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Abstract

We introduce the partially observable history process (POHP)
formalism for reinforcement learning. POHP centers around
the actions and observations of a single agent and abstracts
away the presence of other players without reducing them to
stochastic processes. Our formalism provides a streamlined
interface for designing algorithms that defy categorization as
exclusively single or multi-agent, and for developing theory
that applies across these domains. We show how the POHP
formalism unifies traditional models including the Markov
decision process, the Markov game, the extensive-form game,
and their partially observable extensions, without introducing
burdensome technical machinery or violating the philosophi-
cal underpinnings of reinforcement learning. We illustrate the
utility of our formalism by concisely exploring observable se-
quential rationality, examining some theoretical properties of
general immediate regret minimization, and generalizing the
extensive-form regret minimization (EFR) algorithm.

1 Introduction

We develop the partially observable history process (POHP)
that embodies the philosophical aspects of reinforcement
learning. The formalism uses a few elementary mechanisms
to analyze a single agent that makes observations and takes
actions. The agent is responsible for managing their own
representation of an environment that is, by default, mas-
sively more complicated than themselves. They are also re-
sponsible for and capable of evaluating themselves against
goals set by their designer or themselves. To canonize the
central role of the agent, our formalism abstracts away any
other players without nullifying their agency.

The individual components of the POHP formalism are
taken from two sequential decision-making frameworks, the
extensive-form game (EFG) (Kuhn 1953) and the partially
observable Markov decision process (POMDP) (Smallwood
and Sondik 1973), along with a repeated game frame-
work, the online decision process (see, e.g., Greenwald,
Li, and Marks (2006)). The result is a sequential decision-
making formalism that is conceptually simpler than either of
its two sequential decision-making progenitors. Other gen-
eral formalisms such as the partially observable stochas-
tic game (Hansen, Bernstein, and Zilberstein 2004), turn-
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Figure 1: The evolution of a POHP environment and agent.

taking partially-observable Markov game (Greenwald, Li,
and Sodomka 2017), and factored observation stochastic
games (Kovatik et al. 2019) bring with them unneces-
sary complications for agent-centric reinforcement learning.
The sequential decision-making setting presented by Farina,
Kroer, and Sandholm (2019) shares spiritual similarities but
it represents a less radical departure from the EFG model.
Srinivasan et al. (2018)’s presentation of the EFG model
using reinforcement learning and Markov decision process
(MDP) terminology had a substantial influence on this work.

The POHP model is not meant replace any of these es-
tablished formalisms, but rather fill a particular niche. We
recommend our formalism in two cases: (i) when modeling
a problem as an MDP would ignore imperfect information or
the presence of other players, or (ii) when the extra structure
of a more established model is unnecessary or burdensome.

2 Partially Observable History Process

The partially observable history process (POHP) model be-
gins from the premise that an agent observes and influences
an environment. We are principally concerned with the de-
sign of the agent and how well they navigate the environ-
ment. The environment may change without the agent’s in-
put and we attribute these changes to a daimon. Inspired by
depictions in Greek mythology, our daimon is an inexplica-
ble force that partially determines the evolution of the en-
vironment and shapes the agent’s growth. The concept of a
daimon is flexible enough that it can represent an adversary,
a teammate, a teacher, chance, or any combination thereof.



2.1 The Environment and Daimon

The environment dynamics follow a simple continuing his-
tory model. History in this model refers to a simple ledger
that permanently records actions. Given history h from the
set of possible histories H and action a, the next history is
always ha € H. The agent and daimon take turns choosing
actions until the process terminates and the agent observes
the daimon’s actions only indirectly. Histories are partially
ordered action strings so we use h C h’ to denote that h is
a predecessor of b/, |h| to denote the length of h, and use
subscripts to reference substrings, e.g., h; is the ™ action in
h and h<,, is the first n actions of h.

A POHP has four core objects: (i) a Boolean ¢ € {0,1}
that indicates if the agent acts before the daimon, (ii) a func-
tion A that determines the set of legal actions after a given
history, (iii) a function w that generates the observation from
a set of observations O at a given history immediately fol-
lowing a daimon action, and (iv) a function +y that determines
the probability that the process continues after a daimon ac-
tion. Two more objects are required to describe a POHP in
full generality: a set of initial histories H g and a probabil-
ity distribution over these histories £&. A POHP’s history is
initialized with one sampled from 4 according to &, but in
most situations H g consists of just the empty history, &.

The daimon behaves according to a behavioral strategy
(also called a policy), o, that assigns a probability distribu-
tion over legal actions to every history where it is the dai-
mon’s turn to act, Ho = {h € X | |h|mod 2 = ¢}. In
history h € He, the daimon chooses action B ~ o (h) and
the history advances to h B, at which point the process con-
tinues if I' ~ ~(hB) and terminates otherwise. Since the
agent waits for an observation in each h € Hp, we call
them passive histories, in contrast to the active histories,
Ha = H\ Ho, in which the agent acts. We do not ascribe
any a priori motivation to the daimon.

2.2 An Abstract POHP Agent

The agent need only implement the observation and action
interfaces provided by the POHP so there are many ways
to construct the agent. The agent we work with has three
conceptual modules: a state of mind, a behavior plan, and
goals. Their state provides the context with which behaviors
are chosen to advance them toward their goals. Formally, we
define our POHP agent with a tuple, (sg, u4, up,,r).
State of mind. A snapshot of the agent’s state of mind
is given concrete form in their information state, which is
set to a given initial information state s at the beginning
of the POHP. Information state evolves according to update
functions u 4 and u¢, which describe how actions and obser-
vations are processed, respectively.! After the agent chooses

!Splitting information state updates into action and observation
specific updates has a few benefits: (i) it avoids treating the ini-
tial observation update in POHPs where the daimon acts first as a
special case, (ii) it allows us to refer to the agent’s state of mind
immediately after choosing an action, which we make use of in our
reduction to Markov decision processes and in intermediate proof
steps, and (iii) it allows the agent to forget the action they just chose
without waiting for an observation, which could be useful in some

action a in information state s, their information state is up-
dated to s’ = u4(s, a) while they wait for an observation.
After receiving observation o, their information state is up-
dated to up (s’, 0) and the agent chooses another action a’ to
begin the cycle again. Ultimately, each history i € H yields
an information state, so we recursively define a unified up-
date function,

So ifheHy
w:h— Qua(u(han),bp)  ifhop € Ha
uo (u(heyn),w(h))  ow.

Each information state corresponds to an information set,
I(s) = {h | u(h) = s}, which is the set of his-
tories the environment could be in given the agent’s in-
formation state is s. We denote the set of information
states that could ever be generated as S, and we parti-
tion them into the passive information states where the
agent awaits an observation, Sp, and the active information
states where the agent acts, S4. We overload S4(s,a) =
{uo(ua(s,a),w(hab))}her(s), beA(na) as the set of child
active information states following s and action a.

Behavior. The agent acts by sampling actions from a be-
havioral strategy, # € II, where probability distributions
over legal actions are assigned to information states. At
history h in active information state s, the agent chooses
an action by sampling from their immediate strategy at s,
7(s) € A(A(h)), where A(A(h)) is the probability simplex
over A(h). We assume that the agent can always determine
the legal actions from their information state so we overload
A(s) = A(h) foralls € Sand h € s.

Goals. A bounded reward function, r» : O — [-U, U],
provides quantitative feedback to the agent about their
progress toward their goals. The return (cumulative reward)
that the agent acquires from active history h € H 4 is
Gn(m;0) = 302, Yir(w(H;)), where the initial history in
the trajectory is H; = h, the agent’s action on each step
is A; ~ W(u(Hi)), the daimon’s action on each step is
B; ~ o(H;A;), the history is updated as the concatenation
H,.1 = H;A;B;, and the continuation indicator is the prod-
uctY; 1 =Y;I; € {0,1} with Y] = 1and T; ~ y(H;).

Generally, the agent’s goal is to maximize their return.
The fact that the daimon’s strategy is unknown and their ac-
tions are only partially observed prevents us from immedi-
ately formulating this goal as an optimization problem. Nei-
ther can an equilibrium concept be proposed as a solution
concept without presupposing incentives and a level of ra-
tionality for the daimon. Hindsight rationality (Morrill et al.
2021b), in contrast, is well suited as a solution concept for
POHPs as it focuses on self-improvement grounded in expe-
rience and requires no assumptions about the daimon.

However, since no history may ever repeat and repetition
is a key requirement of hindsight rationality, we will only
consider hindsight rationality in the context of a repeated
POHP. Before each round ¢ begins, the agent chooses strat-
egy m! and the daimon chooses strategy . The POHP plays
out according to these strategies, after which the agent re-
ceives reward information. The agent can then compare the

applications involving asynchronous processing.



returns they achieved with 7* with those they could have
achieved with alternative behavior.”> This online decision
process is well defined as long as the POHP terminates al-
most surely so that the agent is unlikely to be stuck in a
single round forever.

2.3 Reach Probabilities

A derived property of POHPs that we will make use of later
is the reach probability. Consider random history H gener-
ated according to agent strategy m, daimon strategy o, and
continuation function ~. The probability that a given his-
tory hgy C h © H follows from the chain rule of probabil-

. T h
1ty, Pﬂ,U[Uﬁe'H@ h T hC H} = H‘i:l|hz|+1 Pﬂ,a[hi | h<i]
where

’}/(h<z>ﬂ'(h7 | U(h<7)) if h<i S H_A
Prolhi| hai] =
olhilh<i] {U(hi | hei) o.W.
We denote P ,[h] = PW,U[U,—LE%QJ h € h T H] and refer
to this quantity as h’s reach probability. We can decompose

||
PTF,O'[h’] = H 7(h<i—1)a(hi | h‘<l) PU [h]

i=|hg|+1,7 mod 2=¢
R

11 m(hi |u(h<;)) ¢ Px[R]

i=|hg|+1,7 mod 2=1—

according to the probability that the daimon and agent play
their parts of h, where we have grouped the continuation
probabilities with the daimon’s and set y(h|s,|) = 1.

The conditional probability

PTI',O‘[h’/ | h] = Pﬂ',a’[h E H; h/ E H]/Pﬂqa’[h]

is the probability that history b’ © H given h C H. If
h' and h are unrelated in that h’' [Z h [Z R/, then it is
not possible for H to realize both, so the joint probabil-
ity P »[h,h'] = 0, and consequently P, ,[h'|h] = 0. If
h' C h then H always realizes h’/ when h is realized, there-
fore, Py o[h,h'] = Pro[h] and P, ,[h'|h] = 1. The last
caseis h C A/, where

Pw,o[h/ | h] = ng[h, h/]/ng[h] = ng[h/]/ng[h].

3 Representing Traditional Models
3.1 Games

A game is an N player interaction where each player si-
multaneously chooses a strategy and immediately receives a
payoff from a bounded utility function (von Neumann and
Morgenstern 1947). There may also be an extra “chance
player”, denoted ¢, who “decides” chance events like die
rolls with strategy 7.. A game described in this way is called
a normal-form game (NFG).

2The agent may estimate the returns for alternative behavior us-
ing importance corrections if this information is not provided ex-
plicitly at the end of each round, similarly to how reward functions
are estimated in adversarial bandit contexts (see, e.g., Lattimore
and Szepesvari (2020)).

Algorithm 1: The procedure for playing an N player game
in POHP-form.

1: Input: turn function p : H — {c} U {i} ¥,
2:  legal actions function A,

terminal histories Z C H

or continuation function 7y : H — A{0, 1},
information partitions {Ii}vie{c}u{j}j.\f_l

or observation functions {w; : H — Si}ie{c}u{j}jf.{l ,
and utility functions {v; : Z — [-U, U]} .

for i € {c} U {j}}, do

9: w;(h) < I for h € I € T, if w; undefined

10: v+ h — 1{h ¢ Z} if v undefined

11: H<+ o

122+ 1

13: while I" do

14: send w; (H ) to player p(H)

15: receive A € A(H) from player p(H)

16: H<+ HA

17: sample ' ~ ~(H)

18: fori =1,2,..., N do

19: send w;(H) = (H,v;(H)) to player i

A A

For any given player, ¢, we can represent ¢’s view of the
game with a POHP, G;, where the agent represents 4 and the
daimon represents the other N — 1 players and chance in
aggregate. We can also represent chance’s view of the game
with a POHP where the agent’s strategy is fixed to 7. The
histories, action sets, and continuation function across all
N + 1 of these POHPs are shared but the first turn indicator
and observation functions are specific to each player. The re-
ward functions for each player must also reflect the game’s
payoffs. After each player chooses an agent strategy for
their POHP, all the POHPs are evaluated together, sharing
the same history, and each player receives a return in their
POHP that equals their payoff in the game. Together, the set
of POHPs, {Gi };c(c1ug j}v_,» represents what we could call

a POHP-form game. See Algorithm 1 for a programmatic
description of how a game can be played out in POHP form.

In each G;, the daimon’s strategy, o;, must reflect those
of the other players. If we have a turn function p : H —
{c}U{j };V: , that determines which player acts after a given
history h, we can constrain o; to conform to the agent strate-
gies from the other POHPs as 0 (h) = 7,4 (Uup(n) (7).

A game described with histories and turns is called an
extensive-form game (EFG) (Kuhn 1953). Any NFG can
be converted into extensive form by serializing each deci-
sion. Of course, players who act later are not allowed to
observe previous actions, and this is traditionally specified
through information partitions. Each player, ¢, is assigned
a set of information sets as their information partition, de-
noted Z;. Typically, EFGs also define a set of terminal his-
tories, Z C “H, which is constructed so that every history
eventually terminates. As in a NFG, payoffs are given to
players upon termination.

Since the POHP and EFG share the same history-based



progression, representing an EFG in POHP-form simply re-
quires that information partitions, terminal histories, and
utility functions are faithfully reconstructed in the POHP. If
player ¢’s observation function returns its given history’s in-
formation set in Z; and player i’s observation update func-
tion replaces the current information state with its given ob-
servation, then the set of information sets on active infor-
mation states reproduces Z;. Formally, {I(s)}ses, » = Zi.
Constructing the information states for each player in this
way ensures that all information partitions are respected. We
can add terminal histories to a POHP by setting ~v(h) =
1{h ¢ Z}. To respect the EFG’s utility function for each
player i, v; : £ — [=U, U], we set player i’s rewards for all
observations to zero except those following terminal histo-
ries, z, at which point 7;(w;(2)) = v;(2).

3.2 Markov Models

The POHP model allows agents to construct their own com-
plicated notions of state but forces conceptual simplicity on
environment state, i.e., its history. However, a popular class
of models are Markov models where the environment has a
more complicated notion of state and this state evolves ac-
cording to Markovian dynamics. That is, there may be many
histories that lead to the same environment state and the state
on the next step is determined, up to stochasticity, by the cur-
rent environment state and action. The transition probabili-
ties must be constant across each history in an environment
state, otherwise transitions would depend on past environ-
ment states, violating the Markov property. Agent informa-
tion states in a POHP may lack the Markov property because
the daimon’s strategy may depend on the history.

A straightforward way to represent environment states is
with the passive information states of the chance player in a
POHP-form game. At each of chance’s passive histories h,
each non-chance player plays an action in turn, which ad-
vances the history to b’ = hay . .. ay where chance updates
their information state to sp» = u.(h’) € S 4. Chance then
chooses which of their passive information states is next
by sampling A. from 7.(sp/), resulting in a transition to
Shra, = uc(h'Ae) € Sc,0. A Markovian transition between
sy, and sy 4, can be enforced by restricting chance’s obser-
vation function so that w.(ha; ...an) = we(hay...an)
for all joint player actions ay . . . ax and histories h € I(sy,).
Enforcing this constraint for each history h ensures that if
u.(h) = sp, then, given joint player actions a; . .. ay,

uc(ﬁal e aNAc) = UC,A(U’C,O(uC(ﬁ)’ wC(Ba’l e aN))7 AC)
= U A(Uc,0(Sh,we(har . ..an)), Ac)
= Sh'A.

with transition probability 7.(A. | s5) for all h.

A general Markovian model is the partially observable
Markov game (POMG) (Hansen, Bernstein, and Zilberstein
2004).3 In this model, each environment state represents its
own NFG, so all players simultaneously choose an action

3 A Markov game is also often called a “stochastic game”, but a
core feature of this model is Markovian transitions, not stochastic-
ity. This leads us to prefer the term “Markov game”.

and receive a reward that depends on the state and joint ac-
tion selection. The next state (and thus the next NFG) is de-
termined by the current state and the joint action selection.
Just as we can serialize any NFG by introducing a turn func-
tion and selectively hiding actions, we can serialize a POMG
into a turn-taking POMG (TT-POMG) (Greenwald, Li, and
Sodomka 2017) by serializing each of its component NFGs.

The TT-POMG formalism was developed to convert
EFGs into Markov models (Greenwald, Li, and Sodomka
2017), so naturally the POHP-form of a POMG is similar to
that of an EFG, except that chance’s observations are con-
strained so that chance’s passive information states can play
the role of the POMG environment states. The actions that
each player plays are only revealed to the other players after
chance’s current passive information state transitions to the
next one, corresponding to the POMG’s next NFG. Players
also receive a reward at this time based on the utilities of the
previous NFG. This model is typically presented as a con-
tinuing process with discounting, and we can replicate the
same setup by setting the continuation probability ~v(h) to
the discount factor for each of chance’s passive histories h
and y(h') = 1 for all other histories A’'.

Providing full observability to player 7 in a POHP-form
POMG is simply a matter of adding the constraint that
chance’s passive information states are isomorphic to player
1’s active information states. That is, there must be a bijec-
tion where chance’s information state is s’ € S, » when-
ever player ¢’s information state is s € S; 4, and vice-
versa. Effectively, player ¢’s active information state is al-
ways chance’s passive information state and thus also the
POMG environment state. One trivial way to enforce this
constraint is for player ¢’s observation function to return
chance’s passive information state, i.e., w;(hay ...a;—1) =
uc(h), and for player i’s observation update function to re-
place their current state with the given observation. If all
players are granted full observability, then a POMG be-
comes, naturally, a Markov game (Shapley 1953). Further-
more, a single-player Markov game or POMG reduces to
a Markov decision process (MDP) or partially observable
MDP (POMDP) (Smallwood and Sondik 1973), respec-
tively, and this is true when models are represented either
in their canonical or POHP-forms.

4 The Sub-POHP and Learning

We now describe how sub-POHPs can be constructed in
finite-horizon POHPs with timed updates, and show how ob-
servable sequential rationality (Morrill et al. 2021b) is natu-
rally defined in terms of sub-POHPs.

A POHP has a finite horizon if every history eventually
terminates deterministically. We enforce this by selecting a
subset of histories, Z C H where y(z) = 0 forall z € Z.
The agent’s updates are timed as long as the agent’s action
update function records the number of actions the agent has
taken. A finite horizon and timed updates ensure that the
number of histories in each information set is finite and the
same information state is never encountered twice before
termination. Thus, the information states are partially or-
dered and we can write s < s’ to denote that information
state s is a predecessor of s’.



4.1 Beliefs and Realization Weights

Given that the agent’s information state is s, how likely is
it that the agent is in a particular history h € I(s)? Tradi-
tionally, this is called the agent’s belief (about which history
they are in) at s. According to Bayes’ rule, P, ,[h|s] =
Pro[s|h|Px o[h]/Px.o[s]. Since h € I(s), Pro[s|h] = 1.
The agent’s information state is s only if the random history
H lands in I(s), so we can describe the event of realizing s
as the union of history realization events. Since we assume
the agent’s updates are timed, there is at most one prefix of
H in I(s), which means that each h C H event for h € I(s)
is disjoint. The probability of their union is thus the sum

P‘n’,o’[s] = P‘n’,a U B C h E Z Pﬂ' o’
thI(s), hel(s)
heHz

The agent’s belief at s is £7°7 : h +— Py ;[h]/Pr o [s].

An assignment of beliefs to each information state is
called a system of beliefs. A problem that arises in defin-
ing a complete system of beliefs from a given m—o pair is
that some information states may be unrealizable (P ,[s] =
0). Different rationality assumptions lead to different ways
of constructing complete belief systems and corresponding
notions of equilibria (see, e.g., Kreps and Wilson (1982);
Breitmoser, Tan, and Zizzo (2010); Dekel and Siniscalchi
(2015)). However, from a hindsight perspective, only real-
izable information states could have been observed by the
agent, and only behavior in realizable states could have im-
pacted the agent’s return. Thus, beliefs at unreachable infor-
mation states are naturally left undefined.

As a consequence, information state realization probabil-
ities hold special significance in hindsight analysis, as they
determine whether or not a state is observable. More gener-
ally, they provide a measure of importance to each informa-
tion state. Let J be the random step in the trajectory {H Sy
where u(H ) = s or J = oo if information state s is never
realized. The return from H; can be split as

J—1
G, (m0) =1{J < oo} Y Yir(w(H;))
=1
+1{J =00} ¥ Vir(w(H,)))

i=1

oo
+ H{J< oo}ZYir(w
i=J
Since H; ~ &9, the expectation of s’s contribution is the
realization-weighted expected return from s,

Vs(m;0) = Py o [8|Egemo [Gr(m; 0)], €))
where {77 is defined arbitrarily if P ,[s] = 0.

(H;)) } s’s contribution.

4.2 Observable Sequential Rationality

Here we capitalize on the generality of our POHP definition.
An agent belief can be used as a distribution over initial his-
tories to define a POHP, which in this context we call a sub-
POHP. Thus, every realizable information state s admits a

sub-POHP where 77 is the probability distribution over the
histories in (s) and the turn indicator is 1{s € S4}.

Sequential rationality can then be defined as optimal be-
havior within every sub-POHP with respect to an assignment
of beliefs to unrealizable information states. This defini-
tion is equivalent to sequential rationality in a single-player
EFG (Kreps and Wilson 1982). Observable sequential ra-
tionality (Morrill et al. 2021b) merely drops the requirement
that play must be rational at unrealizable information states.
The key value determining observable sequential rationality
is in fact Eq. (1), the realization-weighted expected return.

As with rationality in normal and extensive-form games,
we can generalize the idea of observable sequential ratio-
nality to samples from a joint distribution of agent strategy—
daimon strategy pairs (traditionally called a recommenda-
tion distribution) and deviations. A deviation is a transfor-
mation that generates alternative agent behavior, i.e., a func-
tion ¢ : X — X where X is the set of pure strategies for
the agent that play a single action deterministically in ev-
ery active information state. We denote the complete set of
such transformations, known as the set of swap deviations,
as 3. We can now give a generalized definition of observ-
able sequential rationality in a POHP.

Definition 1. A recommendation distribution, y € A(X x
D), where X and D are the sets of pure strategies for the
agent and daimon, respectively, is observably sequentially
rational for the agent with respect to a set of deviations, ® C
%Y, if the maximum benefit for every deviation, ¢ € O,
according to the realization-weighted expected return from
every information state, s € S, is non-positive,

E(m,d)w,u[vs(d)(x); d) - Us(¢<s(‘r)§ d)] < Oa

where ¢ is the deviation that applies ¢ only before s, i.e.,
[p<sx](3) = [¢px](3) if § < s and x(3) otherwise.

If ¢ always deterministically plays to reach s, then this
definition becomes equivalent to Morrill et al. (2021b)’s.
The hindsight analogue to Definition 1 follows.

Definition 2. Define the full regret from information state
s as ps(p,m;0) = vs(p(w); 0) — vs(m; o). An agent is ob-
servably sequentially hindsight rational if they are a no-full-
regret learner in every realizable information state within
a given POHP with respect to ® C ®%. That is, the
agent generates for any T' > 0 a sequence of strategies,
(n)E_y, where im0 = 307, ps(6, 7% 0%) < 0 at each
s for each ¢ € ® under any sequence of daimon strategies

(Ut);[:r

4.3 Local Learning

Consider a local learning problem in a repeated finite-
horizon POHP with timed updates based on the realization-
weighted expected return at each active information state s.
Given a set of deviations, ® C ®3", we can construct a set of
truncated deviations, @<, = {¢<s }¢ca, Where each devia-
tion in ® <, applies a deviation from ® until after an action
has been taken in s, at which point the rest of the strategy is
left unmodified. Each truncated deviation represents a way



that the agent could play to and in s so a natural local learn-
ing problem is for the agent to choose their actions at s so
that there is no beneficial truncated deviation.

To apply deviations to the agent’s behavioral strategies,
notice that sampling an action for each information state
under timed updates yields a pure strategy. Thus, a behav-
ioral strategy defines a probability distribution over the set
of pure strategies, X. We overload 7 : X — A(X) to
return the probability of a given pure strategy under be-
havioral strategy = € II. From this perspective, m may be
called a mixed strategy. The transformation of 7 by devia-
tion ¢ is the pushforward measure ¢(7) defined pointwise
by [pn](2) = 3 cp-1(an (@) for all 2’ € X, where
¢t 2’ = {z | ¢(x) = 2’} is the pre-image of ¢.

The immediate regret at information state s for not
employing truncated deviation ¢<, is a difference in

realization-weighted expected return under £2< (™7

ps(¢jS7 U U) = vs(éjs(ﬂ); U) - vs(¢<s(7r); 0)
=Py (0.0 [SIE[GH(¢=s(7);0) — Gu(m; o).

Intuitively, it is the advantage that ¢<s(7) has over 7 in s
assuming that the agent plays to s according to ¢ (m).*
Sadly, it can be impossible to prevent information state s’s
immediate regret with respect to $ <, from growing linearly
in a repeated POHP.

Theorem 1. An agent with timed updates cannot generally
prevent immediate regret from growing linearly in a finite-
horizon repeated POHP.

Proof. Consider a two action, two information state POHP
where information state s transitions to s’ where the reward
is +1 if the agent chooses the same action in both s and
s’, and —1 otherwise. The two external (constant) devia-
tions, ¢! and ¢ 2, that choose the same actions in both
information states always achieve a value of +1. At s’, the
agent has to choose between achieving value with respect
to the play of ¢! or 2 in s. If the agent chooses action
#1, then v5(¢p2 ) (1);0) = +1 but vs(¢pZ2(m);0) = —1,
and vice-versa if they choose action #2. Therefore, the agent
minimizes their maximum regret by always playing uniform
random and suffering a regret of +1 on every round. O

What if we assume a stronger property, perfect recall?
Perfect recall requires that every bit of information from
every action and observation is encoded in the information
state, e.g., update functions that concatenate the previous in-
formation state with the given action or observation. Agents
with perfect recall remember each of their actions and obser-
vations. This ensures that each information state s’ is either
the initial information state or has a single parent informa-
tion state s, i.e., u(h< ) = s for each history h € I(s’).

A perfect-recall agent can only play to reach each history
in a given information state, s, equally, i.e., P[h] = P[}/]
for all h,h' € I(s). If we define Pr[s] o< >2; ;) Prl[h],

“The term “advantage” here is chosen deliberately as immedi-
ate regret is analogous to advantage in MDPs (Baird 1994), with
respect to a given rather than optimal policy (see, e.g., Kakade
(2003)).

then perfect recall implies that P [s] = P[h’] for any his-
tory h' € I(s). The probability of realizing s simplifies to

Prolsl= Y PxlhlPo[h] = Px[s] > Py[h].
hel(s) hel(s)
The belief about any history h € I(s) then simplifies to
Px[h]Ps[h] Po[h]
51 hero Polll — Sneres) Polhl
The realization-weighted expected return simplifies to

vs(m;0) = Prls] Y Po[hE[Gh(m;0)].
hel(s)

g7 =5

vgt (o)

The sum denoted vSF(7; o) is recognizable as the counter-
factual value (Zinkevich et al. 2007) of s, which does not
depend on 7’s play at s’s predecessors. Immediate regret be-
comes weighted immediate counterfactual regret,

ps(b=sm50) = Py (m[8](v5" (¢s(); 0) — v (5 0)).

Since the counterfactual value function does not depend
on 7’s play at s’s predecessors, perfect recall avoids the dif-
ficulty that leads to Theorem 1 and allows a reduction from
minimizing immediate regret to minimizing time selection
regret in the prediction with expert advice setting (Blum and
Mansour 2007). In a repeated POHP where the agent and
daimon choose 7! € IIand ¢! € X on each round ¢ the (time
dependent) counterfactual value function ¢ — v<(+; o) fills
the role of the prediction-with-expert-advice reward func-
tion and the (time dependent) reach probability function
W, t > Py (rt)[s] fills the role of a time selection func-
tion. The growth of cumulative immediate regret can there-
fore be controlled, in principle, to a sublinear rate by deploy-
ing Blum and Mansour (2007)’s algorithm or time selection
regret matching (Morrill et al. 2021a).

4.4 General Immediate Regret Minimization

The algorithm that applies a no-time-selection-regret algo-
rithm to minimize immediate regret in every active informa-
tion state generalizes the extensive-form regret minimization
(EFR) algorithm (Morrill et al. 2021a) in that & C &3 may
be any set of deviations rather than a set of behavioral devi-
ations. Just as Morrill et al. (2021a) shows that EFR is hind-
sight rational in EFGs, we can prove that general immediate
regret minimization achieves the same in POHPs, though
now we can easily present this result as a consequence of
observable sequential hindsight rationality. In principle, our
generalized algorithm could compete with the set of swap
deviations when given this set (or the set of internal devia-
tions) as a parameter argument, however, circular dependen-
cies between immediate strategies at different information
states prevents our algorithm from being efficiently imple-
mented with such a deviation set.

Observable sequential hindsight rationality depends on
full regret so we relate immediate regret to full regret with
two lemmas and conclude with the algorithm’s regret bound.



Lemma 1. In a finite-horizon POHP, the realization- Applying Eq. (3) to sum over active information states,

weighted expected return of active information state s under _ ) ] ]
perfect recall recursively decomposes as = ps(¢=s,m0) + Z s ($(m);0) — vy (mo). D

s'€Uaca(s) Sals:0) par ($,m50)
vg(m;0) = Pr[s]rs(m; o) + Z vy (75 0)
S/EUaeA(s) Sa(s,a)

Theorem 2. If a perfect recall agent’s cumulative imme-
diate regret with respect to ® C O3 at each information

where r5(m50) = >, cp(s) PolPE[r(w(RAB))], and ex- state s in a repeated finite-horizon POHP is upper bounded
pectations are taken over A ~ w(s) and B ~ o(hA). by f(T) = 0, f(T) € o(T) after T rounds, then the
agent’s cumulative full regret at each s is sublinear, upper

Proof. The counterfactual value decomposes as bounded according to ZtT—1 psl(p, tiot) < |Syalf(T)
i where Sg 4 = {s' € Sa | 5 < §'} is the active informa-

Z Pol w(hAB)) + IGpap(m;0)] tion states in the sub-POHP rooted at s. Such an agent is

h€l(s) therefore observably sequentially hindsight rational with re-

=ry(m0) +E[ Y Po[hAbGpap(m;o)] spect 10 ®.

hel(s),beA(hA) Proof. Working from each terminal information state where

= ry(m;0)+E { U5 (e.4) (m; U)} the full and immediate regret are equal toward s at the root of
any given sub-POHP, we recursively bound the cumulative
where T' ~ ~v(h). Multiplying by the reach weight, full regret at every information state according to Lemma 2.
Every active information state adds at most f(7') to the cu-
vs(m;0) mulative full regret at s and there are |S;, 4| active informa-
= P, [s]rs(m o) + Z P.[s]m(a|s)uC UA( )(7r- o) Fion states in s’s sub-POHP so the cumulative full regret at s
is no more than |Ss_4|f (7). O
acA(s) ’
= Pr[s]rs(m o) + Z Vyg(s,a) (T50). (2) 5 Conclusion
a€A(s) The POHP formalism may be useful in modeling contin-
Furthermore, ual learning problems where environments are expansive,
wa(s,a) (M5 0) unpredictable, and dynamic. Good performance here de-
mands that the agent continually learns, adapts, and re-
= Z Z Hu(h) = '}Pr o [RE[GH(T; 0)] evaluates their assumptions. We suspect that hindsight ratio-
s'€S.4(s,a) hEua(s,a) nality could serve as the learning objective for such prob-
. Z Z p E[Gp (7 0)]. 3) lems if it could be formulated for a single agent lifetime
mol h rather than over a repeated POHP.
s'€Salsa) Mel(s) Our analysis of general immediate regret minimization
v (m30) for POHPs and the impossibility result of Theorem 1

brings up questions about how far this procedure can be

Substituting Eq. (3) into Eq. (2) completes the proof. - generalized. Regret decomposition is based on a perfect-

Lemma 2. In a finite-horizon POHP, the full regret with re- recall, reali;ation-weighted variant of Kakade (2003)’s per-
spect to ¢ € BSY under perfect recall at active information formance difference lemma (Lemma 5.2.1). Mohammedala-
state s recursively decomposes as men et al. (2021) use this to show how the counterfactual re-
gret minimization (CFR) (Zinkevich et al. 2007) (EFR with

ps(¢,m;0) = ps(dp=s,m0) + Z ps (@, m;0). counterfactual deviations (Morrill et al. 2021a)) can be ap-
'€U,c ey Sals,0) plied to continuing, discounted MDPs with reward uncer-

tainty. The POHP formalism can perhaps allow us to bet-

Proof. ter understand when immediate and full regret can be min-

imized without perfect recall by considering Lanctot et al.
(2012)’s well-formed-game conditions together with Mo-
hammedalamen et al. (2021)’s analysis.

= 0s(P(7);0) — vs(P=s(7); 0) + Vs(P=s(7); 0) — vs(m; 0) The POHP formalism allows agents to determine their
own representation of the environment. This opens the way

ps(@,m;0)

0

pa(@xsmi) to direct discussions and comparisons of representations and

= ps(p=s,m;0) updating schemes. One particular direction that is made nat-
+ Py [8]rs(m30) = Py () []7s(m; 0) ural by the POHP model’s action—observation interface is
— predictive state representations (PSRs) (Singh et al. 2003;

0 Singh, James, and Rudary 2012). While PSRs were devel-

+ Z Vyy (s, a) (m);0) — Vua(s,a) ((bjs(ﬁ); o). oped to model Markovian dynamical systems with at most
acA(s) one controller, the POHP model could facilitate an extension

Pug(s,a)(@m50) to multi-agent settings.
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