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1 Introduction

An orbifold, a generalization of the concept of manifold, is a topological space with some

additional structure. Recall that a manifold is a space locally modeled in Rn.

A wallpaper pattern is exactly what you imagine it is, a decoration or a tiling of a wall

with a high degree of symmetry. Mathematically speaking it is a tiling of the euclidean plane

which is invariant by a vertical and an horizontal translation. For each wallpaper pattern

there is a discrete group of isometries associated, the group of symmetries of that pattern.

The goal of these notes is to use our knowledge of orbifolds to classify all the wallpaper

patterns. This classification is made by considering the symmetries that a given wallpaper

pattern has. We are not interested whether the wallpaper is painted orange and purple or

green and white.

In section 2, we define manifolds and orbifolds. In section 3, some algebraic topology

concepts such as covering, homotopy and fundamental group are introduced. In section 4,

we show a theorem that provides a great deal of examples of orbifolds and in section 5 some

results about orbifold coverings are stated. The last two sections are dedicated to wallpaper

patters, its classification is made in section 6 and section 7 is a collection of some nice images

of wallpaper patterns.
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2 Basic definitions

Definition 2.1 (Topological manifold) A manifold is a Hausdorff topological space X

with a collection of open sets {Uj} closed under finite intersections such that:

•
⋃

j Uj = X.

• For every Uj there is a homeomorphism ϕj : Uj → ϕj(Uj) ⊂ Rn (coordinate chart).

• For every pair ϕj1 , ϕj2 such that Uj1 ∩ Uj2 6= ∅ there is a homeomorphism ϕj1ϕ
−1
j2

:

ϕj2(Uj1 ∩ Uj2) → ϕj1(Uj1 ∩ Uj2) (transition maps).

When the transition maps are diffeomorphisms we get a differentiable manifold.

The definition of orbifold is similar to the one of manifold. Instead of a covering of sets

homeomorphic to open sets in Rn, there is a covering of sets homeomorphic to quotients of

open sets in Rn. This means we have to be a bit more careful with the definition of the

transition maps.

Before giving the formal defintion of orbifold we’ll give some examples of orbifolds.

Examples 2.2

1. Every topological manifold is an orbifold! (We shall prove it later.)

2. The quotient space R3/Z2 where Z2 acts by reflection on the xy-plane.

3. The quotient space S2/Z73 where Z73 acts by rotation on S2.

4. The quotient M/G where M is a topological manifold and G is a compact Lie group

with finite isotropy groups.

5. The quotient space (R+)3/ ∼= where ∼= is the following equivalence relation: (x, y, z) ∼=
(x′, y′, z′) if the triangles with length sides (x+y, x+z, y+z) and (x′+y′, x′+z′, y′+z′),

respectively, are similar.

Finally, here’s the definition of orbifold.
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Definition 2.3 (Orbifold) An orbifold is a Hausdorff topological space X with a collec-

tion of open sets {Uj} closed under finite intersections such that:

•
⋃

j Uj = X.

• For every Uj there is a homeomorphism ϕj : Uj → Ũj/Γj where Ũj is a neighbourhood

of Rn and Γj is a finite group acting on Ũj.

• For every Ui ⊂ Uj there is an injective homomorphism πij : Γi → Γj and an embedding

ϕ̃ij : Ũi → Ũj such that:

– ϕ̃ij(γx) = πij(γ)ϕ̃ij(x), γ ∈ Γi.

– the following diagram commutes 3:

3Diagram taken from [1].
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3 Some algebraic topology

We’ll do a brief introduction to some topological notions which wil be useful later.

Definition 3.1 (Covering) Let X be a topological space. A covering of X is a topological

space Y and a continuous surjective projection p : Y → X such that for every point x ∈ X

there is an open neighbourhood U of x for which p−1(U) is a disjoint union of "copies" of U .

More precisely, p−1(U) is a disjoint union of open sets which are mapped homeomorphically

by p to U .

An open set U in the conditions of the previous definition is called evenly covered. If

X is evenly covered then the covering is called trivial.

Examples:

• The identity map i : X → X is a covering of X which is trivial.

• The mapping p : R → S1 which "wraps" R around S1.

• The double covering (because the preimage of each points has 2 points) that consists

of identifying antipodal points in Sn, f : Sn → RPn.

For a better understanding of a topological space it is often useful to study its paths and

how they can be deformed (continuously) into each other, which brings us to the definition

of homotopy.

Definition 3.2 (Path) A path in a topological space X is a continuous function f :

[0, 1] → X.

A path which starts and ends in the same point (x = f(0) = f(1)) is called a loop based

at x. If for every pair of points in a space X there is a path from one of them to the other

then X is called path-connected.

Definition 3.3 (Homotopy of paths) Let f1 and f2 be paths in a topological space X.

A homotopy between f1 and f2 is a continuous function H : [0, 1] × [0, 1] → X such

that H(0, t) = f1(t), H(1, t) = f2(t) and the endpoints are fixed (H(s, 0) and H(s, 1) are

constant).
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Theorem 3.4 (Path lifting property) Let p : Y → X be a covering of topological spaces

and γ a path in X. Let y ∈ Y be such that p(y) = γ(0). There is a unique path σ in Y such

that: σ(0) = y and p ◦ σ = γ.

Theorem 3.5 (Homotopy lifting property) Let p : Y → X be a covering of topological

spaces and H a homotopy in X. Let γ be the path in X such that γ(t) = H(0, t) and σ a lifting

of γ in Y . There is a unique homotopy H ′ such that both conditions hold: σ(t) = H ′(0, t)

and p ◦H ′ = H.

For a proof of these two theorems see [2]. In both cases, when the path or the homotopy

lie in an evenly covered open set the proof is quite immediate.

An important concept in topology is the notion of fundamental group, which consists

of all loops based at one point, up to homotopy. Before we give the formal definition of the

fundamental group we’ll need to define an operation between loops and to show that the

homotopy relation is an equivalence relation.

Definition 3.6 (Composition of loops) The composition of two loops γ and σ, denoted

by γ · σ, is given by:

γ · σ(t) =

{
γ(2t), 0 ≤ t ≤ 1

2

σ(2t− 1), 1
2 ≤ t ≤ 1

Theorem 3.7 Homotopy is an equivalence relation.

Proof:

• Reflexivity: If γ is a path then H(s, t) = γ(t) is a homotopy between γ and itself.

• Symmetry: If γ is homotopic to σ then there is a homotopy H(s, t) such that H(0, t) =

γ(t) and H(1, t) = σ(t). Clearly, G(s, t) = H(1− s, t) is a homotopy between σ and γ.

• Transitivity: Let γ, σ and δ be paths such that H1(s, t) is a homotopy between γ

and σ and H2(s, t) a homotopy between σ and δ. Then the following function is a

homotopy between γ and δ:
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H(s, t) =

{
H1(2s, t), 0 ≤ s ≤ 1

2

H2(2s− 1, t), 1
2 ≤ s ≤ 1

�

We are now in conditions to give a formal definition of the fundamental group.

Definition 3.8 (Fundamental Group) Let X be a path-connected topological space and

x ∈ X. The fundamental group of X based at x, usually denoted by π1(X, x), is the

quotient of the set of loops based at the point x by the homotopy relation.

To legitimately call this quotient set a group we’ll need to justify our claim. Here follows

a proof of our definition!

Proof: We’ll start by defining an operation between homotopy classes of loops. Denoting

the equivalence class of γ by [γ], define [γ] • [σ] = [γ · σ]. To show that this function is well-

defined we need to show that [γ · σ] is independent of the paths γ and σ chosen as long as

they belong to the same homotopy class. Let γ′ and σ′ be paths homotopic to γ and σ by

H1 and H2, respectively. The following function is a homotopy between γ · σ and γ′ · σ′:

H(s, t) =

{
H1(s, 2t), 0 ≤ t ≤ 1

2

H2(s, 2t− 1), 1
2 ≤ t ≤ 1

It is now necessary to show that the homotopy classes set with this operation is indeed a

group:

• Associativity:

Let [γ], [σ], [δ] ∈ π1(X, x).

We’ll show that γ · (σ · δ) and (γ · σ) · δ are homotopic so the classes [γ] • ([σ] • [δ]) =

[γ · (σ · δ)] and ([γ] • [σ]) • [δ] = [(γ · σ) · δ] are the same.

The following function is a homotopy between those paths:

H(s, t) =


γ( 4t

2−s), 0 ≤ t ≤ 2−s
4

σ(4t + s− 2), 2−s
4 ≤ t ≤ 3−s

4

δ(4t+s−3
1+s ), 3−s

4 ≤ t ≤ 1
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• Existence of Identity:

Let εx be the path defined by εx(t) = x, ∀t ∈ [0, 1]. We’ll show that [εx] is the identity

of π1(X, x).

Let γ be a path in X. We’ll show that γ, εx · γ and γ · εx are homotopic which shows

that [γ] = [γ] • [εx] = [εx] • [γ].

The following functions provide the desired homotopies:

Hleft(s, t) =

{
x, 0 ≤ t ≤ s

2

γ(2t−s
2−s ), s

2 ≤ t ≤ 1

Hright(s, t) =

{
γ( 2t

2−s), 0 ≤ t ≤ 2−s
2

x, 2−s
2 ≤ t ≤ 1

• Existence of Inverse: Let [γ] ∈ π1(X, x). We’ll show that [γ−1] = [γ]−1 where γ−1(t) =

γ(1− t), ∀t ∈ [0, 1].

We’ll do it by making homotopies between εx, γ · γ−1 and γ−1 · γ:

H1(s, t) =


γ(2t), 0 ≤ t ≤ s

2

γ(s) = γ−1(1− s), s
2 ≤ t ≤ 2−s

2

γ−1(2t− 1), 2−s
2 ≤ t ≤ 1

H2(s, t) =


γ−1(2t), 0 ≤ t ≤ s

2

γ−1(s) = γ(1− s), s
2 ≤ t ≤ 2−s

2

γ(2t− 1), 2−s
2 ≤ t ≤ 1

�

If the topological space is path-connected then the fundamental group is the same for

all base points, up to group isomorphism. In this case, we usually simply refer to the

fundamental group of the whole space. When the fundamental group is the trivial group (the
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group with just one element) then we say the topological space is simply connected. As

we shall see later, these are the largest covering spaces. Some examples of simply connected

spaces are S2 and Rn (n ≥ 2). On the other hand, the torus T 2 isn’t simply connected as

its fundamental group is isomorphic to Z⊕ Z.

Theorem 3.9 (Fundamental Group of a Covering) Let p : Y → X be a covering of

topological spaces with the additional assumption that both spaces are path-connected. Let

y ∈ Y and x = p(y) ∈ X. Then π1(Y, y) is isomorphic to some subgroup of π1(X, x) where

the isomorphism is induced by the projection p.

Proof:

For any continuous map p : Y → X and any point y ∈ Y , there is an induced group

homomorphism p∗ : π1(Y, y) → π1(X, x), where x = p(y):

p∗([γ]) = [p ◦ γ].

This function is well-defined because a continuous map preserves homotopies, i.e. if H

is a homotopy between γ1 and γ2 then p ◦H is a homotopy between p ◦ γ1 and p ◦ γ2. As

(p ◦ γ1) · (p ◦ γ2) = p ◦ (γ1 · γ2) it follows that p∗ is a group homomorphism.

To conclude the proof, we’ll show that π1(Y, y) is isomorphic to p∗(π1(Y, y)) by showing

that the kernel of p∗ is trivial.

Suppose p∗[γ] = [p ◦ γ] = [εx] with [γ] ∈ π1(Y, y). By Theorem 1.5, we can lift the

homotopy between p ◦ γ and εx to a homotopy between γ and εy. Therefore, we conclude

that [γ] = [εy], as desired.

�

Intuitively, the previous theorem says that (under the assumptions of the theorem) the

structure of the fundamental group of a covering is "simpler" than the one of the covered

space. If we construct a covering of the covering space we’ll get an even simpler fundamental

group, and so on.

How far can we do this? Till the fundamental group is trivial (with a few extra conditions

on the topological space we start with).

Definition 3.10 Let Y and X be connected topological spaces. A covering p : Y → X is

called a universal covering if Y is simply connected.
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A space X is called semilocally simply connected if for every point p ∈ X there is

an open neighbourhood U of p such that every loop in U is homotopic to a constant loop.

Theorem 3.11 Let X be a path-connected and semilocally simply connected space. Then

X has a univeral covering, which is unique up to homeomorphism.

For a proof of this theorem, see [2].

The universal covering has a very important property, the universal property: if

p : X̃ → X is the universal covering of X and q : Y → X is another covering of X (with Y

path-connected), then there is a unique covering r : X̃ → Y such that p = q ◦ r. A proof of

this fact can be found in [4].

We shall present a proof of a weaker result, which will be enough for our study of

orbifolds.

Theorem 3.12 Let X be a path-connected and locally trivial space, i.e., for every point

x ∈ X there is a neighbourhood U such that for every covering p, p−1(U) is a union of

disjoint open sets homeomorphic to U . Then there is a covering p : Y → X with the

universal property.

Proof: Consider all connected coverings of X, pα : Xα → X. In each space Xα fix a

point xα such that pα(xα) = x, x ∈ X.

Let ΠXXα = {y ∈ ΠXα : pα(yα) is constant for every α} with the subspace topology

induced by the product topology in ΠXα (ΠXXα is the fiber product of the maps pα).

Then we can define p : ΠXXα → X as p(y) = pα(yα) because the point pα(yα) is independent

of α.

Let Y be the connected component of ΠXXα that contains (xα). We’ll show that p :

Y → X is a covering which satisfies the universal property.

First, we’ll show that p is surjective. Let x′ ∈ X and γ a path between x and x′. For each

α, there is a lifting γ̃α of γ starting in xα and ending in x′
α (note that pα(x′

α) = x′). Thus

we can construct a path γC by taking the product of all paths γ̃α. This path γC connects

(xα) and (x′
α). As p((x′

α)) = x′ we conclude that p is surjective.

Now consider a neighbourhood U of x′ ∈ X that is trivially covered. Then p−1
α (U) is a

union of disjoint open sets homeomorphic to U . If we take the fiber product of the restrictions
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of pα to each of these sets we still have a union of disjoint open sets homeomorphic to U .

By considering only the components that belong to Y we get p−1(U), so p is a covering.

It remains to show that the covering p has the universal property. Let q : Z → X be a

connected covering of X. Then q = pα and Z = Xα for some α.

Consider the canonical projection πα from ΠXα to Xα. Let r : Y → Xα be the restriction

of πα to Y . By definition of p, pα ◦ r = p.

We claim that r : Y → Z = Xα is a covering.

To show that r is surjective consider a point x′
α ∈ Xα and a path γα that connects xα

and x′
α. Let γ be the projection of γα to a path in X. Taking the product of all liftings

os γ that start in xα we get a path in Y that connects (xα) and (x′
α). As r((x′

α)) = x′
α we

conclude that r is surjective.

Let x′ = pα(x′
α with x′

α ∈ Xα. Let U be a neighbourhood of x′ that is trivially covered.

The component of p−1
α (U) that contains x′

α, V , is homeomorphic to U . As r−1(V ) consists

of the components in p−1(U) that are projected to V we conclude that r−1(V ) is a disjoint

union of open sets homeomorphic to V , so r is a covering.

�
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4 Examples of orbifolds

How can one produce orbifolds? A simple way is by taking certain quotients of smooth

actions.

Theorem 4.1 Let M be a differentiable manifold and Γ a group acting properly discontin-

uously and smoothly on M , then M/Γ has an orbifold structure. (An action of a group G

is properly discontinuous if for every x inM there is a neighbourhood U of x such that

g(U) ∩ U 6= ∅ for only a finite number of g ∈ G)

Proof: Let x ∈ M/Γ and x̃ ∈ M which projects to x. Let Ix̃ be the isotropy group of x̃.

We’ll start by finding a neighbourhood of x̃ which is disjoint from its translates by elements

not in Ix̃ and invariant by elements in Ix̃.

As the action is properly discontinuous we pick a neighbourhood Ṽ of x̃ such that

γ(Ṽ ) ∩ Ṽ 6= ∅ for only a finite number of elements in Γ. Let {γ1, ..., γn} be those elements

which are not in Ix̃. Notice that this also implies that Ix̃ is finite.

For each γj , let V1 and V2 be open sets such that x̃ ∈ V1, γj · x̃ ∈ V2 and V1 ∩ V2 = ∅
(they exist because M is Hausdorff). Let Wj = Ṽ ∩ V1 ∩ γ−1

j (V2) be a neighbourhood of x̃.

We can easily check that Wj ∩ γj(Wj) = ∅. Taking W =
⋂

Wj we get a neighbourhood of

x̃ such that W ∩ γ(W ) 6= ∅ if and only if γ ∈ Ix̃.

Now consider the following neighbourhood of x̃: Ũ =
⋂

γ∈Ix̃
γ(W ). As Ũ ⊂ W then

Ũ∩γ(Ũ) = ∅ if γ /∈ Ix̃. On the other hand, if σ ∈ Γ then σ(Ũ) =
⋂

γ∈Ix̃
σ(γ(W )) =

⋂
γ∈Ix̃

(σ ·
γ)(W ) =

⋂
γ∈Ix̃

γ(W ). We have found a neighbourhood of x̃ with the desired properties. We

can suppose that Ũ is contained in some coordinate chart, thus it homeomorphic to some

open set in Rn.

Let Z = ∪γ∈Γγ(Ũ) and let Ux = Z/Γ. By restricting this projection to Ũ we get a

homeomorphism between Ux and Ũ/Ix̃ where the action of Ix̃ is the restriction of the action

of Γ on Ũ . We’ll show that Ux and its finite intersections form a cover of M/Γ.

Let Ux1 , ..., Uxk
such that Ux1 ∩ ... ∩ Uxk

6= ∅. This means that there are γ1, ..., γk ∈ Γ

such that γ1(Ũx1) ∩ ... ∩ γk(Ũxk
) 6= ∅.

Consider the following subgroup of Γ, G = γ1Ix1γ
−1
1 ∩ ... ∩ γkIxk

γ−1
k .

13



Let g ∈ G, then g = γiσiγ
−1
i where σi ∈ Ixi . So, g(γ1(Ũx1)∩...∩γk(Ũxk

)) = (g ·γ1)(Ũx1)∩
...∩(g ·γk)(Ũxk

) = (γ1 ·σ1 ·γ−1
1 ·γ1)(Ũx1)∩ ...∩(γk ·σk ·γ−1

k ·γ1)(Ũxk
) = γ1(Ũx1)∩ ...∩γk(Ũxk

).

By similar calculations we can show that for g /∈ G, we have (γ1(Ũx1) ∩ ... ∩ γk(Ũxk
)) ∩

g(γ1(Ũx1)∩...∩γk(Ũxk
)) = ∅, thus γ1(Ũx1)∩...∩γk(Ũxk

)/G is homeomorphic to Ux1∩...∩Uxk

with the homeomorphism given by the projection. �

Examples 4.2

1. Every differentiable manifold without boundary.

2. Every quotient of a differentiable manifold by a smooth action of a finite group.

This explains why the examples in the second section are orbifolds. We will see later that

there are orbifolds which are not quotients of differentiable manifolds by smooth actions.

But, locally, every orbifold is of this form, and we introduce:

Definition 4.3 (Singular point) For every x ∈ M , let Γx be the smallest group such that

there is neighbourhood of x, U = Ũ/Γx. A point x is called singular if Γx is not the trivial

group. The group Γx is called the isotropy group of x.
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5 Coverings of orbifolds

As with topological spaces we can define a covering of orbifolds:

Definition 5.1 (Covering of orbifolds) A covering orbifold of an orbifold O is an orb-

ifold Õ with a projection p : XÕ → XO between the underlying spaces with the following

property: for every x ∈ XO there is a neighbourhood U ∼= Ũ/Γ (Ũ is an open set in Rn)

such that each connected component of p−1(U) is homeomorphic to Ũ/Γi for some subgroup

Γi of Γ. In addition, the homeomorphism has to respect both projection (p and the canonic

one between Ũ/Γi and Ũ/Γ).

Definition 5.2 An orbifold is good if it is covered by a manifold. Otherwise, it is a bad

orbifold.

Examples 5.3

1. Every manifold is trivially a good orbifold as it is covered by itself.

2. An example of a bad orbifold is the teardrop. The teardrop has S2 as its underlying

topological space and a unique singular point whose neighbourhood is homeomorphic to

U/Zn, where U is a neighbourhood of the origin of R2 and Zn acts by rotations around

the origin.

To see that it is a bad orbifold, suppose there is a covering p : M → O where M is

a manifold and O is the teardrop. Then there is neighbourhood U ∼= D2/Zn of the

singular point, thus p−1(U) is a union of disjoint open disks. On the other hand,

XO − U = S2 −D2 ∼= D2. As the closed disk has only trivial coverings (because it is

simply connected and locally path-connected, see [2]) then p−1(XO − U) is a union of

disjoint closed disks. Therefore, M = XM = p−1(XO) is obtained by "gluing" together

pairs of open disks and closed disks. This implies that M is a union of copies of S2.

As M is connected then M = S2 and so there is only one pair open disk/closed disk.

Consider an open disk V that overlaps U but doesn’t contain p. Then if x ∈ U ∩ V we

know that p−1(x) consists of n points because it belongs to U but it has to be just one

point as x ∈ V . Contradiction.
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Later on we shall introduce a tool that allows us to easily conclude that the teardrop

(and some other orbifolds) are bad orbifolds.

In a similar way to the case of topological spaces we can define the universal cover of

an orbifold. As we don’t have defined here paths in orbifold (altough that is also possible!)

we’ll to rely on the universal property to define universal covers:

Definition 5.4 (Universal cover of an orbifold) A connected orbifold Õ is a universal

cover of O if there is a projection p : XÕ → XO with non-singular base points x̃ and

x = p(x̃) which has the univesal property (i.e. if p′ : XO′ → XO is a covering of orbifold

with x = p′(x′) then there is a covering q : XÕ → XO′ such that q(x̃) = x′ and q ◦ p′ = p).

Theorem 5.5 (Universal cover) Every connected orbifold O has a universal cover.

See [1] for a draft of the proof.
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6 Wallpaper patterns classification

In this section we shall classify the 17 wallpaper patterns by making use of our knowledge

about orbifolds. How is that possible? Notice that for each wallpaper pattern we can

construct an orbifold, the quotient of R2 by the discrete group of symmetries of the pattern.

As this group contains both a vertical and an horizontal translation the constructed orbifold

is compact.

We’ll start by noting that the singular points belong to one of three classes.

Theorem 6.1 Every singular point of a 2-orbifold has its neighbourhood modeled by one of

these classes:

• Mirror: R2/Z2 where Z2 acts by reflection in the x-axis.

• Elliptic point: R2/Zn where Zn acts by rotations.

• Corner reflector: R2/Dn where Dn is the dihedral group of order 2n, which is generated

by reflections in the lines which meet the x-axis at angle 2kπ
n .

Proof: Let O be a 2-orbifold and x ∈ O a singular point. Let U be a neighbourhood of

x which is diffeomorphic to Ũ/Γ, Ũ ⊂ R2. We can choose U small enough such that x̃ is

the only fixed point of the action of Γ in Ũ .

Let g be a Riemannian metric on Ũ , it can be the usual euclidean metric. We construct

a metric g′, invariant by the action of Γ, by averaging it under Γ:

g′(v, w) =
∑
γ∈Γ

g(Dγ · v,Dγ · w).

Indeed,

σ∗g
′(v, w) =

∑
γ∈Γ

σ∗g(Dγ · v,Dγ · w)

=
∑
γ∈Γ

g(D(σ · γ) · v,D(σ · γ) · w)

=
∑
γ∈Γ

g(Dγ · v,Dγ · w)
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for some σ ∈ Γ.

Note that we can define action of Γ in Tx̃Ũ by considering the function Dσ : Tx̃Ũ → Tx̃Ũ .

They form a group of isometries for the metric g′x̃.

Let σ ∈ Γ, v ∈ Tx̃Ũ and f a geodesic such that ḟ(0) = v. As σ : Ũ → Ũ is an isometry

then σ◦f is also a geodesic and ˙(σ ◦ f)(0) = Dσ ·v. This means that σ(expx̃(v)) = σ(f(1)) =

(σ ◦ f)(1) = expx̃(Dσ · v). In conclusion, the actions of Γ commute with the diffeomorphism

given by the exponential map. This gives an diffeomorphism between a neighbourhood of x

in O and V/Γ where V is neighbourhood of the origin of R2. As Γ acts by isometries then

Γ is a finite subgroup of O2, the orthogonal group of order 2. Finally, we conclude that the

neighbourhood of x is modeled by the three classes defined above.

�

Note that an open neighbourhood in each of these models is homeomorphic to an open

neighbourhood of the half-plane. This means that every 2-orbifold has a topological surface

with boundary (2-manifold with boundary) as its underlying space.

An important tool for our classification of (some) 2-orbifolds the orbifold Euler number,

generalizing the usual Euler number.

Definition 6.2 Let O be an orbifold and consider a cell-division (triangulation in the 2-

dimensional case) of XO such that the isotropy group of points in the interior of each cell is

constant. We define the Euler number, χ(O), by the following formula:

χ(O) =
∑

cells,c

(−1)dim(c)

|Γ(c)|
.

Notice that this definition equals the original one for manifolds if O is a manifold.

Theorem 6.3 We say that p : Õ → O is a covering of k sheets if the number of preimages

of a non-singular point is k. In that case, we have

χ(Õ) = kχ(O)

Proof: Let x ∈ O and let U ∼= V/Γx be a well-covered neighbourhood of x. Let y be

a nonsingular point in U , which corresponds to |Γx| points in V . Each preimage of y by
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p lies in a neighbourhood of a preimage of x of the form V/Γx̃. Thus, in each of those

neighbourhoods there are |Γx|
|Γx̃| preimages of y. Computing the total number of preimages of

y gives:

k =
∑

p−1(x)

|Γx|
|Γx̃|

⇔ k

|Γx|
=

∑
p−1(x)

1
|Γx̃|

We can construct a cell-division in Õ by taking the preimage of a cell-division in O.

Therefore,

kχ(O) =
∑

cells,c

k(−1)dim(c)

|Γ(c)|
=

∑
c̃∈p−1(c)

(−1)dim(c)

|Γ(c̃)|
= χ(Õ)

�

Theorem 6.4 Let O be a 2-orbifold with underlying space XO. If O has n elliptic points

with orders a1,...,an and m corner reflectors with orders b1,...,bm then:

χ(O) = χ(XO)−
n∑

i=1

(
1− 1

ai

)
− 1

2

m∑
j=1

(
1− 1

bj

)
.

Proof: For each elliptic point of order a we add a point (0-dimensional cell) with the

group Za. This means that addition of such elliptic point corresponds to a decrease of the

Euler number in 1− 1
a .

For each corner reflector of order b we add a point with the group Db (which has order

2b) and a 1-dimensional mirror cell with the group Z2 associated. Thus the addition of such

corner reflector correponds to a decrease of the Euler number in 1
2 −

1
2b .

Adding several elliptic points and corner reflectors yields the formula above.

�

Theorem 6.5 (Classification of compact surfaces) Any connected compact surface M

is either homeomorphic to a sphere, a connected sum of tori or a connected sum of projectives

planes. Moreover, χ(S2) = 2, χ(T#...#T︸ ︷︷ ︸
n times

) = 2− 2n and χ(RP 2#...#RP 2︸ ︷︷ ︸
n times

) = 1− n.

Corollary 6.6 The teardrop is a bad manifold.
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Proof: The teardrop has a single elliptic point (of order n ≥ 2) so χ(teardrop) =

χ(S2) − (1 − 1
n) = n+1

n . If the teardrop is covered by a manifold M , then χ(M) = k(n+1)
n

and M has to be compact. As the Euler characteristic is an integer for manifolds then n

divides k. Thus, χ(M) ≥ n + 1 ≥ 3 which is impossible, due to the classification theorem.

�

Theorem 6.7 (Classification of compact surfaces with boudary) Any bordered con-

nected compact surface with boundary N is of the form M \ (D1 t ... t Dk) where M is a

connected compact surface and Di are disjoint disks in M . Moreover, χ(N) = χ(M)− k.

The proofs of these classification theorems can be found in [3].

With these four theorems we are ready to classify the 17 wallpaper patterns. Each pattern

corresponds to a 2-orbifold which is covered by R2. As the Euler number for orbifold matches

the one for manifold when the orbifold is actually a manifold then χ(R2) = 0. By theorem

4.3. we conclude that an orbifold O covered by R2 also has χ(O) = 0. We shall classify

those orbifolds.

Theorem 6.8 The compact 2-orbifolds O with χ(O) = 0 are the following:

20



Underlying space (XO) Orders of elliptic points Orders of corner reflectors

S2 2, 3, 6 -

2, 4, 4 -

3, 3, 3 -

2, 2, 2, 2 -

D2 - 2, 3, 6

- 2, 4, 4

- 3, 3, 3

- 2, 2, 2, 2

2 2, 2

3 3

4 2

2, 2 -

RP 2 2, 2 -

T 2 - -

Klein bottle - -

Annulus - -

Möbius band - -

Proof: First note that 0 = χ(O) ≤ χ(XO) where XO is the base space of O. By the first

classification theorem, we know that the only compact surfaces with that property are S2,

T , RP 2 and the Klein bottle (which is RP 2#RP 2). By removing disks from these surfaces

we can construct some more appropriate manifolds: D2 and the annulus arise from removing

disks from S2 and the Möbius band is constructed by taking a disk from RP 2.

We’ll now classify the orbifolds by considering the possible base spaces.

XO = S2:

Notice that compact surfaces cannot have corner reflectors as singular points because

they always lie in the border of the orbifold. With this restriction, by theorem 4.4:

χ(O) = χ(S2)−
n∑

i=1

(
1− 1

ai

)
⇔

n∑
i=1

(
1− 1

ai

)
= 2.
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As, 1− 1
ai
∈ [12 , 1[ then n = 3, 4.

If n = 3,
1
a1

+
1
a2

+
1
a3

= 1,

which has the solutions (a1, a2, a3) = (2, 3, 6), (2, 4, 4), (3, 3, 3).

If n = 4,
1
a1

+
1
a2

+
1
a3

+
1
a4

= 2,

which has the solution (a1, a2, a3, a4) = (2, 2, 2, 2).

XO = D2:

By theorem 4.4:

χ(O) = χ(D2)−
n∑

i=1

(
1− 1

ai

)
− 1

2

m∑
j=1

(
1− 1

bj

)
⇔

n∑
i=1

(
1− 1

ai

)
+

1
2

m∑
j=1

(
1− 1

bj

)
= 1.

By the argument used before, n ≤ 2.

If n = 0,
m∑

j=1

(
1− 1

bj

)
= 2.

We have already found the solutions to this equation: (b1, b2, b3) = (2, 3, 6), (2, 4, 4), (3, 3, 3)

and (b1, b2, b3, b4) = (2, 2, 2, 2).

If n = 1, then m ≥ 1 and 1
2

∑m
j=1

(
1− 1

bj

)
≥ 1

4 . This means that 1− 1
a1
≤ 3

4 ⇔ a1 ≤ 4.

If a1 = 2, then
∑m

j=1

(
1− 1

bj

)
= 1. As, 1− 1

ai
∈ [12 , 1[ then m = 2. Thus we have,

1
b1

+
1
b2

= 1

which has the solution (b1, b2) = (2, 2).

If a1 = 3, then
∑m

j=1

(
1− 1

bj

)
= 2

3 . As, 1 − 1
ai
∈ [12 , 1[ then m = 1 and the solution is

b1 = 3.

If a1 = 4, then
∑m

j=1

(
1− 1

bj

)
= 1

2 . As, 1 − 1
ai
∈ [12 , 1[ then m = 1 and the solution is

b1 = 2.
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If n = 2, then
∑n

i=1

(
1− 1

ai

)
≥ 1 with equality when a1 = a2 = 2. Thus the only

solution for n = 2 is with m = 0 and a1 = a2 = 2.

XO = RP 2:

By theorem 4.4,

χ(O) = χ(D2)−
n∑

i=1

(
1− 1

ai

)
− 1

2

m∑
j=1

(
1− 1

bj

)
⇔

n∑
i=1

(
1− 1

ai

)
+

1
2

m∑
j=1

(
1− 1

bj

)
= 1.

This is the same equation we had for the disk. However, RP 2 is compact so it cannot

have corner reflectors. Therefore, the only solution is n = 2, m = 0 and a1 = a2 = 2.

XO = T , Klein bottle, annulus, Möbius band:

As XO = 0, the orbifold O cannot have singular points.

�
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7 Images of the wallpaper patterns

The following images were taken from http://www.atractor.pt/mat/orbifolds/index.html.

D2 with corner reflectors of orders 2, 3 and 6.
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S2 with elliptic points of orders 2, 4 and 4.
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Klein bottle.
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Annulus.
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