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An in�atable fabric beam �nite element

C. Wielgosz and J. C. Thomas
Laboratoire de G�enie Civil de Nantes; Saint Nazaire; Faculte� des Sciences et des Techniques; 
Universite� de Nantes; 2; rue de la Houssini�ere; BP 92206; 44322 Nantes Cedex 03; France

In�atable structures made of modern textile materials with important mechanical characteristics can be
in�ated at high pressure (up to several hundreds kPa). For such values of the pressure they have a strong
mechanical strength. The aim of the paper is to construct a new in�atable beam �nite element able to
predict the behaviour of in�atable structures made of beam elements. Experiments and analytical studies
on in�atable fabric beams at high pressure have shown that their compliance is the sum of the beam
compliance and of the yarn compliance. This new �nite element is therefore obtained by the equilibrium
�nite element method and is modi�ed into a displacement �nite element. The sti�ness matrix takes into
account the in�ation pressure. Comparisons between experimental and numerical results are shown and
prove the accuracy of this new �nite element for solving problems of in�atable beams at high pressure.
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1. INTRODUCTION

This paper presents results from research on the mechanics of in�atable beams at high
pressure. Such structures have many interesting properties: they are light, easily folding and
present reversible behaviour after failure. In�ation gives tension prestressing in the fabrics
and imply an important mechanical strength when the pressure reaches several hundreds kPa.
A high pressure is interesting because their limit load is proportional to the applied pressure
and their de�ections are inversely proportional to the constitutive law of the fabrics and to
the applied pressure [1]. Analytical developments have been done to calculate wrinkling loads
and de�ections of cantilever beams [2, 3]. The pressure used in Reference [3] was less than
70 kPa. We have studied the case of simply supported beams [1] for values of the pressure
going up to 300 kPa. The results on the wrinkling or collapse load are directly connected
to the applied pressure and independent on the materials characteristics. Analytical results
on the de�ections are only relative to isostatic in�atable beams. The aim of this paper is to
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Figure 1. Local and global equilibrium of the panel.

construct an in�atable beam �nite element able to give the values of the displacement �eld
for hyperstatic in�atable beams.

2. MECHANICS OF INFLATABLE BEAMS

The mechanics of in�atable beams will be developed for in�atable panels. These structures
are prototypes constructed by Tissavel Inc. They are made of two parallel-coated woven
fabrics connected by yarns. Their behaviour depends on the in�ation pressure p that leads
the fabrics and the yarns to be prestressed and then to support local compression loads.
Experimental and analytical results on the behaviour of these structures can be found in
Reference [1].
Let us consider a cantilever panel submitted to a concentrated force F . The width and

height are named b; h and ‘ is the length of the beam. The mechanical strength of the
panel is obtained by use of its equilibrium equations, the constitutive law of the fabrics, and
kinematics assumptions on its deformation pattern.

2.1. Equilibrium equations

Let us come back on the main results of [1]. Equilibrium equations are written for an ele-
ment in its deformed position to take into account the geometrical sti�ness and the following
forces. The initial position refers to the in�ated beam, without any load. The panel is sup-
posed to present large straight parts. We must use a Timoshenko’s beam theory because the
straight section of the panel does not stay orthogonal to the neutral �bre (see Figure 5. In
Reference [1]). � Denotes the rotation of the straight section and � denotes the rotation of
the neutral �bre. The pressure e�ects are supposed to be replaced by forces normally applied
to the membranes, because they are following forces. Ni and Ns denote the resultant stresses,
respectively, in the lower and upper membrane; T is the shear stress. All the theory is based
upon the hypothesis that the structure’s behaviour depends mainly on the values of Ni and
Ns. Figure 1 presents a sheet of the pressurized panel.
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The local equilibrium equations allows to write that Ni + NS and that the shear stress T is
constant. The global equilibrium equations are given for a cantilever beam:

Ns + Ni =
pbh2

b+ h
(1)

T = F − pbh(�− �) (2)

F(‘ − x) + h
2
(NS − Ni) = 0 (3)

And the stresses in the membranes are:

Ni(x)=
pb2h
2(b+ h)

− F
h
(‘ − x) (4)

Ns(x)=
pb2h
2(b+ h)

+
F
h
(‘ − x) (5)

2.2. De�ections

If P is a point of the neutral �bre and if Qi and Qs are two points of the lower and upper
membranes, their displacements are obtained by the following relations:

u(P)= u(x)ex + v(x)ey; u(Q) = u(P) +� ∧ PQ with � = �ez (6)

The horizontal displacement u(x) and the de�ection v(x) are only functions of x. The local
strains �i(x) and �s(x) in the two membranes are therefore:

�i(x) = u; x +
h
2
�; x �s(x) = u; x − h

2
�; x (7)

Resultant stresses are obtained from the constitutive law of the fabric and are given by

Ni(x)=
pb2h
2(b+ h)

+
E∗bh
2

�; x and Ns(x)=
pb2h
2(b+ h)

− E∗bh
2

�; x (8)

where E∗ is the membrane modulus (product of the Young modulus E by the thickness e of
the fabric). E∗ is obtained from uniaxial traction experiment on a sample fabric. In fact, fabrics
are orthotropic materials and the membrane moduli are di�erent in warp and weft directions.
In this beam formulation, the warp direction is mainly concerned, and we will suppose that
an isotropic constitutive law can be used to give a ‘beam answer’ to the engineering problem.
Moreover, the viscous properties of the fabrics are not taken into account in our theory, hence
all the measurements have been done after the creep has stopped.
The comparison between formulas (4), (5) and (8) gives:

d�
dx
=

2F
E∗bh2

(‘ − x) (9)

By using Equation (2), and assuming that for these in�atable panels, the shear stress can be
neglected with respect to the in�uence of the normal stress [1], we can write:

dv
dx
=

F
pbh

+ � (10)
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The boundary conditions at the clamped end give the closed form of the de�ection, where I∗

is equal to the second moment of area divided by the thickness:

v(x)=
F
pbh

x +
2F
E∗bh2

(
‘
x2

2
− x3

6

)
=

F
pbh

x +
F
E∗I∗

(
‘
x2

2
− x3

6

)
(11)

which is nothing but the sum between the tight yarn and the beam de�ections. In an other
word, the compliance of the in�atable panel is the sum of the yarn compliance and of the
beam compliance.

3. CONSTRUCTION OF THE INFLATABLE FINITE ELEMENT

Let us consider an in�atable beam and denote by V and F the total displacement and load
vectors:

V T = [v1 �1 v2 �2] (12)

FT = [F1 �1 F2 �2] (13)

The de�nition of nodal unknowns is usual: vi and �i denote displacement and rotation at
node i, and Fi and �i denote load and torque at the same node.
When this element is a cantilever in�atable beam submitted to a load and a torque at node

2, its compliance matrix � is simply obtained by adding the usual matrices of beam and yarn:

[
v2

�2

]
= �

[
F2

�2

]
=

⎡
⎢⎢⎢⎢⎢⎣

‘3

3E∗I∗
+
p‘
S

‘2

2E∗I∗

‘2

2E∗I∗
‘
E∗I∗

⎤
⎥⎥⎥⎥⎥⎦
[
F2

�2

]
(14)

where S is the area of the section of the extremity (S=pbh).
The global equilibrium equations are:

[
F1

�1

]
=

⎡
⎢⎢⎢⎢⎢⎣

−1 0

−1 −‘
1 0

0 1

⎤
⎥⎥⎥⎥⎥⎦
[
F2

�2

]
=B

[
F2

�2

]
(15)

The usual theory of the equilibrium �nite element method shows that the sti�ness matrix K
of the free �nite displacement element is obtained from the sti�ness matrix of the reduced
isostatic �nite element Kr by using the following equations:

K =BKrBT (16)

where the reduced matrix Kr is the inverse of the compliance matrix �:

Kr = �−1 (17)
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Shape at 200 kPa isostatic panel
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Figure 2. De�ection of the panel—isostatic case.

The free sti�ness matrix of the in�atable fabric beam element is therefore:

K =
12E∗2I∗2pS

‘2(12E∗I∗ + pS‘2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

‘
E∗I∗

‘2

2E∗I∗
− ‘
E∗I∗

‘2

2E∗I∗

‘2

2E∗I∗
‘3

3E∗I∗
+
‘
pS

− ‘2

2E∗I∗
‘3

6E∗I∗
− ‘
pS

− ‘
E∗I∗

− ‘2

2E∗I∗
‘
E∗I∗

− ‘2

2E∗I∗

‘2

2E∗I∗
‘3

6E∗I∗
− ‘
pS

− ‘2

2E∗I∗
‘3

3E∗I∗
+
‘
pS

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

One can see that the pressure appears in the sti�ness matrix.

4. COMPARISONS BETWEEN EXPERIMENTAL AND FINITE ELEMENT RESULTS

Figure 2 shows comparisons between �nite element modelling (FE) and experimental results
(exp.) for a simply supported panel pressurized at 200kPa (b=0:2m; h=0:055m; ‘=1:6m).
The usual beam solution (Euler assumptions) is presented too for 47 and 106 N and is inac-
curate. The average value of E∗ is 650 000 Pa m. De�ections are obtained for loads varying
from 47 to 106 N, just lower than the wrinkling load.
The main advantage of a beam �nite element is to be used for solving problems of hyper-

static beams. A panel clamped at one end and simply supported at the other end has been
tested up to its wrinkling load. Figure 3 shows one of the experiments made on this panel.
Comparisons between experimental and �nite element results is shown in Figure 4. Even if
the section of the panel is vertical at the clamped end, the angle of the neutral �bre is not
equal to zero, in accordance with Timoshenko’s beam theory. One can see that the results
obtained with the in�atable beam �nite element are close to the experimental ones. Moreover,
values of the resultant stresses, according to formula (8), give the wrinkling load of the panel.
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Figure 3. Experiment on in�atable panel: hyperstatic case.
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Figure 4. De�ection of the panel—hyperstatic case.

5. CONCLUSION

A new �nite element devoted to the study of in�ated panels has been constructed taking
into account the geometrical sti�ness and the following forces. The sti�ness matrix takes into
account the internal pressure of the beam. Comparisons between experimental and numerical
results for isostatic and hyperstatic panels prove the accuracy of this theory on the mechanical
strength of in�atable beams at high pressure and the e�ciency of this in�atable �nite element.
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