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A "Data-Oriented Parsing” or DOP model for statistical parsing associates fragments of linguis-
tic representations with numerical weights, where these weights are estimated by normalizing
the empirical frequency of each fragment in a training corpus (see Bod (1998) and references
cited therein). This note observes that this estimation method is biased and inconsistent; i.e.,
that the estimated distribution does not in general converge on the true distribution as the size
of the training corpus increases.

1 Introduction

The “Data-Oriented Parsing” or DOP approach to statistical natural language analysis
has attracted considerable attention recently and has been used to produce statistical
language models based on various kinds of linguistic representation, as described in
Bod (1998). These models are based on the intuition that statistical generalizations about
natural languages should be stated in terms of “chunks” or “fragments” of linguis-
tic representations. Linguistic representations are produced by combining these frag-
ments, but unlike stochastic models such as PCFGs, a single linguistic representation
may be generated by several different combinations of fragments. These fragments may
be large, permitting DOP models to describe non-local dependencies. Usually the frag-
ments used in a DOP model are themselves obtained from a training corpus of linguistic
representations. For example, in DOP1 or Tree-DOP the fragments are typically all the
connected multi-node trees that appear as subgraphs of any tree in the training corpus.

This note shows that the estimation procedure standardly used to set the parame-
ters or fragment weights of a DOP model (see e.g., Bod (1998)) is biased and inconsistent.
This means that as sample size increases the corresponding sequence of probability dis-
tributions estimated by this procedure does not converge to the true distribution that
generated the training data. Consistency is usually regarded as the minimal require-
ment any estimation method must satisfy (Breiman, 1973; Shao, 1999), and the inconsis-
tency of the standard DOP estimation method suggests it may be worth looking for other
estimation methods. Note that while the bulk of DOP research uses the estimation pro-
cedure studied here, recently there has been research that has used other estimators for
DOP models (Bonnema, Buying, and Scha, 1999; Bod, 2000) and it would be interesting
to investigate the statistical properties of these estimators as well.

2 DOP1 models

For simplicity this note focuses on DOP1 or Tree-DOP models, in which linguistic repre-
sentations are phrase-structure trees, but the results carry over to more complex models

* Cognitive and Linguistic Sciences, Providence, RI 02912. I would like to thank Rens Bod, Michael Collins,
Eugene Charniak, David MacAllester and the anonymous reviewers for their excellent advice.

© XXXX Association for Computational Linguistics



Mark Johnson DOP is biased and inconsistent

S

S S
N A PN

NP VP
I\}P \/IP 1\%P VP 1\%P VP
PN N V/\NP N V/\NP
Alex V NP ‘ 1 1\; ‘ 1\;
T 1 Alex V P Alex P
\% NP ‘ ‘ likes ‘
‘ ‘ likes  pizza pizza

likes  pizza

Figure 1
Depictions of three different derivations of the same tree representation of Alex likes pizza, with
arrows indicating the sites of tree fragment substitutions.

which use attribute-value feature structure representations such as LFG-DOP. The frag-
ments used in DOP1 are multi-node trees whose leaves may be labelled with nonter-
minals as well as terminals. A derivation starts with a fragment whose root is labelled
with the start symbol, and proceeds by substituting a fragment for the leftmost nonter-
minal leaf under the constraint that the fragment’s root node and the leaf node have
the same label. The derivation terminates when there are no nonterminal leaves. Fig-
ure 1 depicts three different derivations which yield the same tree. The fragments used
in these derivations could have been obtained from a training corpus of trees which
contains trees for examples such as Sasha likes motorcycles, Alex eats pizza, etc.

In a DOP model each fragment is associated with a real-valued weight, and the
weight of a derivation is the product of the weights of the tree fragments involved. The
weight of a representation is the sum of the weights of its derivations, and a probability
distribution over linguistic representations is obtained by normalizing the representa-
tions” weights." Given a combinatory operation and a fixed set of fragments, a DOP
model is a parametric model where the fragment weights are the parameters.

In DOP1 and DOP models based on it the weight associated with a fragment is esti-
mated as follows (Bod, 1998). For each tree fragment f let n(f) be the number of times
it appears in the training corpus, and let I be the set of all tree fragments with the same
root as f. Then the weight w(f) associated with f is:

n(f)
w(f) = =%
SURD S PR
This relative-frequency estimation method has the advantage of simplicity, but as shown
in the following sections, it is biased and inconsistent.

3 Bias and Inconsistency

Bias and inconsistency are usually defined for parametric estimation procedures in
terms that are not quite appropriate for evaluating the DOP estimation procedure, but
their standard definitions (see Shao (1999) for a textbook exposition) will serve as the ba-
sis for the definitions adopted below. Let © be a vector space of real-valued parameters,

1In DOP1 and similiar models it is not necessary to normalize the representations’ weights if the
fragments’ weights are themselves appropriately normalized.
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so that Py, § € O is a probability distribution. In the DOP1 case, © would be the space of
all possible weight assignments to fragments. An estimator ¢ is a function from a vector
x of n samples to a parameter value ¢(z) € ©, and an estimation procedure specifies an
estimator ¢,, for each sample size n.

Let X be a vector of n independent random variables distributed according to Pg-
for some 6* € ©. Then ¢(X) is also a random variable, ranging over parameter vectors
©, with an expected value Eg (¢(X)). The bias of the estimator ¢ at 6* is the difference
Eg+(¢(X)) — 6* between its expected value and the “true” parameter value 6* that de-
termines the distribution X. A biased estimator is one with nonzero bias for some value
of ™.

A loss function L is a function from pairs of parameter vectors to the non-negative
reals. Given a sample « drawn from the distribution 6*, £(6*, ¢(x)) measures the “cost”
or the “loss” incurred by the error in the estimate ¢(z) of 8*. For example, a standard
loss function is the Euclidean distance metric £(0*, #(x)) = ||¢(X) — 6*||? (note that the
results below do not depend on this choice of loss function). The risk of an estimator ¢ at
0 is its expected loss Eg- (£(6*, ¢(X)). An estimation procedure is consistent if and only
if the limit of the risk of ¢,, is 0 as n — oo for all 8*. (There are various different notions
of consistency depending on how convergence is defined; however, the DOP1 estimator
is not consistent with respect to any of the standard definitions of consistency).

Strictly speaking, the standard definitions of bias and loss function are not appli-
cable to DOP estimation because there can be two distinct parameter vectors §;, > for
which Py, = Py, even though 6; # 6 (such a case is presented in the next section). Thus
it is more natural to define bias and loss in terms of the probability distributions that the
parameters specify, rather than in terms of the parameters themselves. In this paper, an
estimator is unbiased iff Pg,, 4x)) = P~ for all 6%, i.e., its expected parameter esti-
mate specifies the same distribution as the true parameters. Similarly, the loss function
is mean squared difference between the “true” and estimated distributions, i.e., if €2 is
the event space (in DOP1, the space of all phrase-structure trees) then:

L8, () = Y Por () (Por (w) = Py (@)%,

weN

As before, the risk of an estimator is its expected loss, and an estimation procedure is
consistent iff the limit of the expected loss is 0 as n — oo.

4 A DOP1 example

This section presents a simple DOP1 model which only generates two trees with prob-
ability p and 1 — p respectively. The DOP relative frequency estimator is applied to a
random sample of size n drawn from this population to estimate the tree weight pa-
rameters for the model. The bias and inconsistency of the estimator follows from the
fact that these estimated parameters generate the trees with probabilities different to p
and 1 — p. The trees used and their DOP1 fragments are shown in Figure 2.

Suppose the “true” weights for the fragments fi, ..., f7 are zero except for the fol-
lowing fragments:

w*(fs) =
w*(fe) = 1—p
w*(f7) = 1

Then P« (t1) = p and P« (t2) = 1 — p. (Note that exactly the same tree distribution
could be obtained by setting w*(f1) = p and w*(fs) = 1 — p and all other weights to
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Figure 2
The trees ¢1, t> and their associated fragments f1, ..., f7 in the DOP1 model.
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Figure 3
The value of Pg(y)(t1) as a function of P« (t1) = p. The identity function p is also plotted for
comparison.

zero; thus the tree weights are not identifiable). Then in a sample of size n drawn from
the distribution P« the expected number of occurences of tree ¢; is np and the expected
number of occurences of tree ¢, is n(1 — p). Thus the expected number of occurences of
the fragments in a sample of size n is:

E(n(f:)) = np fori=1,...,4.
E(n(f:))) = n(l-p) fori=5,6.
E(n(f7)) = n+np.

Thus after normalizing, the expected estimated weights for the fragments using the DOP
estimator are:

E(w(fi)) = 2f% fori=1,...,4.
1—
E(w(fi)) = 2+21; fori =25,6.
E(w(fr)) = 1
Further calculation shows that:
2p
Prol) = 1
1-p
Prolt) = 17,

Figure 3 shows how Pgy)(t1) varies as a function of P« (t1) = p. The difference Pg ) (t1)—
p reaches a maximum value of approximately 0.17 at p = /2 — 1. Thus except for p = 0
and p = 1, Pg(y) # Pw+, ie., the DOP1 estimator is biased.

Further, note that the estimated distribution Py, does not approach P+ as the
sample size increases, so the expected loss does not converge to 0 as the sample size n
increases. Thus the DOP1 estimator is also inconsistent.
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5 Conclusion

The previous section showed that the relative frequency estimation procedure used in
DOP1 and related DOP models is biased and inconsistent. Bias is not necessarily a de-
fect in an estimator, and Geman, Bienenstock, and Doursat (1992) argue that it may be
desirable to trade variance for bias. However, inconsistency is usually viewed as a fatal
flaw of an estimator. Never the less, excellent empirical results have been claimed for
the DOP1 model, so perhaps there are some circumstances in which inconsistent estima-
tors perform well. Undoubtedly there are other estimation procedures for DOP models
which are unbiased and consistent. For example, maximum likelihood estimators are
unbiased and consistent across a wide class of models, including, it would seem, all
reasonable DOP models (Shao, 1999). Bod (2000) describes a procedure for maximum
likelihood estimation of DOP models based on an Expectation Maximumization-like al-
gorithm. In addition, Rens Bod (p.c.) points out that because the set of fragments in a
DOP1 model includes all of the trees in the training corpus, the maximum likelihood es-
timator will assign the training corpus trees their empirical frequencies, and assign zero
weight to all other trees. However, this seems to be an overlearning problem rather than
a problem with maximum likelihood estimation per se, and standard methods, such as
cross-validation or regularization, would seem in principle to be ways to avoid such
overlearning. Obviously empirical investigation would be useful here.
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