exists a solution q̄ to (MLP ) which is integral, i.e. for all i and all

profiles r≤i, q̄i(r≤i) ∈ {0, 1}.

Proof. The above procedure is slightly rearranged in order to construct q1, q2. Fix r1 such

that q1(r1) ∈ (0, 1). For all profiles r starting with r1 there exists minimum index i(r)

such that qi(r)(r≤i(r)) ∈ (0, 1), because in a non-generic optimal solution all cardinality

constraints are binding (otherwise for a profile that it is not true, moving backwards we

could find a variable to raise). Set

ε := min{q1(r1), 1− q1(r1), min
r2,...,rn

{qi(r)(r≤i(r))}, min
r2,...,rn

{1− qi(r)(r≤i(r))}}.
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For all profiles starting with r1:

1. q1
1(r1) := q∗1(r1) + ε and for all r starting with r1, q1

i(r)(r≤i(r)) = q∗i(r)(r≤i(r))− ε,

2. q2
1(r1) := q∗1(r1)− ε and for all r starting with r1, q2

i(r)(r≤i(r)) = q∗i(r)(r≤i(r)) + ε.

q1, q2 are both feasible. By construction, it follows that q∗ = 1
2q

1 + 1
2q

2. By linearity of

expectations the above relation carries on on their values,

V ∗ = V (q∗) =
1

2
V (q1) +

1

2
V (q2).

Since q∗ is optimal q1 and q2 must also be optimal. One of them, say for index k ∈ {1, 2},

will have at least one less non-integer value. Set q∗ := qk and repeat. We end up with an

integer solution with value V ∗.

The above integrality property has a straightforward consequence for the relation of prophet

inequalities in the continuous and combinatorial domains. It implies that the best approx-

imation factor achieved is the same for both domains. It is an open question whether the

integrality property holds for more general sets of constraints, like in the case of polymatroid

constraints. From an algorithmic perspective, such a characterization might be valuable for

devising an optimal and tractable selection rule for the matroid selection problem, whose

existence remains an open question. In more detail, it is of interest to understand whether

optimal interim allocations can be computed for the case of polymatroid constraints and

whether a tractable selection rule can be devised from them.
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