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Abstract

This paper studies a coordination game between a continuum of

players with heterogeneous tastes who perceive peer pressure when be-

having differently from each other. It characterizes the conditions under

which a social norm —a mode of behavior followed by many —exists in

equilibrium and the patterns of norm compliance. The emergent norm

may be biased compared to the average taste in society, yet endoge-

nously upheld by the population. Strikingly, a biased norm will under

some circumstances be more sustainable than a non-biased norm, which

may explain the bias of various social and religious norms.
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Coordination games with heterogeneous tastes, such as the Battle of the

Sexes, are often used to represent the individual trade off between coordinat-

ing with others and following one’s own taste. These games are particularly

useful for studying social norms as, when there are many players, a common

interpretation is that the point of coordination constitutes a social norm or

convention (e.g., Schelling 1960, Lewis 1969, Granovetter 1978, Young 1993).

This applies to many social settings such as dress codes, political declarations

and cultural customs. In these situations, it seems reasonable to assume that

the number of possible actions is large, that individuals in society have a large

variety of tastes and that partial gains of coordination can be achieved also

if two individuals behave partially, but not exactly, the same. The purpose

of this paper is to study the existence of a social norm (i.e., coordination) in

such circumstances and to study what norms can be upheld in equilibrium. In

particular, we are interested in the sustainability of biased norms, i.e., norms

that are misrepresentative of the private tastes in society.

For this purpose, we use a model of pairwise interaction between a large

number (a continuum) of individuals who can choose actions from a continuum.

All individuals differ in their private bliss points (or tastes), and the cost for

an individual of deviating from her bliss point is increasing with the size of

the deviation. At the same time, the individual feels peer pressure when

deviating from the action of another individual. Hence, the individual gains

by behaving similarly to others (i.e., coordinating) and this gain is increasing

the more similar she behaves to each other person in society. This means

that coordination with one person may imply miscoordination with another

person. In this setup, whether a norm exists or not depends on whether many

individuals choose to behave the same in equilibrium, despite having different

tastes, despite having the option to choose actions from a continuum and

despite the fact that partial gains of coordination are attained even without

behaving exactly the same as others.1

1Naturally, analyzing existence of coordination between many players, with gains from
partial coordination, rules out the usage of the common binary action model (e.g., Gra-
novetter 1978, Kuran 1995, and Neary 2012). A setup similar to ours has been used to
analyze other questions under a more restrictive set of functional form assumptions (Manski
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As an illustration, consider a Muslim girl who needs to choose headwear

when going to school. Her choice set contains at least seven forms of veiling

(ranging from burqa to hijab, see BBC 2010 for an illustration) and of course

a large number of non-veiling headwears (a scarf, a cap, no headwear, etc.).

When choosing headwear, she will need to trade off how similar her headwear

is to that of the other girls in class. For example, wearing a hijab would

imply full coordination gains with a classmate wearing a hijab as well, partial

coordination gains with a classmate wearing a burqa, a niqab, or a scarf, and

possibly no coordination gains with a classmate with no headwear. At the same

time, she needs to take into account her own private preference with respect

to headwear. Each of the other girls is of course facing a similar problem.

When all girls in class have made their choices, and none of them is inclined

to change headwear, we have an equilibrium. If there exists a headwear on

which (at least some) girls coordinate, despite their different tastes, we refer

to it as a social norm. Otherwise, if every girl chooses a unique headwear, we

say that no norm exists.2

The explicit modeling of pairwise interaction differentiates our paper from

and Mayshar, 2003; Kuran and Sandholm, 2008). Furthermore, it is important to note the
difference between our line of modeling and models of status and effort (e.g., Clark and
Oswald, 1998; Kandel and Lazear, 1992) or network externalities (see Jackson and Zenou,
2014, section 4.3). In these models there is agreement about what is right (to work hard
or achieve status) but there is an individual effort cost of getting there. In our model, on
the other hand, there is disagreement about the right action since tastes are heterogeneous,
but individuals gain by coordinating. Hence, we are interested in what sociologists call
a descriptive norm (something people do) while models of status and work effort have a
prescriptive norm (something people should do). See Cialdini et al. (1991), Cialdini (2003)
and Blumenthal et al. (2001) for a further discussion.

2In a recent paper, Carvalho (2012) studies veiling under peer pressure. In his paper,
veiling entails a positive peer effect stemming from all religious types, regardless of their
own veiling choices, and a negative peer effect from all secular types, regardless of their
veiling choices. In contrast, in our model pairwise pressure stems from differences in the
chosen actions of peers, which to us seems more natural for studying public expressions such
as veiling. This approach is pursued by Carvalho in a subsequent paper (Carvalho 2014)
which studies the integration of groups with different norms. However, there the gains
from coordination are assumed to be binary (i.e., arise only when two individuals behave
exactly the same). Hence, the relation between the gains from full coordination vs. partial
coordination, which is shown in the current paper to be crucial for the existence of norms,
cannot be investigated in that model.
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a branch of the literature that assumes that a norm exists and equals the

(weighted) average of what people do (see Glaeser and Scheinkman 2000 and

Ozgur 2011 for reviews and Michaeli and Spiro 2015 for a recent paper). In

this literature social pressure (or loss of miscoordination) is assumed to be

the lowest when a person completely conforms to the norm and, importantly,

this is independent of whether anyone else follows the norm. It could even

be that what is considered a norm in that setup would actually be the max-

imal point of pressure in a model of pairwise interactions like in our paper.3

Moreover, social pressure is after all a form of disutility. Hence, using a von

Neumann-Morgenstern (vNM) approach seems the most natural way to aggre-

gate pressure. To see this formally, denote the action of one individual by s and

the action of another individual she interacts with by s′. When the individual

interacts with many others, like in our model, the vNM aggregate pressure she

feels when stating s is Es′ [p (|s− s′|)], where p is the pairwise pressure between
two individuals. This is not the same as the pressure she feels when interacting

with a person who takes the average action in the population, p (|s− Es′ [s′]|),
as modelled in the previous literature just mentioned.4

We start by showing that existence of norms hinges on the curvature of

pairwise pressure (i.e., on the gains from full coordination relative to the gains

from partial coordination). When pairwise pressure is convex, a norm cannot

exist in equilibrium. The crude intuition for this is that in this case, slight

deviations from full coordination are inconsequential, so there is no need for a

person to act exactly as her peers, hence the person will want to deviate toward

her bliss point. Thus, when tastes are fully heterogeneous, then also on the

3As an easy example, consider a case where actions can be chosen in the whole range
[0, 1] but half of the population chooses 0 while the other half chooses 1. Here, treating 0.5
as the social norm would not only be somewhat unconvincing from a descriptive point of
view, but also, if pairwise pressure happens to be concave, contradictory to the nature of the
norm as a pressure-minimizing choice, as 0.5 would be the point where aggregate pressure
is maximized.

4In another branch of the literature individuals are punished for the private taste they
are perceived to have and the punishment increases the more deviant this perceived taste
is from an exogenous norm (e.g., Bernheim, 1994). This leads to a signaling model where
some types try to hide their tastes by behaving similarly to others. In our model pressure
is applied to actions of individuals.

4



aggregate level individuals do not act the same, which implies a norm does

not exist. Previous papers with a model similar to ours (Manski and Mayshar

2003 and Kuran and Sandholm 2008) are nested in this case as they assume

a quadratic pairwise pressure. In contrast, when pairwise pressure is concave,

the marginal benefit from coordination is increasing as individuals approach

each other, and hence equilibria with endogenous norms exist, provided that

concerns for coordination are suffi ciently strong.5

To see what the curvature of social pressure represents, consider the earlier

headwear problem, where, on an axis of strictness, burqa is stricter than hijab,

which itself is stricter than a scarf. Suppose now that a girl considers changing

headwear from scarf to hijab. A concave pressure implies that this change will

mainly reduce pressure arising from a girl already wearing hijab, while the

reduction of pressure arising from a girl wearing burqa will be smaller. A

convex pressure (e.g., quadratic costs) implies the opposite: when changing

from scarf to hijab, the reduction of pressure arising from the girl wearing

hijab is smaller than the reduction of pressure from the girl wearing burqa.

We show that a concave pairwise pressure is necessary and suffi cient for the

existence of a norm when tastes are fully heterogeneous (as long as individuals

care suffi ciently about coordination).

Furthermore, we characterize what patterns of behavior are self-sustaining

and imply norm existence in equilibrium. Two prototypical types of equilibria

that sustain a social norm exist. These differ in the fundamental feature of

who upholds the norm (i.e., which individuals coordinate). In the first type of

equilibrium society, the norm is upheld by individuals with private tastes close

to the norm. We call this an alienating society, as potential non-conformers are

those with tastes far from the norm —in that sense they are alienated. In the

second type of equilibrium society, those upholding the norm are individuals

whose tastes are far from it. By conforming, these individuals unwillingly help

to strengthen the norm, by making it more of a focal point. Meanwhile, those

5Showing this existence is not trivial, as most equilibria contain also non-conformers.
Aggregating over the pairwise pressures is thus complex, as the non-conformers put pressure
on others, with different tastes, to follow their non-conforming choices rather than the norm.
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who only slightly disagree with the norm choose to follow their private tastes.

We call this an inverting society, as actions are inverted relative to private

tastes.6

As mentioned, our second research question is what norms (i.e., which

points of coordination) a society can sustain. We are particularly interested

in analyzing the emergence of a biased norm in society —a coordination point

that is far from the average taste —and in understanding whether biasness

makes the norm stronger or weaker. Biased norms are commonplace in social

and political life. This has been documented in excessive drinking among

college students (for a review see Borsari and Carey 2001), in attitudes toward

alcohol prohibition (Robinson 1932, Cohen 2001) and toward racial segregation

(O’Gorman 1975, Fields and Schuman 1976, Miller and Prentice 1994), among

religious communities (Schank 1932) and vegetarians (Kitts 2003), in honor

cultures and honor killings (Colson 1975, Gladwell 2000, Milgram 1992, Wilson

and Kelling 1982, Centola et al. 2005), and in norms of violence (Cohen et al.

1996, Vandello and Cohen 2000).

We find that the difference between the alienating and inverting societies

in terms of who upholds the norm has implications for the existence of biased

norms. First note that the more biased the norm is, the larger is the overall

misalignment between the tastes of individuals and the norm —there are more

private bliss points far from the norm. Hence, in the alienating society, where

norm-deviators are those who strongly disagree with the norm, a biased norm

will be less sustainable than a central norm. Conversely, in inverting societies,

the norm draws its strength from those who privately disagree with it the most

as they are the ones who adhere to it. Thus, a biased norm will have more

6The patterns of individual behavior that characterize the alienating and inverting so-
cieties can emerge also in a model with an exogenous norm (see Michaeli and Spiro 2015).
However, when the norm is exogenous, the patterns of behavior do not affect the strength
of the norm and, more generally, are not required to be self-enforcing. Hence, such reduced-
form modeling cannot be used to investigate the two main research questions of the current
paper, about the conditions for the existence of a norm and about the strength and sustain-
ability of biased norms. Thus, we view the current paper as providing the microfoundations
for that earlier paper and more broadly for the strand of the literature that simply assumes
a norm exists (surveyed in Glaeser and Scheinkman 2000 and in Ozgur 2011).
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adherence and will survive under weaker conditions than a non-biased norm.

It will also be dynamically more stable. Our model thus predicts that inverting

societies will be particularly well suited for upholding biased norms as those

exemplified. It also points at the potential history-dependence of societies: If

a group of individuals, possibly a long time ago, established a particular norm,

this norm can be expected to persist long after the group is gone and private

tastes have changed.

The next section presents the model and analyzes the existence of a norm

in equilibrium. Sections 2 and 3 analyze the strength of biased norms and the

patterns of norm conformity in the alienating and inverting societies respec-

tively. Section 4 concludes. The appendix presents some auxiliary results and

all formal proofs.

1 A model of peer pressure and single-norm equilibria

Consider a society with a continuum of individuals, each having a different

bliss point t ∈ T ⊆ R, i.e., some private preference, ideology or opinion,
referred to also as the individual’s type. One can think of t as a position on

a political scale. Let f (t) denote a continuous probability density function

of types. Each individual chooses a publicly observable action (or stance),

denoted by s ∈ R. The inner disutility of an individual choosing action s
in public, D (|t− s|), increases in the distance between that action and the
individual’s type, representing the cognitive dissonance or displeasure felt by

her.

In addition, the individual feels social pressure. When choosing action s,

the social pressure arising from another individual choosing s′ is

p = p (|s− s′|)

which is increasing in the distance between s and s′ (p can also be thought

of as the loss from miscoordination when two individuals behave differently).

Such pressure arises between each pair of individuals, hence we refer to p as

pairwise pressure. This means that, given the actions of all types in society,
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s′ : T → R, the aggregate pressure felt by an individual taking action s is
given by

P (s; s′) ≡ Es′(τ) [p (|s− s′ (τ)|)] =

∫
τ∈T

p (|s− s′(τ)|) f (τ) dτ . (1)

This formulation captures the essence of the coordination problem: when a

person takes an action s which is similar to some s′1 taken by another person,

it may imply miscoordination with another person who takes s′2. Hence, the

individual has to trade off conformity (coordination) between different indi-

viduals.7

The objective of the individual is to choose an action s which minimizes

the total loss that arises from the inner disutility and the aggregate social

pressure

L (s; t, s′) ≡ D (|t− s|) + P (s; s′) . (2)

All individuals move simultaneously and hence take the actions of others

as given. An equilibrium is a mapping from the type space to the action space,

s∗ : T → R, such that, for each t ∈ T

s∗ (t) = arg min
s
{D (|t− s|) + P (s; s∗)} . (3)

That is, each individual optimally chooses her action s∗ (t), given the choices

of all others, such that the chosen actions recreate the ones taken as given

by the individual. Being interested in studying the emergence of a norm in

society and in the conditions under which this norm may be biased, we first

define what we mean by a norm.

Definition 1 A social norm is an action s̄ taken by a non-zero mass of agents.
If the social norm is not equal to the average type in society, the norm is said

to be biased.
7There are two ways to interpret equation (1). Either s is a statement or action made in

public, implying that P (s; s′) is an actual pressure felt when choosing s. Or, alternatively,
P (s; s′) is the expected pressure felt when not knowing whom one is about to interact with
under random pairwise matching (as, for instance, in Kuran and Sandholm 2008).
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We will analyze the existence and characteristics of the following type of

equilibrium.

Definition 2 A single-norm equilibrium is an equilibrium with one and only

one social norm.

Note that the continuity of f(t) excludes cases where a norm exists simply

because it represents the private preference of a mass of people. The single-

norm equilibrium is not the only type of equilibrium that may exist, as there

may be more than one norm in equilibrium. However, we confine our analysis

to the single-norm equilibrium and to inexistence of a norm in equilibrium.

Wherever applicable, we will perform the analysis for power functions of

the form

D= |s− t|α , (4)

p=K |s− s′|β , (5)

where α > 0 and β > 0 represent the curvature of cognitive dissonance and

pairwise pressure respectively. K represents the relative weight of the peer

pressure, and so captures the extent to which individuals care about social

pressure (or coordination). In our analysis, α, β and K are identical across

individuals in a given society. The heterogeneity is in individual tastes. We

let the distribution of types be uniform: t ∼ U (−1, 1). This of course makes

the problem more tractable but it also ensures that a biased norm, following

the above definition, does not arise as an artefact of the distribution of types

being non-symmetric.8 With the uniform distribution, following (1) and (5),

the aggregate pressure function becomes

P (s; s′) ≡ 1

2
K

1∫
−1

|s− s′(τ)|β dτ .

8The results of the first proposition, about the necessary conditions for existence and
the properties of conformity in single-norm equilibria, hold generally for any continuous
distribution of types. We illustrate and discuss in Appendix A how the later results (about
biasness of the norm) translate to other distributions of types.
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We start the analysis by characterizing what kind of peer pressure is needed

for the existence of single-norm equilibria and by characterizing the main prop-

erties of these equilibria when they do exist.9

Proposition 1 For any α > 0:

1. If β > 1, there exists no single-norm equilibrium.

2. If β ≤ 1 and β < α, single-norm equilibria exist, provided that K is

suffi ciently large. In all single-norm equilibria, the types closest to the

norm fully conform and hence non-conformers, if they exist, are only

types suffi ciently far from the norm.

3. If β ≤ 1 and α < β, single-norm equilibria exist, provided that K is

suffi ciently large. In all single-norm equilibria, the types closest to the

norm follow their hearts and hence only types suffi ciently far from the

norm fully conform.

The proof of the proposition appears in the appendix and the results are

depicted in Figure 1. As can be seen in the figure, the proposition spans

the entire parameter space. The two main results of the proposition are that

single-norm equilibria can exist if and only if β ≤ 1 and that there are two

mutually exclusive types of single-norm equilibria depending on whether α or

β is greater.10

The case of β > 1 is represented by the upper region in the figure. Loosely

speaking, it portrays a society where individuals are liberal in how they per-

ceive others’ opinions, in the sense that tension (p) arises in between two

individuals only when they choose distant actions. For two such liberal in-

dividuals, there will never be a reason to take the same action (unless they

happen to privately agree). Hence, also at the aggregate level, there will not

9In the following proposition, and throughout the paper, “following one’s heart”means
s (t) = t.
10In the limit case, α = β, the condition for existence is the same (K has to be suffi ciently

large), but both types of equilibria may arise.
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be any one mode of behavior that many follow, and this in fact holds gener-

ally for any continuous distribution of types.11 Note also that β > 1 nests the

special case of a double-quadratic function as has been analyzed by Manski

and Mayshar (2003), Kuran and Sandholm (2008) and Acemoglu and Jack-

son (2014). Their analyses have different focus than ours, but Proposition 1

implies that no norm can be sustained in the double-quadratic case.

As an illustration of the workings of a society where β ≤ 1, consider two

individuals of types t1 and t2 such that t1 < t2. Suppose that both individuals

start by following their hearts but they consider compromising on an interme-

diate action s̃ ∈ (t1, t2). If t1 changes her chosen action from s (t1) = t1 to

s (t1) = s̃, she makes it easier for type t2 to choose s̃ too (because p(|s̃− s (t1)|)
decreases from p (|s̃− t1|) to p (|s̃− s̃|)). However, at the same time, t1 also
makes it easier for t2 to follow her heart (because p(|t2 − s (t1)|) decreases
from p (|t2 − t1|) to p (|t2 − s̃|)). If peer pressure is concave, the decrease of
p(|s̃− s (t1)|) is greater than the decrease of p(|t2 − s (t1)|), which incentivizes
t2 to choose s̃ as well —conformity by leftists helps conform rightists. This

description suggests that concave peer pressure can facilitate clustering. How-

ever, in order to create a norm (i.e., coordination) in a society with many

individuals, it is the aggregate pressure P that has to be concave around the

norm, thus incentivizing individuals to fully conform. Indeed, if the pairwise

pressure p is concave and some individuals do cluster at a point s̄, then the

aggregate pressure P will also be concave around s̄, which facilitates the clus-

tering in the first place.12 For individuals in this cluster not to deviate from

it, it has to contain suffi ciently many of them. Hence, K has to be suffi ciently

large to make full conformity worthwhile for many.

A different angle on what the curvature of p means is attained by consid-

11In fact, the proof of the proposition also rules out the existence of multiple norms in
equilibrium when β > 1. The exception is the special case of α = 1, which cannot sustain a
single norm equilibrium but where there can potentially exist more than one norm.
12Note that a concave p is not a suffi cient condition for a concave P as, depending on

the distribution of actions, a concave p may also imply a convex P . For instance, in the
appendix (Lemma 5) we show that if all types follow their hearts (s (t) = t), then a convex
P would arise independently of the curvature of p. Hence, it is the concave p along with
clustering that creates the concave P .
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Figure 1: Graphical illustration of Proposition 1: Existence and main proper-
ties of single-norm equilibria depending on values of α and β.

ering support of sport teams. Suppose one person publicly supports team s1,

another person publicly supports team s2, while a third person publicly sup-

ports team s3, where the closeness between the teams is given by s1 < s2 < s3.

Now suppose the third person changes his support from s3 to s2. A concave

p implies that this change of support reduces pressure from the person also

supporting s2 more than it reduces pressure from the person supporting s1.

The proposition says that this concavity of p is what enables the existence of

social norms. A convex p, on the other hand, would mean that the change of

support from s3 to s2 mainly reduces pressure from the person supporting s1.

As is further expressed in statements 2 and 3, when β ≤ 1 there exist

two qualitatively different kinds of single-norm equilibria. These equilibria are

mutually exclusive as each exists for a different set of parameters and no other

kinds of single-norm equilibrium exist. This result is in fact independent of

the distribution of types. The two equilibria are treated in great detail in the

next two sections and they differ in whether or not they induce conformity by
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types close to the norm. This in turn depends on whether β or α is smaller,

i.e., whether p or D is more concave. To see why, note that a concave p,

which is the prerequisite for a norm to exist, implies that the properties of the

aggregate pressure (P ) at some point s̃ are mainly determined by types who

take stances close to s̃. Hence, close to the norm, P is mainly determined by

the norm conformers and thus P has the same curvature as p. Now consider

a type very close to the norm. Since P is very steep near the norm when p is

concave, this person will essentially compare the two corner solutions, that is,

compare the cost of speaking her mind with the cost of following the norm.

This comparison boils down to whether P or D is steeper for small deviations

from the norm and blisspoint respectively, as determined by the relative sizes

of β and α.13

When β < α, P is steeper than D for types near the norm, and deviating

from the norm becomes more painful than deviating from the bliss point.

Hence, in the equilibrium (or society) that arises, types close to the norm fully

conform. It is represented by the lower right region in Figure 1. As is further

expressed by Proposition 1 and will be shown in Section 2, the fact that those

closest to the norm fully conform implies that, if anyone does not conform,

these must be types far from the norm. In fact, they greatly deviate from the

norm and are in a sense alienated. Hence we call this an alienating society.

The opposite case, represented by the lower left region in Figure 1, is where

α < β. Here D is steeper than P near the norm and hence for types close to

the norm it is more costly to deviate from the bliss point than to endure the

pressure when deviating from the norm. Hence, this society does not induce

conformity by types close to the norm. Instead, these types follow their hearts.

Since in a single-norm equilibrium somebody has to uphold the norm, the fact

that those close to the norm do not conform implies that there is a cutoff

beyond which some types do conform. That is, and perhaps surprisingly,

individuals who dislike the norm are the ones upholding it. We call this an

inverting society since the private tastes and the public actions are inverted

13Analytically, (t− s)α is steeper and thus larger than K (s− s̄)β when the arguments
approach zero if and only if α < β (and K is finite).
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between those close to the norm and those far from it. The full intuition for

this pattern of conformity and further properties of this case will be explained

in Section 3, where we study a special case in more detail.

As parts 2 and 3 of Proposition 1 state, there is potential for multiple

single-norm equilibria for each set of parameters that allows their existence.

However, these equilibria differ only in the location of the norm, and share

the same basic society characteristics regarding who upholds the norm. The

possible location of the norm, and how this location affects the sustainability

of the norm, is the second main question of this paper. Hence, the next two

sections concentrate on a comparative-statics analysis of the different equilib-

ria (different norm locations), showing whether equilibria with biased norms

require larger or smaller weight of peer pressure (K). Performing this analysis

for any combination of α and β is very diffi cult. We therefore look at two sim-

plified special cases which capture the essential properties of our two society

types. As expressed in Proposition 1, which of the two kinds of societies will

emerge crucially hinges on which of α and β is smaller. Hence, we will let the

smaller of the two parameters approach zero. I.e., the case of β being smaller

than 1 and smaller than α will be illustrated by letting β approach 0, implying

that p is a step function. The case of α < β ≤ 1 will be illustrated by letting

α approach 0, implying that D is a step function.

2 Alienating societies

The purpose of this section is to further examine the case represented by point

2 of Proposition 1 and by the lower right region in Figure 1. The fundamental

characteristic of this case is that p is concave and, in particular, more concave

than D. To capture this very concave pairwise pressure, we let p be a step

function,

p (|s− s′|) =

{
K if |s− s′| 6= 0

0 if |s− s′| = 0
(6)

while D = |s− t|α for some α > 0. A first useful result thus follows.

Lemma 1 Suppose that p is given by (6), D is given by (4) with α > 0 and a
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single norm s̄ exists and is followed by a share x of the population. Define

y ≡ (xK)1/α . (7)

Then for an individual of type t, the optimal action is given by

s∗ (t) =

{
s̄ if |t− s̄| ≤ y

t otherwise
. (8)

This is a partial equilibrium result showing which action an individual

will take given the existence of a norm s̄. Since (6) implies that the only

way to avoid being pressured by someone is to fully agree with her, the only

way to lower aggregate pressure to any meaningful extent is by choosing a

mode of behavior followed by many. When a single norm exists, this can be

achieved only by following this norm. Furthermore, since all actions except

for following the norm yield the same pressure, the only effect of the pressure

is in determining how unpleasant it feels to take any of these actions relative

to following the norm. This is determined by the share of norm followers x:

P =

{
K if s 6= s̄

(1− x)K if s = s̄
. (9)

Given such a social pressure function P , the only sensible thing to do for an

individual is to either follow the norm (thereby lowering pressure) or to follow

her heart (thereby not feeling cognitive dissonance). Any other choice will

induce some cognitive dissonance while not reducing social pressure. Moreover,

two individuals of different types face the same reduction in pressure when

following the norm, but differ in the cognitive dissonance that accompanies

it. Thus follows the behavior depicted by the lemma —a type close to the

norm will conform to it while a type far from the norm will follow her heart,

in a sense being alienated. The parameter y in Lemma 1 captures the distance

between the norm and the type who is indifferent between the two corner

solutions. That the norm will be upheld by those closest to it thus echoes the

result for the more general case of β smaller than 1 and smaller than α, as
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stated in point 2 of Proposition 1.

The previous lemma implies that if we assume that individuals divide into

two distinctive kinds —those who follow the norm and those who follow their

hearts — then that same qualitative division is obtained after inducing the

individual choices. This hints at the possibility of an equilibrium. However,

the actual existence of an equilibrium hinges on the share of norm followers

implied by (8) being equal to the value of x that is assumed in the lemma.

In order to establish this relation, the following lemma presents the share of

norm followers given the individual optimization in (8).

Lemma 2 Suppose s∗(t) is according to (8), for a given value of y. Then the
share of individuals following the norm s̄ is

x =


y if y ≤ 1− |s̄|
y+1−|s̄|

2
if 1− |s̄| < y < 1 + |s̄|

1 if y ≥ 1 + |s̄|
. (10)

Furthermore, x is increasing in y and decreasing in |s̄|.

This lemma presents the share of the population (x) that follows the norm

as a function of y (the distance between the norm and the indifferent type). It

builds on the previous result that those close to the norm fully conform while

those far from it follow their hearts. This directly implies that the further

from the norm the indifferent type is, the greater is the number of individuals

conforming to the norm. The use of a uniform distribution at [−1, 1] implies

that when s̄ = 0 we automatically get that x = y, but when s̄ 6= 0 the mapping

from y to x is not one-to-one for every y, as expressed in (10).

A static equilibrium of the model is essentially a fixed point, defined by a

triplet (x, y, s̄) that satisfies Lemma 1 and Lemma 2 simultaneously. The con-

ditions for the existence of such an equilibrium are presented in the following

proposition.

Proposition 2 Suppose that pairwise pressure is according to (6) and D is

given by (4) with α > 0. Then:
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1. For each value of s̄ ∈ [−1, 1] there exists a single-norm equilibrium with

s̄ as the norm if and only if K is suffi ciently large.

2. Denote by Kmin (|s̄|) the infimum value of K that supports a single-norm

equilibrium with s̄ as the norm. Then Kmin (|s̄|) is weakly increasing in
|s̄|.

This proposition expresses two main results which extend part 2 of Propo-

sition 1. Firstly, there exist single-norm equilibria for any s̄, i.e., the norm

may be biased. This holds as long as individuals care suffi ciently about social

pressure —K has to be greater than Kmin (|s̄|).14 Secondly, the more biased
the norm is, the larger is the K needed to sustain it in equilibrium. This

last result is a key result. It essentially says that in order to uphold a biased

norm, individuals in society need to care about social pressure more than is

needed in order to uphold a more central norm. The intuition for this result

is that the strength of the norm depends on the number of followers, where

potential deviators are types with tastes far from the norm. When the norm

is biased, there are more private tastes further away from the norm and hence

more potential deviators. To sustain the norm this has to be compensated for

by a heavier weight of pressure (i.e., a stronger emphasis on coordination).

Figure 2 depicts this equilibrium. The two graphs on the left show the case

of a central norm, where the distribution of actions is shown in the upper left

schedule and the mapping of types to actions in equilibrium is shown on the

lower left. In this particular case all individuals conform fully to the norm.

The right graphs show the case of a biased norm. Here, a group of extreme

objectors express their heterogeneous private tastes

The previous results imply that, for a given value of K, there can be multi-

ple equilibria, as the norm can be located anywhere along a continuous range,

but these equilibria share the same pattern of norm conformity —alienation.

Moreover, even for given values of K and s̄ there can be multiple single-norm

14In the case of α > 1 we get that Kmin = 0. This is a direct consequence of p being a
step function. If one were to assume a less concave p (i.e., not a step function), Kmin would
have been greater than zero also when α > 1. The rest of the results presented are not
specific to the step function assumption: they hold more generally when β < α and β ≤ 1.
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Figure 2: The left graphs show the distribution of actions (top) and s∗ (t)
(bottom) in equilibrium with a central norm (s̄ = 0). The right graphs show
the distribution of actions and s∗ (t) in equilibrium with a biased norm (s̄ =
−0.5). In all figures β = 0.01, α = 0.9 and K = 1.2.

equilibria. However, not all equilibria are dynamically stable, in the sense that

a small perturbation to the share of norm followers may not lead to conver-

gence back to the same equilibrium. In order to rule out such equilibria that

have no gravity and to investigate further the properties of the stable equi-

libria, we add a simple dynamic structure to the model (as in, for instance,

Granovetter 1978 and Kuran 1995). The dynamics considered are such that

we perturb the share of norm followers in a single-norm equilibrium and exam-

ine whether there is convergence back to that equilibrium. Let i indicate the

period of the dynamic process (representing a time period or a generation).
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Then, an individual of type t in period i solves the following problem.

min
si

L
(
si; t, s

′
i−1

)
=D (|t− si|) + P

(
si; s

′
i−1

)
where (11)

P
(
si; s

′
i−1

)
≡ 1

2

1∫
−1

p
(∣∣si − s∗i−1(τ)

∣∣) dτ .
This formulation implies that a person in period i plays a best response against

the observed behavior in society in period i−1. It can be interpreted either as

individuals adjusting their actions when observing how others are acting, or

as an overlapping generations model, where the actions of the older generation

(the parents) create pressure on the younger generation (the kids), who put

pressure on the next generation and so on.15

In the following proposition (and in Proposition 5 later on) we use xss (|s̄| , K)

to denote the share of norm followers in a stable single norm steady state. We

also present a welfare analysis, where the welfare of an individual with loss L

is simply −L. This analysis enables us to establish a relationship of first-order
stochastic dominance between different norms.16

Proposition 3 Consider the dynamic model in (11) with p being a step func-
tion as in (6) and D as given in (4) with α > 0. Then:

15Implicitly we assume here that the distribution of types is stationary between genera-
tions. For short to medium-run analysis (say, limited to at most a few decades) this seems
reasonable.
16For given values of K and s̄ there can be up to two different stable single norm steady

states, corresponding to two different values of xss (|s̄| ,K). When there are two such steady
states, one is always “degenerate” (xss (|s̄| ,K) = 1) and one is always “non-degenerate”
(xss (|s̄| ,K) ∈ ]0, 1[). The comparison of xss (|s̄| ,K) with xss (|s̄′| ,K) in statement (2)
of the proposition is thus applied as follows: When there exist two xss (|s̄| ,K) and two
xss (|s̄′| ,K), the proposition compares the non-degenerate with each other and the degen-
erate with each other; when there exist two steady states for s̄ and one for s̄′ (or vice versa),
the proposition compares max {xss (|s̄| ,K)} with max {xss (|s̄′| ,K)}; finally, when there
is only one steady state for each norm, the proposition compares the unique xss (|s̄| ,K)
with the unique xss (|s̄′| ,K). Moreover, whenever there exist two stable steady states for a
given norm, the welfare distribution in the degenerate steady state first-order stochastically
dominates the welfare distribution in the non-degenerate steady state (see see Lemma 19
in the appendix). Hence, we apply the same comparison rule to the comparison of welfare
distributions in statement (3) of the proposition.
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1. For any s̄ ∈ [−1, 1], there exists a stable single norm steady state if and

only if K > Kmin (|s̄|).

2. xss (|s̄| , K) ≥ xss (|s̄′| , K) if and only if |s̄| ≤ |s̄′|.

3. Consider a norm s̄ and suppose K > Kmin (|s̄|). Let xi denote the share
of norm followers in period i. Then there exists a value xconv (|s̄| , K)

such that if xi > xconv (|s̄| , K), there is convergence to a stable steady

state with a single norm s̄ followed by a share xss (|s̄| , K) > xconv (|s̄| , K).

Otherwise, if 0 ≤ xi ≤ xconv (|s̄| , K), there is convergence to a stable

steady state where each type follows her heart.17

4. xconv (|s̄| , K) is increasing in |s̄| and decreasing in K.

5. The welfare distribution under |s̄| first-order stochastically dominates the
welfare distribution under |s̄′| if and only if |s̄| ≤ |s̄′|.

To understand these results, recall that Lemma 1 shows that alienation

is a distribution of actions that recreates itself. That is, if in period i there

is a cutoff distance from the norm, beyond which types follow their hearts

and within which they follow the norm, then there will exist such a cutoff

also in period i + 1. This implies that, for a given s̄, the dynamics of the

model can be described by analyzing the dynamics of the proportion of norm

conformers, xi+1 = f (xi). This function is the main building block for proving

Proposition 3. We demonstrate a prototypical case in Figure 3 for α < 1. The

figure depicts a phase diagram with xi on the horizontal axis and xi+1 on the

vertical axis. The 45-degree diagonal depicts the steady state values, where

xi+1 = xi. As can be seen in the figure, f(0) = 0, and then f (xi) starts below

the 45-degree line, but afterwards it increases and crosses the 45-degree line

and stays above it. Hence, x = 1 and x = 0 are stable steady states in this case,

while there is an interior unstable steady state between them. The value of x

in this inner state (xconv in the proposition) also forms the boundary between

17For brevity, we treat the unstable steady states (xuss) as ones where if xi = xuss then
xi+1 < xuss.
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Figure 3: A phase diagram showing the dynamics for s̄ = −0.5, p being a step
function, α = 0.6 and K = 1.5. The dotted line depicts the diagonal where
xi+1 = xi, the solid line depicts the intertemporal dynamics xi+1 = f (xi). The
vertical line depicts xconv, i.e., the boundary between the zone of convergence
to a single-norm equilibrium (x = 1) and to “pluralism”(x = 0).

the zone of convergence to a stable single norm (with xss = 1) and the zone of

divergence toward a state of pluralism (x = 0). The figure also highlights that

the steady state in which a norm exists is stable not only with respect to small

perturbations: there is convergence to it from a rather broad range of initial

conditions (depending on the value of K). In the specific example depicted in

the figure, the stable single norm steady state is degenerate, in the sense that

everyone in society adheres to the norm (xss = 1), but more generally there

can be non-degenerate stable steady states (xss < 1), i.e., where part of the

population is alienated.

Apart from convergence, the proposition also highlights the effect of the

bias of the norm. Parts (1) and (3) of the proposition imply that a biased norm

can persist also in a dynamic setting. This means that societies may be history

dependent in the following sense. Suppose a group of individuals at some point

choose the same action. Then, provided that they are suffi ciently many (xi >
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xconv (|s̄|)), this mode of behavior may be established as a norm andmay persist
also after those individuals are gone, even if it does not represent the average

private taste in society. Note also that if that initial group is only slightly

larger than xconv, the norm will gain more followers over time, thus becoming

stronger. The fourth part of the proposition states that the minimum amount

of conformity (xconv) necessary for the norm to be sustainable in the long run is

decreasing in the weight of the pressure and increasing in the bias of the norm.

This can be demonstrated using Figure 3. By increasing K, the function f (xi)

tilts upwards, which implies that xconv decreases and so the zone of convergence

to the single-norm equilibrium increases. In contrast, by increasing |s̄|, the
function f (xi) tilts downwards, implying a smaller zone of convergence. Hence,

increasing K and increasing |s̄| work in opposite directions. This means that,
while a biased norm can persist in this dynamic setting, the more biased it

is, the less magnetic it is, unless it is compensated for by a larger K. Hence,

biased norms are less sustainable than central norms in two ways. Firstly, they

require people to care more about social pressure (Kmin is higher). Secondly,

they require more conformity in the first period (xconv is higher).

Part 2 of the proposition implies that public cohesion in society — i.e.,

the extent of norm conformity — is falling with biasness. This has further

implications for the sustaining and collapse of norms. To see why, suppose that

a long time ago a steady state with a norm s̄ was established based on the type

distribution of that time. Now suppose that the type distribution, throughout

history, has gradually shifted away from the norm due to a change of private

sentiments in society. Part 2 implies that this shift will be accompanied by a

decline in norm conformity. Eventually, once the type distribution has shifted

suffi ciently, the norm s̄ will no longer constitute a stable steady state (this

happens when f (xi) shifts below the 45-degree line in Figure 3) and the norm

will collapse.

Part 5 of the proposition addresses the issue of welfare, stating that the

welfare distribution under a biased norm is stochastically dominated by that

of a more central norm. First order stochastic dominance between the welfare

distributions under s̄ and s̄′ means that, if we rank individuals according to
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their welfare under each norm, then an individual at rank r under s̄ is at

least as well off as an individual at rank r under s̄′, and this holds for all

ranks. Quite intuitively, the ranking of individuals under a given norm follows

from their distance to that norm. That is, type t has a higher welfare than t′

whenever |t− s̄| < |t′ − s̄|. This implies that the types far from the norm who
follow their hearts are at the bottom of the ranking. Also note that, when p is

a step function, a person who follows her heart under s̄ has the same welfare

as a person who follows her heart under s̄′. Thus, given that under a biased

norm there are more people who follow their hearts, a biased norm implies

there are more people with this lowest welfare. Moreover, those who conform

under both norms are better off under the central norm, as there are less non

conformers who pressure them.

However, while the welfare distribution under a central norm stochasti-

cally dominates all other welfare distributions, it is not Pareto dominant.18

Our interpretation of these welfare results is that, while there will always be

disagreement between specific individuals about what the best norm is, the

alienating society is more likely to establish a central norm, as it will imply a

higher welfare for more people. Hence, to the extent that the alienating society

sustains biased norms, it is probably due to a shift of private sentiments away

from what used to be, historically, a central norm. Generally, the proposition

paints a coherent picture of biased norms being weaker than central norms in

alienating societies as they imply less cohesion, lower welfare and a smaller

zone of convergence, and require a harsher punishment to be sustained.

3 Inverting societies

The purpose of this section is to further examine the case represented by point

3 of Proposition 1 and by the lower left region in Figure 1. The fundamental

characteristic of this case is that D is concave and, in particular, more concave

than p. To capture this very concave cognitive dissonance, we let D be a step

18This is somewhat easy to see when considering the case of α < 1 and noting that types
suffi ciently close to the norm would rather have the norm exactly at their bliss point rather
than at 0, due to the concavity of D, but it can be shown that this result applies more
broadly to any combination of K and α.
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function,

D (|t− s|) =

{
1 if |t− s| 6= 0

0 if |t− s| = 0
(12)

while p = K |s− s′|β for some β ≤ 1. A first useful result is the following.

Lemma 3 Suppose D is according to (12) and P (s; ·) has a unique min point
at s̄ and is increasing in the distance from s̄ on each side. Then on each side

of s̄ there exists a cutoff value such that types within the cutoff follow their

hearts while types beyond the cutoff choose s∗(t) = s̄.

The intuition for this result is straightforward. When D is a step function,

an individual will either follow her heart or, once she deviates from her private

taste, choose the action that lowers social pressure the most —this action is

s̄ in the lemma. This is so because she does not distinguish between actions

that are not exactly her private taste. Hence, the lemma essentially says that

a minimum point of social pressure s̄ may function as a norm by inducing full

conformity by some types. The question then is which individuals will be the

full conformers and which individuals will follow their hearts. When social

pressure is increasing with the distance from the norm, types far from the

norm will find it the hardest to follow their hearts. Meanwhile, the dissonance

of deviation from one’s bliss point is independent of type. Hence, there will

be a cutoff distance from the norm such that types beyond it fully conform,

while types within it will follow their hearts. On the aggregate level this can

be interpreted as an inversion of preferences, as those who despise the norm

the most are the ones following it in public. Furthermore, the fact that those

who nearly agree with the norm follow their hearts openly can be interpreted

as existence of mild critique. This pattern of conformity thus echoes the result

for the more general case of α < β ≤ 1, as stated in part 3 of Proposition 1.

Now, the previous lemma was a form of partial equilibrium since it assumed

that P monotonically increases in the distance from a unique minimum point

s̄. The question then is whether the individual choices implied by Lemma 3

induce such properties of P . In the upcoming analysis we will again use y

(with some abuse of notation) to denote the distance between the norm and
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the type who is indifferent between following her heart and following the norm.

Lemma 4 Suppose that β ≤ 1 and that there exist a norm s̄ ∈ [−1, 1] and a

cutoff value y ∈ [0, 1 + |s̄|] such that all types with |t− s̄| ≤ y choose s∗(t) = t

while the rest choose s∗(t) = s̄. Then there exists a value ymax (s̄) ≥ 1 such

that P (s; ·) has a unique min point at s̄ and is increasing on each side of s̄ if
and only if y ≤ ymax (s̄).

While the previous lemma described what individuals choose given so-

cial pressure, this lemma describes the properties of social pressure given the

choices of individuals. The bottom line of Lemma 4 is that if there is inversion

preferences, then P will be increasing in the distance from the norm, as long

as there are suffi ciently many norm followers. This is the same as requiring

that the most deviant action in society (at distance y from the norm) is not

too deviant. ymax (s̄) then measures how deviant this behavior can be while

still ensuring that P is everywhere increasing in the distance from s̄.

Put together, Lemmas 3 and 4 allude to the existence of an equilibrium,

since the first says that inversion of preferences will arise if P is increasing

in the distance from s̄ and the second says that given inversion, P will be

increasing in the distance from s̄. The conditions for the existence of such an

equilibrium are presented in the following proposition.

Proposition 4 Suppose D is according to (12) and p is according to (5) with

β ≤ 1. Then:

1. For each value of s̄ ∈ [−1, 1] there exists a lower bound for K, denoted

by Kmin (|s̄|), such that a single-norm equilibrium with a norm s̄ exists

if and only if K ≥ Kmin (|s̄|).

2. Kmin (|s̄|) is weakly decreasing in |s̄|.

The existence of single-norm equilibria when α < β < 1 was stated already

in Prop 1 (part 3), but the current proposition adds that any norm s̄ in the
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range [−1, 1] can be sustained in equilibrium as long as K ≥ Kmin (|s̄|).19 For
the norm to exist, it has to constitute an attractive mode of behavior, relative

to other modes of behavior an individual can adopt. For this to be achieved,

enough individuals need to fully conform, thereby lowering pressure at the

norm. This requires that individuals care suffi ciently about coordinating with

others —K has to be suffi ciently large. Unlike the alienating society (see

Proposition 2), here the pattern of individual choice is that of inversion of

preferences. In the appendix (Lemma 26) we show that inversion is the only

pattern of individual choice consistent with a single-norm equilibrium when D

is a step function.

The second part of the proposition implies that a biased norm not only

may exist, but also the conditions for its existence are less demanding the

more biased it is —individuals can care less about social pressure. The crude

intuition for this is that inversion implies that types far from the norm uphold

it. Hence, a norm that is far from people’s tastes generates more conformity,

which makes the norm stronger.

For a more detailed explanation, consider the distribution of actions under

a central norm, as depicted in the upper left panel of Figure 4. Suppose now

that we move the norm slightly toward the left edge. The conformity of types at

the edges of the type distribution then implies that the “distribution package”

will move together with the norm without changing appearance —those beyond

s̄± y will fully conform, while those within this range will follow their hearts.
This illustrates that biased norms may exist. Now, if we continue moving s̄

leftward, at some point the type t = s̄ − y will equal −1. When moving s̄

beyond this point, the left wing of the uniform part will be truncated (as in

the upper right panel of Figure 4). This truncation of the left wing further

implies a narrowing of the right wing. The reason for this is that the effect of

truncation of the left wing is similar to inducing conformity by people on the

left side of the norm. Then, as explained in Section 1, the concavity of peer

pressure implies that the conformity of leftists will inspire more conformity of

19Note that this value is not necessarily equal to the Kmin (|s̄|) under alienation in Propo-
sition 2.
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Figure 4: The left graphs show the distribution of actions (top) and s∗ (t) in
equilibrium (bottom) with a central norm (s̄ = 0). The right graphs show the
distribution of actions and s∗ (t) in equilibrium with a biased norm (s̄ = 0.9).
In all figures β = 0.6, α = 0.1 and K = 1.6.

rightists, making the norm a stronger focal point. Consequently, a lower K

is needed in order to sustain the norm in equilibrium. All in all, biasness of

the norm thereby compensates for weakness of social pressure, making biased

norms more sustainable than central norms. Put differently, biasness facilitates

coordination.

We will now analyze the dynamic stability of these equilibria and the prop-

erties of the stable ones. For this purpose we add the same dynamic structure

to the model as we did in the previous section (see equation 11). Here we will

perturb the cutoff y in a single-norm equilibrium and examine whether there
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is convergence back to this equilibrium.20

Proposition 5 Consider the dynamic model in (11) with D being a step func-

tion as in (12) and p as given in (5) with β ≤ 1. Then:

1. For any s̄ ∈ [−1, 1], there exists a single norm stable steady state if and

only if K > Kmin (|s̄|).

2. xss (|s̄| , K) ≤ xss (|s̄′| , K) if and only if |s̄| ≤ |s̄′|.

3. Consider a norm s̄ and suppose K > Kmin (|s̄|). Let yi denote a cutoff
value in period i, such that all types with t ∈ [s̄− yi, s̄+ yi] follow their

hearts while the rest follow the norm. Then there exists a value yconv (|s̄|) ,
such that there is convergence to a stable steady state with a single norm

s̄ if yi < yconv (|s̄|).

4. yconv (|s̄|) is increasing in |s̄|.

To understand these results, first note that Lemmas 3 and 4 together imply

that inversion of preferences in period i recreates inversion in period i+1 with

a new cutoff value of conformity. This implies that the dynamic process can

be described solely by the dynamics of the cutoff yi. Figure 5 shows a phase

diagram that depicts yi+1 (vertical axis) as a function of yi (horizontal axis).

As can be seen from the figure, there is a stable steady state with a norm

when yi = yss. The existence of such a steady state for a given |s̄| hinges on K
being greater than Kmin(|s̄|), as defined in the static Proposition 4. It may be
interesting to note that the steady state is never degenerate —there is always

a share of the population (those close to the norm) who follow their hearts. In

the proof of the proposition we show that an increased |s̄| pushes the function
yi+1 downward, which implies that yss decreases with biasness, so that the

most deviant behavior in the steady state becomes less deviant. This has the

20Since for given s̄ andK there can exist more than one stable single-norm state steady, the
comparison of the share of norm followers (xss) in statement 2 in the following proposition
is similar to the comparison in Proposition 3. See the proof of statement 2 of Proposition 5
for details.
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Figure 5: A phase diagram showing convergence to a stable single-norm equi-
librium when s̄ = −1, for D being a step function, β = 0.5 and K = 2.
The dotted line depicts the diagonal where yi+1 = yi, the solid line depicts
the intertemporal dynamics yi+1 = f (yi). The vertical lines depict the upper
bounds for convergence, yuss and ymax (with yuss being the binding one in the
case depicted here). The phase diagram is not defined for yi > ymax.

further consequence that the share of the population conforming increases with

biasness (part 2 of the proposition). This means that cohesiveness increases

with the bias of the norm as the deviant behavior becomes less extreme and

there are more norm conformers.

If yi < yss, society will converge to this stable steady state. Furthermore,

there may be another, unstable, steady state at yuss, which marks the border

between the convergence zones. The existence of yuss hinges on f (yi) inter-

secting the 45-degree line twice to the left of ymax, as depicted in the diagram.

Beyond ymax, P is non-monotonic and hence the phase diagram is not applica-

ble. If there exists such yuss < ymax, then yi < yuss is a necessary and suffi cient

condition for convergence to the stable steady state yss. However, if there does

not exist such a yuss, there is convergence to yss starting from any yi < ymax.

Hence, the suffi cient conditions for convergence are that yi < ymax and that
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yi < yuss whenever yuss exists. The last point of the proposition states that the

range of convergence, [0, yconv ≡ min {yuss, ymax}], increases with biasness.21

yconv may be interpreted as the maximum level of initial public deviance. If

initially a norm exists and the most deviant behavior is less deviant than yconv,

then this norm will stay stable over time. It should be noted, as is exemplified

in Figure 5, that yconv is often much larger than yss. Hence, we can start with

a norm that is to a non-trivial degree weaker than in the steady state and still

converge to the steady state. What point (4) of the proposition suggests is that

the most deviant behavior in the first period can be more deviant the more

biased the norm is.22 Furthermore, Lemma 3 tells us that, in the first period,

the norm need not necessarily be established through inversion of preferences

—it is suffi cient that one focal mode of behavior exists and then inversion will

ensue in later periods. So an inverting steady state may be attained from a

non-inverting initial condition. We thus get history dependence: if a group of

individuals, possibly a long time ago, had established together one focal mode

of behavior, this mode of behavior could become an endogenous norm, upheld

by those who despise it the most.

One may note that Proposition 5 is silent about welfare. The reason for this

is that, unlike in the alienating society, here it is not possible to get a consistent

ranking of norm locations according to first-order stochastic dominance of

welfare distributions.23 The rough intuition for this is that on the one hand,

21This is so because an increased |s̄| not only tilts the function yi+1 downwards, which
implies an increase in yuss, but also because ymax increases with biasness.
22We say “suggests” since the proposition only establishes suffi cient conditions for con-

vergence (y0 < min {yuss, ymax}) as beyond ymax pure inversion may not be maintained,
which substantially complicates the analysis. To see what happens when y0 is beyond ymax

we have performed an extensive set of simulations of the model for different combinations
of α, β and K. They consistently show the same results: there is in practice a maximum
value of y0 below which there is convergence to a steady state with inversion, and above
which society converges to pluralism. Importantly, this numerical cutoff of convergence is
increasing in biasness.
23There is a handful of examples of pairs of norms whose corresponding welfare distri-

butions do not stochastically dominate each other. Furthermore, it can be shown that a
suffi cient condition for guaranteeing that there is no stochastic dominance of the welfare
distributions under |s̄| = 0 and |s̄| = 1 is that yss under |s̄| = 0 will be smaller than 1.5
times yss under |s̄| = 1. This suffi cient condition holds for many parameter combinations
that support stable equilibria at both |s̄| = 0 and |s̄| = 1, e.g. β = 0.5 and K = 4.
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the maximal welfare under each distribution, experienced by the type exactly

at the norm, is higher the more biased the norm is (because biasness implies

more norm conformers and a narrower uniform part); but on the other hand,

types at the far edge of the uniform part are worse off under a more biased

norm, because they are further away from the norm compared to their equally

ranked counterparts under the less biased norm and are more pressured given

that the norm is stronger. One possible interpretation for this ambiguity with

respect to welfare is that in the inverting society it is less clear-cut which norm

will arise in equilibrium, whereas in the alienating society central norms seem

unambiguously more plausible. However, once a norm has been established,

the predictions for the inverting society are unambiguous: Biased norms are

more stable, as they require lower social pressure (Kmin is lower), imply more

cohesion (xss is higher) and maintain their dynamic attraction in the presence

of more deviant behavior. Furthermore, a norm will not collapse due to a shift

of private sentiments away from it, as this will only increase cohesion.

4 Conclusion

This paper studies the existence, location and sustainability of endogenous

social norms under peer pressure. In many situations characterized by peer

pressure, individuals may truly disagree (on a private level) about the right

ideology or best conduct. Hence, there will not exist a consensus behavior

that can make for an exogenous norm. Nevertheless, we show that in these

situations a clear norm (or point of coordination) may be endogenously sus-

tained and will also be dynamically stable. That is, there may seem to exist

a consensus about a certain mode of behavior, which many in society adopt,

while in fact individual preferences are completely heterogeneous. Moreover,

a norm that is biased with respect to private preferences will sometimes be

more sustainable than a representative norm. This can shed light on the sus-

tainability of biased norms, as observed for example in religious communities,

racial attitudes and honor cultures.

The paper maps societies into a class that cannot maintain an endogenous

norm and a class that can. Within the class that can, the paper highlights
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a fundamental difference between two main subclasses of societies. Firstly, in

societies where pairwise pressure is suffi ciently concave, individuals with tastes

that are very different from the norm may be alienated and act according to

these tastes in public. For a norm to survive in this type of society, it has to

be suffi ciently representative of the tastes of individuals in society. If society

is very heterogeneous, or the norm is biased, a norm can be sustained only

under strong pressure to coordinate. In the other subclass of societies, where

pairwise pressure is not suffi ciently concave, preferences will be inverted —

the ones following their hearts will be those with tastes that are only slightly

different from the norm, while those who privately dislike the norm the most

will fully conform. This means that in this kind of society we should observe

only small deviations from the norm. Here biased norms are more sustainable

and more magnetic than representative norms.

We believe the model in this paper represents an essential element in human

interaction. Namely, that coordination problems arise in between multiple

individuals with heterogeneous tastes. Analytically proving outcomes in this

setting is not a trivial matter and we have not exhausted the possible equilibria

that can arise. However, our results of the dynamic model strongly indicate

that the single-norm equilibrium, which has been the focus of this paper, is

not just a technical possibility —outcomes will tend to gravitate toward these

equilibria from a broad set of initial conditions.
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A Appendix: Non-uniform distribution of types

The results of when alienation and when inversion arises and that these equi-
libria cannot exist for the same set of parameters hold for any continuous
distribution of types. The results and logic of norm location, however, have
to be refined.
When β < α (and β ≤ 1), single-norm equilibria will be characterized by

alienation. This has implications for the location of the norm and for the level
of cohesion in society. It implies that unless K is very large, the norm can be
sustained only if it is located such that many in society largely agree with it
privately. This is since otherwise there would be a large portion of opposers
to the norm, who, by opposing, would make conforming unattractive even to
those who object the norm less. Figure 6 shows steady states under some
other distributions of types. Under a normal distribution, the norm has to
be located within the bell of the normal distribution (as represented by the
mass point in the upper left panel of Figure 6). Alternatively, if the whole
distribution is skewed, the norm needs to be located on the same side as the
mass of types (upper right).
When α < β ≤ 1, single-norm equilibria are characterized by inversion.

Hence, for a norm to be sustainable and have a high degree of cohesion it has
to be located away from any mass of private opinions. Otherwise, if there is
a mass of people with tastes close to the norm, these people will choose to
follow their hearts, and by doing so will make the norm less attractive even
to those whose tastes are further away (and are therefore subject to more
pressure when following their hearts). This can be seen in Figure 6 (bottom
left), where we illustrate a case with a normal distribution of types. The norm
cannot be sustained within the bell-shape but only at the tails. On the bottom
right of Figure 6 we see that if the type distribution is bimodal, a norm can
be sustained virtually anywhere except close to the peaks.24

B Appendix: Initial analytical results

For ease of notation, throughout all the upcoming appendices, we will use P (s)
instead of P (s; s′) to denote the aggregate pressure felt by choosing action s
under a predefined distribution of actions in society.

24Under a skewed distribution (e.g. an exponential distribution) it may be possible to
support a norm also close to the peak of private preferences. However, this norm will only
be followed by very few types with private tastes in the tail, while the vast majority will
follow their hearts. Hence, the simulation- and intuition-based conjecture is that it will be
hard to sustain a norm with high degree of cohesion if the norm is located such many nearly
agree with it but not fully.
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Figure 6: Histograms with single norm steady states in the dynamic model.
In each histogram, the black surface represents the steady state distribution of
actions while the grey surface represents the underlying distribution of types.
The distribution of actions in the zeroth generation is such that all take the
same action. Note that the y-axes have been truncated for visibility and that
the distributions of types have been truncated (where applicable) to be be-
tween -1 and 1. Upper left: α = 0.5, β = 0.01, K = 1.2, s̄ = 0. Upper right:
α = 0.5, β = 0.01, K = 1.2, s̄ = −0.8. Lower left: α = 0.01, β = 0.5, K = 2.5,
s̄ = −0.5. Lower right: α = 0.01, β = 0.5, K = 1.5, s̄ = 0.

Lemma 5 Let there be a range of types that follow their hearts. Then the
aggregate pressure that results is strictly increasing in the distance from the
middle of the range.
Proof. The range of types that follow their hearts form a uniform part in the
distribution of actions, with pdf = 1

2
within the range and 0 outside. Denote

this uniform range by [a, b] with a < b. Then

P (s) =
1

2
K

b∫
a

|s− τ |β dτ

=


1
2
K (b−s)β+1−(a−s)β+1

β+1
if s < a

1
2
K (s−a)β+1+(b−s)β+1

β+1
if a ≤ s ≤ b

1
2
K (s−a)β+1−(s−b)β+1

β+1
if s > b
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P ′ (s) =


1
2
K
[
− (b− s)β + (a− s)β

]
< 0 if s < a

1
2
K
[
(s− a)β − (b− s)β

]
if a ≤ s ≤ b

1
2
K
[
(s− a)β − (s− b)β

]
> 0 if s > b

It is easy to see that P ′ (s) > 0 if s > a+b
2
and P ′ (s) < 0 if s < a+b

2
, implying

that P (s) is strictly increasing in the distance from the middle of the range.

C Appendix: Proof of Proposition 1

C.1 Part 1
First we note that there cannot be a norm at one of the distribution edges,
i.e., at s̄ = −1 or at s̄ = 1. To see this, note that a norm at, say, s̄ = 1 implies
that the slope of the aggregate pressure P at the norm is positive (because
deviation to the left decreases the pressure from all actions besides s = 1 while,
when β > 1, not affecting the pressure stemming from the mass of people at
the norm), and so everyone would like to deviate to the left, contradicting the
existence of a norm there.25 Next we consider norms at the interior of [−1, 1].
Here, note that when β > 1 then p and p′ are continuous everywhere, which
implies that P =

∫
p and P ′ =

∫
p′ must be continuous everywhere as well. In

particular at s = s̄. Hence, P ′ |s=s̄is well defined, and so either P ′ |s=s̄= 0 or
P ′ |s=s̄ 6= 0.
If P ′ |s=s̄= 0, then it must be that s∗ (t) 6= s̄ for any t 6= s̄, because for

t 6= s̄, a small enough deviation from s̄ toward t decreasesD without increasing
P . Thus there is no positive mass of individuals at s̄, so it cannot be the norm.
If P ′ |s=s̄ 6= 0 then either P ′ |s=s̄> 0 or P ′ |s=s̄< 0. If P ′ |s=s̄> 0, then

(1) no type with t < s̄ will state the norm, as deviating in the left direction
from s̄ reduces both P and D, and (2) at most one type with t > s̄ can have
|D′ (s̄; t)| = |P ′ (s̄)| when D is strictly concave or strictly convex (i.e., when
α 6= 1), and so only this one type can have a local min point of L at s̄. This
means that when α 6= 1 there can be no positive mass at s̄, which violates the
definition of a norm. Now suppose α = 1 so that D = |t− s̄|. Then each type
either follows her heart or states a statement s such that |P ′ (s)| = 1. Then
there can potentially be multiple types choosing the same action s̄ such that
|P ′ (s̄)| = 1, which implies s̄ can be a norm. Suppose this holds and that s̄
is the unique norm. Then the fact that no type with t < s̄ states s̄, together
with (i) the uniqueness of the norm s̄ and (ii) the fact that a type who does

25This holds also if s = 1 ∀t. In this case the slope of the aggregate pressure P at the
norm is 0, but deviation to the left (i.e. towards one’s bliss point) is still profitable as it
reduces D.
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not state an s such that |P ′ (s)| = 1 necessarily follows her heart, imply a
uniform distribution of actions to the left of s̄, stemming from the choices of
types at this range to follow their hearts (this is necessarily so since (a) there
must be a finite number of points with s < s̄ and |P ′ (s)| = 1 implying that if
s 6= t for a positive mass of types with t < s̄ then uniqueness of the norm is
violated, and (b) all types with t > s̄ state s ≥ s̄ because they either follow
their hearts or choose the unique norm). The shape of the pressure imposed
by the uniform part at s = [−1, s̄] is symmetric around its center, creating the
same slope at both edges of this part, s = −1 and s = s̄. On top of it, there
is the pressure stemming from actions s ≥ s̄. As β > 1, each of these sources
of pressure implies a steeper slope at s = −1 than at s = s̄, which altogether
means that |P ′ (−1)| > |P ′ (s̄)| = 1. This implies that types close to t = −1
will gain by deviating to the right from their bliss points, in contradiction to
the assumption that they follow their hearts The same argument applies when
P ′ |s=s̄< 0.�

C.2 Part 2
C.2.1 Sentence 1: Existence

Suppose that indeed s (t) = s̄ = 0 ∀t ∈ [−1, 1]. To show that this is an
equilibrium, and using symmetry, we need to show that, for a suffi ciently large
K, L(s, t) > L(0, t) ∀t ∈ (0, 1] and s ∈ (0, t]. Given that all types conform,
the pressure function at s ∈ (0, 1] is simply given by P (s) = Ksβ. We thus
need to show that, for a suffi ciently large K, (t− s)α + Ksβ > tα ∀t ∈ (0, 1]

and s ∈ (0, t]. Let f(s, t) ≡ tα−(t−s)α
sβ

be a function defined for s ∈ (0, t].
We will show that f(s, t) is finite. If α = 1 then f(t, s) = s1−β, which is
finite. If α > 1, the numerator tα − (t− s)α is increasing in t hence reaches
its maximum at t = 1 where it equals 1 − (1− s)α. This means that in this
case f(s, t) is bounded from above by 1−(1−s)α

sβ
. It is easy to see that the

numerator is finite, and when s→ 0 we get by L’Hôpital’s rule that, if β < 1,
lim
s→0

1−(1−s)α
sβ

= lim
s→0

α(1−s)α−1
βsβ−1 = 0, hence 1−(1−s)α

sβ
is finite, implying that f(s, t)

is finite (if β = 1 then lim
s→0

1−(1−s)α
s

= lim
s→0

α(1−s)α−1
1

= α). Finally, if α < 1, the

numerator tα − (t− s)α is decreasing in t hence reaches its maximum when
s = t, where it equals sα. This means that in this case f(s, t) is bounded from
above by sα−β, which is itself bounded (even when s→ 0, given that β ≤ α).
Overall, we thus get that for any α ≥ β the function f(s, t) is bounded from
above by some finite value sup f(t, s). Hence, for any K > sup f(s, t), there
exists an equilibrium in which s = s̄ = 0 ∀t ∈ [−1, 1]. In particular, this
implies that types closest to the norm fully conform. For showing the existence
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of multiple equilibria, a similar proof can be constructed for s̄ 6= 0.�
C.2.2 Sentence 2: Properties

We will now prove the second statement. We will prove the statement for
types to the right of the norm, that is, that there exists a tmax such that the
set of types ]s̄, tmax] fully conform. A necessary and suffi cient condition for full
conformity of t is that s̄ = arg minL. A suffi cient condition for this to hold is
that, for any s ∈ [s̄, t], P ′ (s) > −D′ (t− s). For types suffi ciently close to the
norm this is equivalent to showing that lims→0+ P

′ (s) > lims→t− α (t− s)α−1.
Since the pressure imposed by those stating the norm, lims→0+ xKβ (s− s̄)β−1,
is strictly greater than lims→t− α (t− s)α−1 for any x > 0, it is suffi cient to
show that the pressure imposed by the individuals who do not conform can-
not cancel out, completely or partly, the pressure imposed by the norm fol-
lowers. Since Kβ (s− s′)β−1 is finite for any strictly positive s − s′, while
lims→0+ xKβ (s− s̄)β−1 = ∞, it is suffi cient to study the possibility that the
non-conforming distribution of stances has a point of singularity exactly at s̄.
Hence, we will show that lims→0+ P

′ (s) > lims→t− α (t− s)α−1 holds even if
the distribution of stances of the non-conforming individuals has a point of
singularity with a slope of minus infinity exactly at the norm.26

We perform the proof for s̄ = 0 but equivalent statements hold for any
s̄ 6= 0. Suppose a norm s̄ = 0 exists and let q (s′) denote the distribution of
stances outside the norm. Then

P (s ≥ 0) = Kxsβ +K

 s∫
−1

(s− s′)β q (s′) ds′ +

1∫
s

(s′ − s)β q (s′) ds′


where x > 0 since a norm exists.

d

ds


s∫

−1

(s− s′)β q (s′) ds′ +

1∫
s

(s′ − s)β q (s′) ds′


=

s∫
−1

β (s− s′)β−1
q(s′)ds′ −

1∫
s

β (s′ − s)β−1
q(s′)ds′

26The case of a point of singularity with a slope of plus infinity is not interesting here
because it will only increase lims→0+ P

′ (s) relative to lims→t− α (t− s)α−1.
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lim
s→0+

P ′ (s) = xKβ lim
s→0+

sβ−1+Kβ lim
s→0+


s∫

−1

(s− s′)β−1
q(s′)ds′ −

1∫
s

(s′ − s)β−1
q(s′)ds′


If q(s′) does not have a point of singularity at s = 0 then it is immediate that

β < α⇒ lim
s→0+

P ′ (s) = xKβ lim
s→0+

sβ−1 > lim
s→t−

α (t− s)α−1

However, if q(s′) does have a point of singularity at s′ = 0, then, given that
q(s′) is integrable, q(s′) must have an integrable singularity at s′ = 0, hence
lims′→0+ q(s

′)s′ = 0.27 This means that for any ε > 0, however small, there is
a δ > 0 such that, for s′ < δ, q(s′) < ε/s′. The integral

I ≡
1∫
s

(s′ − s)β−1
q(s′)ds′

can then be split into two, I = I1 + I2, where

I1 =

δ∫
s

(s′ − s)β−1
q(s′)ds′

and

I2 =

1∫
δ

(s′ − s)β−1
q(s′)ds′

I2 is finite for any δ > s, so that lims→0+ s
1−βI2 = 0. As for I1, changing the

integration variable to z = s′/s we have

I1 = sβ
δ/s∫
1

(z − 1)β−1 q(zs)dz < sβ
δ/s∫
1

(z − 1)β−1 ε

zs
dz

= sβ−1ε

δ/s∫
1

(z − 1)β−1 z−1dz

27This is so because the function 1/s′ is not integrable and so if lims′→0+ q(s
′)s′ =

lims′→0+
q(s′)
1/s′ 6= 0 it would imply that q(s′) is not integrable too, hence cannot be a valid

distribution of stances.
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where the inequality follows from the fact that q(s′) < ε/s′. It follows that

lims→0+ s
1−βI1 < εA, where A ≡

∞∫
1

(z − 1)β−1 z−1dz is a positive and finite

constant that is independent of ε. Then, since ε can be made arbitrarily small,
it follows that lims→0+ s

1−βI1 = 0 hence lims→0+ s
1−βI = 0, which means that

I diverges at s = 0 slower than sβ−1 and so again

β < α⇒ lim
s→0+

P ′ (s) = xKβ lim
s→0+

sβ−1 > lim
s→t−

α (t− s)α−1

Since we just established that types suffi ciently close to the norm fully conform
in any single-norm equilibrium, it follows that, if somebody does not fully
conform, it has to be someone suffi ciently far from the norm.�

C.3 Part 3
C.3.1 Sentence 1: Existence

Suppose a single norm exists at s̄ ≤ 0 and

s′ (t) =

{
t if t ∈ [s̄− x, s̄+ x]

s̄ if t ∈ [−1, s̄− x[ or if t ∈ ]s̄+ x, 1]

where x < s̄+ 1 ≤ 1 (i.e., the type s̄− x exists). This is an equilibrium if:28

• type t = s̄+ x has no inner solution and is indifferent between choosing
s = s̄+ x and s = s̄.

• types t ∈ [s̄, s̄+ x[ choose s∗ (t) = t,

• types t ∈ ]s̄+ x, 1] choose s∗ (t) = s̄,

which we will show holds, in three corresponding lemmas, for some x if K
is suffi ciently large. First, however, some auxiliary calculations.

P (s) =K
1

2

s̄+x∫
s̄−x

(|s− t|)β dt+ (1− x)K (s− s̄)β (13)

=

K
[
(1− x) (s− s̄)β + 1

2
(x+(s−s̄))β+1+(x−(s−s̄))β+1

β+1

]
for s− s̄ ≤ x

K
[
(1− x) (s− s̄)β + 1

2
(x+(s−s̄))β+1−((s−s̄)−x)β+1

β+1

]
for s− s̄ > x

.

28We perform the whole analysis for t ≥ s̄, as any statement that holds at some distance
d to the right of the norm, holds also at distance d to the left of it, due to the symmetry of
the distribution of actions around s̄ in the equilibrium we check.
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Letting σ ≡ s− s̄, we can rewrite P (σ) as

P (σ) =

K
[
(1− x)σβ + 1

2
(x+σ)β+1+(x−σ)β+1

β+1

]
for σ ≤ x

K
[
(1− x)σβ + 1

2
(x+σ)β+1−(σ−x)β+1

β+1

]
for σ > x

. (14)

When type t chooses action s she feels the loss

L = (t− s)α + P (σ) . (15)

The difference in loss between fully conforming to the norm (s = s̄) and fol-
lowing her heart (s = t) is thus

∆L≡L (s = s̄)− L (s = t) (16)

= (t− s̄)α +K

[
xβ+1

β + 1
− (1− x) (t− s̄)β − 1

2

(x+ (t− s̄))β+1 + (x− (t− s̄))β+1

β + 1

]
,

Lemma 6 If K is suffi ciently large, there exists a type t = s̄+ x, with x ≤ 1,
who

1. is indifferent between choosing s = s̄+ x and s = s̄.

2. has no inner solution.

Proof. 1) Let τ ≡ t − s̄. Type t with τ = x is indifferent between s = s̄ and
s = t if ∆L, as given in (16), equals zero, i.e., if

xα = K

[
− xβ+1

β + 1
+ (1− x)xβ +

1

2

(2x)β+1

β + 1

]
,

hence

K =
xα−β

1− 2+β−2β

β+1
x
. (17)

Investigating K (x), we get that limx→0K = ∞ and limx→1K = β+1
2β−1

(> 0) .
Differentiating K with respect to x we get that

dK

dx
=

xα−β(
1− 2+β−2β

β+1
x
)2

[(
1− 2 + β − 2β

β + 1
x

)
α− β
x

+
2 + β − 2β

β + 1

]

=
xα−β−1

(β + 1)
(

1− 2+β−2β

β+1
x
)2

[
(α− β) (β + 1) +

(
2 + β − 2β

)
(1− α + β)x

]
,
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and so dK
dx

= 0 only at one point, x0 ≡ (β−α)(1+β)

(1+β−α)(2+β−2β)
.

The sign of dK
dx
is the same as that of

F (α, β, x) ≡ (α− β) (β + 1) +
(
2 + β − 2β

)
(1− α + β)x.

F (α, β, 0) < 0 since α < β, and F (α, β, 1) =
(
2− 2β

)
(1 + β) + α(2β − 1),

which is positive for any α ∈ (0, 1). It follows that F (α, β, x) changes sign
as x goes from 0 to 1, and so does dK

dx
. Thus x0 ∈ ]0, 1[. Hence, K is U-

shaped in x: it starts at ∞ and is decreasing until x0 and increases thereafter.
Substituting x0 into K, we get K (x0) = (1 + β − α) (x0)α−β. Thus, if K ≥
(1 + β − α) (x0)α−β, there exists a type t with τ = x who is indifferent between
choosing s = s̄+x and s = s̄, where x(K) is implicitly given by equation (17).
2) We showed that if K ≥ (1 + β − α) (x0)α−β , then there exists a type t

with τ = x, s.t. x satisfies (17), who is indifferent between choosing s = t
(= s̄+ x) and s = s̄. In order to show that this type has no inner solution, we
will now show that L′′ < 0 for any action in the range ]s̄, s̄+ x[ .
Differentiating L from equation (15) twice with respect to σ (after substi-

tuting t− s = τ − σ) we get

L′ = −α (τ − σ)α−1+

K
[
β (1− x)σβ−1 + 1

2

[
(x+ σ)β − (x− σ)β

]]
for σ ≤ x

K
[
β (1− x)σβ−1 + 1

2

[
(x+ σ)β − (σ − x)β

]]
for σ ≥ x

(18)

L′′ = α (α− 1) (τ − σ)α−2+

K
[
β (β − 1) (1− x)σβ−2 + β

2

[
(x+ σ)β−1 + (x− σ)β−1

]]
for σ ≤ x

K
[
β (β − 1) (1− x)σβ−2 + β

2

[
(x+ σ)β−1 − (σ − x)β−1

]]
for σ ≥ x

(19)
Plugging in τ = x, and considering naturally only actions with σ ≤ τ = x, we
get that

L′′ (τ = x)<α (α− 1) (x− σ)α−2 +K
[
β (β − 1) (1− x)σβ−2 + β (x− σ)β−1

]
<α (α− 1) (x− σ)α−2 +Kβ (x− σ)β−1 ≡ G(σ).

Next, G(σ) < 0 if and only if

Kβ (x− σ)β−α+1 < α (1− α) .

The LHS is decreasing in σ hence it is thus suffi cient to show that G(0) < 0.
Using the connection between K and x as given in (17), for G(0) < 0 one
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needs that
βx

1− 2+β−2β

β+1
x
< α (1− α) .

Noting that 1− 2+β−2β

β+1
x > 0, we get that G(0) < 0 ifx < 1

β
α(1−α)+ 2+β−2β

β+1

.

Hence, if K is suffi ciently large so that x < 1
β

α(1−α)+ 2+β−2β
β+1

(recall that

limx→0K =∞), then type t with τ = x has no inner solution.

Lemma 7 s∗ (t) = t for all t with τ < x.
Proof. Suffi cient conditions for this statement are 1) L (s = t) < L (s = s̄)
and 2) no inner solution for t with τ ∈ [0, x[.
1) When τ < x, ∆L = L (s = s̄)−L (s = t) is given by equation (16). We

will show that ∆L > 0 by showing that ∆L
xα

> 0. Define c ≡ τ/x ∈ [0, 1]. We
then have

f(x, c) ≡ ∆L

xα
= cα +

K

xα−β

[
x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 + (1− c)β+1

β + 1

]

= cα +

(
1− 2 + β − 2β

β + 1
x

)−1
[

x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 + (1− c)β+1

β + 1

]

=

(
1− 2 + β − 2β

β + 1
x

)−1
([

1

β + 1
+ cβ − 1

2

(1 + c)β+1 + (1− c)β+1

β + 1
− 2 + β − 2β

β + 1
cα

]
x+ cα − cβ

)
.

We will show that f(x, c) > 0 for every x and any c ∈ [0, 1]. Define the part
in the squared brackets as

g(c) ≡ 1 + (β + 1) cβ − 1

2

[
(1 + c)β+1 + (1− c)β+1

]
−
(
2 + β − 2β

)
cα.

Then

f(x, c) =

(
1− 2 + β − 2β

β + 1
x

)−1(
x

β + 1
g(c) + cα − cβ

)
=− g(c)

2 + β − 2β
+

(
1− 2 + β − 2β

β + 1
x

)−1 (
2 + β − 2β

)−1 [
g(c) +

(
cα − cβ

) (
2 + β − 2β

)]
.

Finally, let
h(c) ≡ g(c) +

(
cα − cβ

) (
2 + β − 2β

)
.
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We then have
h(0) = g(0) = 0,

h(1) = g(1) = 0,

and by differentiating h(c) twice with respect to c we get

h′′(c)

β + 1
= β (β − 1) cβ−2 − 1

2
β
(

(1 + c)β−1 + (1− c)β−1
)

+−β (β − 1) cβ−2 2 + β − 2β

β + 1

= β (β − 1) cβ−2

[
1− 2 + β − 2β

β + 1

]
− 1

2
β
(

(1 + c)β−1 + (1− c)β−1
)
< 0,

and so h(c) ≥ 0 in the range c ∈ [0, 1] . Consequentially, f(x, c) increases in x
for every given c ∈ [0, 1], and so f(x, c) ≥ f(0, c), where

f(0, c) = cα − cβ > 0, ∀c ∈ ]0, 1[ .

This proves that ∆L = f(x, c)xα is positive, i.e., L (s = t) < L (s = s̄) for all
t with τ < x.
2) From equation (19) it is easy to see that for any given σ, the function

L′′ increases in τ , and so reaches it maximum for τ = x. In the second part
of the proof of Lemma 6 we saw that L′′ is negative (for any σ) whenever
x < 1

β
α(1−α)+ 2+β−2β

β+1

. This implies that there is no inner solution for t with

τ ∈ [0, x[ .

Lemma 8 s∗ (t) = s̄ for all t with τ > x.
Proof. To prove the lemma we show that the following suffi cient conditions
hold for all t with τ > x: 1) L (s = t) > L (s = s̄) .2) No inner solution in the
range σ ∈ [x, τ ]. 3) No inner solution in the range σ ∈ (0, x).
1) L (s = s̄) = τα +K xβ+1

β+1
as before, but for σ ≥ x we have:

L = (t− s)α +K

[
(1− x)σβ +

1

2

(x+ σ)β+1 − (σ − x)β+1

β + 1

]
, (20)

and so

∆L≡L (s = s̄)− L (s = t)

= τα +K

[
xβ+1

β + 1
− (1− x) τβ − 1

2

(x+ τ)β+1 − (τ − x)β+1

β + 1

]
.
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Define c ≡ τ/x (> 1). We then have

f(x, c) ≡ ∆L

xα
= cα+

K

xα−β

[
x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 − (c− 1)β+1

β + 1

]

= cα+

(
1− 2 + β − 2β

β + 1
x

)−1
[

x

β + 1
− (1− x) cβ − x

2

(1 + c)β+1 − (c− 1)β+1

β + 1

]

=

(
1− 2 + β − 2β

β + 1
x

)−1
([

1

β + 1
+ cβ − 1

2

(1 + c)β+1 − (c− 1)β+1

β + 1
− 2 + β − 2β

β + 1
cα

]
x+ cα − cβ

)
.

Now let

g(c) ≡ 1 + (β + 1) cβ − 1

2

[
(1 + c)β+1 − (c− 1)β+1

]
−
(
2 + β − 2β

)
cα.

Then

f(x, c) =

(
1− 2 + β − 2β

β + 1
x

)−1(
x

β + 1
g(c) + cα − cβ

)
=− g(c)

2 + β − 2β
+

(
1− 2 + β − 2β

β + 1
x

)−1 (
2 + β − 2β

)−1 [
g(c) +

(
cα − cβ

) (
2 + β − 2β

)]
.

We will show now that

h(c)≡ g(c) +
(
cα − cβ

) (
2 + β − 2β

)
= 1− 1

2
(1 + c)β+1 +

1

2
(c− 1)β+1 + cβ

(
2β − 1

)
.

is negative, and so f(x, c) decreases in x. Define r ≡ 1
c
, so that r ∈ (0, 1). We

then can define a new function z(r) such that

z(r) ≡ rβ+1h = rβ+1 − 1

2
(1 + r)β+1 +

1

2
(1− r)β+1 + r

(
2β − 1

)
.

We have z(0) = z(1) = 0, and

z′′(r) = (β + 1) β

[
rβ−1 − 1

2
(1 + r)β−1 +

1

2
(1− r)β−1

]
>

1

2
(β + 1) β

[
(1− r)β−1 − (1 + r)β−1

]
> 0,
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and so z(r) < 0 in the range r ∈ (0, 1), i.e., h(c) < 0 in the range c > 1.
Consequentially, f(x, c) decreases in x at this range, and so f(x, c) < f(0, c),
where

f(0, c) = cα − cβ < 0, ∀c > 1.

This proves that ∆L = f(x, c)xα is negative, i.e., L (s = t) > L (s = s̄) for all
t with τ > x.
2) From equation (19) for σ ≥ x we get that L′′ is a sum of three negative

elements, hence L′′ < 0, i.e., no inner solution in that range.
3) Type t with τ > x has no inner solution in the range σ ∈ (0, x) if

L (σ, τ) − L (0, τ) > 0 for any σ ∈ [0, x]. From equation (18) for σ ≤ x we
have

L′ = −α (τ − σ)α−1 +K

[
β (1− x)σβ−1 +

1

2

[
(x+ σ)β − (x− σ)β

]]
,

and so ∂L′

∂τ
= −α (α− 1) (τ − σ)α−1 > 0. This implies that, when τ > x,

L (σ, τ)−L (σ, τ) > L (σ, x)−L (0, x) ≥ 0 for any σ ∈ [0, x], where the second
inequality follows from Lemma 6.

C.3.2 Sentence 2: Properties

We will prove the statement for types to the right of the norm, showing that
there exists a tmax such that the set of types ]s̄, tmax] do not fully conform.
We rewrite the variables to σ ≡ s − s̄ and τ ≡ t − s̄. First note that a
necessary condition for full conformity of type t is that she prefers it over
speaking her mind: L(0; τ) = P (σ = 0) + D (τ) ≤ L (τ ; τ) = P (τ). Suppose
τmax is suffi ciently small. Then this condition is equivalent to limσ→0+ P

′ (σ) ≥
limσ→τ− D

′ (τ − σ) = limσ→τ− α (τ − σ)α−1. Hence, for the types closest to the
norm to fully conform, P ′ (σ) has to approach infinity faster than α (τ − σ)α−1.
We will now show that this cannot be the case. The fastest way in which P ′ (σ)
may approach infinity when σ → 0+ is when all individuals choose σ = 0,
because then limσ→0+ p

′ (σ) is maximized for each pairwise pressure p. Suppose
this is indeed the case, i.e., all types fully conform. Then limσ→0+ P

′ (σ) =
limσ→0+ βKσ

β−1, which approaches infinity slower than α (τ − σ)α−1 when
α < β. This shows that the types closest to the norm will not fully conform.
Hence, since in any single-norm equilibrium there must exist a positive mass
of individuals who do fully conform, these have to be some types suffi ciently
far from the norm.
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D Appendix: Alienating societies

D.1 Proof of Lemma 1
The minimization problem of the individual is

min
s
L (s; t; s′) = P (s; s′) + |s− t|α . (21)

Suppose a single norm exists with a share x stating it. Then

P (s) =

{
K if s 6= s̄

(1− x)K if s = s̄
. (22)

Therefore L (s; t; s′) is increasing in |s− t| except potentially at s = s̄, where
P (s) < K. Thus it is immediate that for each type t, s∗ (t) will be either t or
s̄. Moreover, it is immediate that s∗ (t) = t if and only if xK, the difference
between P (t) and P (s̄) , falls below |t− s̄|α, thus follows the lemma.

D.2 Proof of Lemma 2
If y ≤ 1 − |s̄| , the norm is suffi ciently centered so that y types on each side
follow the norm, which implies x = y. When 1 − |s̄| < y ≤ 1 + |s̄| , the norm
is suffi ciently biased, say to the left, so that there are no longer y types to the
left of the norm following the norm. Then, the total number of individuals
declaring the norm is the distance from −1 to s̄ on the left and y types on the
right. It then follows that the share of norm followers is x = (y + 1− |s̄|) /2.
Finally, when y > 1 + |s̄| , we get that even the type who is the furthest away
from the norm (i.e. at distance 1 + |s̄| from it) follows it, implying that all
types follow the norm.

D.3 Proof of Proposition 2
Since Lemma 1 implies that, given a single norm with a share x of followers,
s∗ (t) is according to (8), a necessary and suffi cient condition for this s∗ (t) to
be the distribution of actions in a single-norm equilibrium is that x (y) that is
obtained from this distribution of actions in Lemma 2 would equal the value
of x that was initially assumed in Lemma 1 for creating this particular s∗ (t).
This is more conveniently written as a dynamic process, where the requirement
is to have xi+1 (yi+1 (xi)) = xi. Using (7) and (10) we can write

xi+1 = f (xi;K, |s̄|) ≡


(xiK)1/α if (xiK)1/α ≤ 1− |s̄|

(xiK)1/α+1−|s̄|
2

if 1− |s̄| < (xiK)1/α < 1 + |s̄|
1 if (xiK)1/α ≥ 1 + |s̄|

. (23)
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We start by proving parts (1) and (2) of the proposition for the case of α ≥ 1. If
one of the following holds: (1) α > 1; (2) α = 1, |s̄| < 1 and K ≥ 1; or (3) α =
1, |s̄| = 1 and K ≥ 2; then lim

xi→+0
f ′ (xi;K, |s̄|) ≥ 1, so that f (xi;K, |s̄|) starts

(weakly) above the 45 degree line. In this case, the continuity of f (xi;K, |s̄|)
and the fact that f (xi = 1) ≤ 1 imply that f (xi;K, |s̄|) crosses the 45 degree
line at least once in the range xi ∈ (0, 1], with the crossing point(s) constituting
single norm EQ. Alternatively, if α = 1 and either (1) |s̄| < 1 andK < 1; or (2)
|s̄| = 1 andK < 2; then f (xi;K, |s̄|) is linear in parts and lim

xi→+0
f ′ (xi;K, |s̄|) <

1, so that the first linear part is below the 45 degree line. As the slope of
f (xi;K, |s̄|) only decreases when moving from the first linear part to the second
and from the second to the third, we get that f (xi;K, |s̄|) is below the 45
degree line in xi ∈ (0, 1], in which case there is no single-norm equilibrium
with a strictly positive share x of norm followers. All in all we get that when
α > 1, Kmin (|s̄|) = 0; when α = 1 and |s̄| < 1, Kmin (|s̄|) = 1; and when α = 1
and |s̄| = 1, Kmin (|s̄|) = 2. These values of Kmin (|s̄|) are independent of |s̄|,
which concludes the proof of parts (1) and (2) of the proposition for the case
of α ≥ 1.
We now proceed to proving parts (1) and (2) of the proposition for the case

of α < 1. To do so, we will now assume that a single-norm equilibrium exists
at |s̄| and prove the existence of a value Kmin (|s̄|) such that the assumption
holds if and only if K ≥ Kmin (|s̄|) , and that Kmin (|s̄|) is increasing in |s̄| .
Looking at the borders between regions in equation (23), we get that if

K ≥ (1 + |s̄|)α then at xi = 1 we are in the third region, implying that
xi+1 (xi) = xi at xi = 1, hence a single-norm equilibrium exists (with full
compliance to the norm). Otherwise, (xiK)1/α ≤ K1/α < 1+ |s̄|, and the third
region is irrelevant. Moreover, xi+1 in the second region is strictly smaller than
1 and so xi = 1 is not an equilibrium.
Define now

G (xi;K, |s̄|)≡xi+1 (xi)− xi = f (xi;K, |s̄|)− xi,

=


(xiK)1/α − xi if (xiK)1/α ≤ 1− |s̄|

(xiK)1/α+1−|s̄|
2

− xi if 1− |s̄| < (xiK)1/α < 1 + |s̄|
1− xi if (xiK)1/α ≥ 1 + |s̄|

(24)

which in a single-norm equilibrium equals zero for some xi 6= 0. G is continuous
in xi, K and |s̄|, with G (0;K, |s̄|) = 0 and G′ (0;K, |s̄|) < 0, and when K1/α <
1 + |s̄| we also get that G (1;K, |s̄|) < 0. Differentiation of G with respect to
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xi yields

G′ (xi;K, |s̄|) =


1
α
K1/α (xi)

1/α−1 − 1 if (xiK)1/α < 1− |s̄|
1

2α
K1/α (xi)

1/α−1 − 1 if 1− |s̄| < (xiK)1/α < 1 + |s̄|
−1 if (xiK)1/α > 1 + |s̄|

(25)

and

G′′ (xi;K, |s̄|) =


1
α

(
1
α
− 1
)
K1/α (xi)

1/α−2 if (xiK)1/α < 1− |s̄|
1

2α

(
1
α
− 1
)
K1/α (xi)

1/α−2 if 1− |s̄| < (xiK)1/α < 1 + |s̄|
0 if (xiK)1/α > 1 + |s̄|

(26)
which immediately shows G is strictly convex in the first two regions. It thus
follows that when K1/α < 1 + |s̄|, G can get a local max only at the border
between these two regions, where xi = (1− |s̄|)α /K. Therefore, when K1/α <
1+|s̄| , there exists a single-norm equilibrium if and only if the borderline point
falls within the range [0, 1] and G at this point is weakly positive.29 Substi-
tuting xi = (1− |s̄|)α /K in equation (24) yields G = (1− |s̄|)− (1− |s̄|)α /K,
which equals 0 when K = (1− |s̄|)α−1 . Substituting this value of K back in xi
we get that xi = 1− |s̄| , thus falls within the range [0, 1], and so there exists
a single-norm equilibrium for K = (1− |s̄|)α−1 . If K is larger, then the value
of xi at the border between the regions is smaller (hence falls within the range
[0, 1] too), and the value of G at this point is larger, i.e., positive.
As a result, if we let

Kmin (|s̄|) ≡ min
{

(1− |s̄|)α−1 , (1 + |s̄|)α
}
, (27)

then for K < Kmin (|s̄|) no single-norm equilibrium exists, while for any
K ≥ Kmin (|s̄|) there exists a single-norm equilibrium at |s̄|. It is also worth
noting that if K = Kmin (|s̄|), the analysis above implies that max

xi
G (xi) = 0

(and reached either at the border between the two regions, if Kmin (|s̄|) =
(1− |s̄|)α−1, or at xi = 1, if Kmin (|s̄|) = (1 + |s̄|)α); while if K > Kmin (|s̄|),
then G (xi) > 0 either at the borderline point or at xi = 1.
Finally, the fact that Kmin (|s̄|) is increasing in |s̄| follows directly from the

fact that (1− |s̄|)α−1 and (1 + |s̄|)α are both increasing in |s̄|.�
29Note that if the borderline point falls outside the range [0, 1] , it means that only the first

region applies, and then the convexity of G means that G (1,K, |s̄|) < 0⇒ G (xi,K, |s̄|) < 0
∀xi ∈ ]0, 1], hence no single norm equilibrium exists (we know that G (1,K, |s̄|) < 0 because
K1/α < 1 + |s̄|).
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D.4 Proof of Proposition 3
We first remind, that in the proposition we treat the unstable steady states
(xuss) as ones where if xi = xuss then xi+1 < xuss. This includes the cases
where xuss = xconv. In the proof we do not make this shortcut.
Comparison method: Next, we remind how we perform the comparison

of xss (|s̄| , K) in statement (2) of the proposition and the comparison of welfare
distributions in statement (5). For given values ofK and s̄ there can be at most
one stable single norm steady state if α ≥ 1,30 and up to two different stable
single norm steady states, corresponding to two different values of xss (|s̄| , K),
if α < 1. When there are two such steady states, Lemma 14 says that one
is always “degenerate”(xss (|s̄| , K) = 1) and one is always “non-degenerate”
(xss (|s̄| , K) ∈ ]0, 1[) — these are x̃ and xend respectively in Section D.4.2
below. The comparison of xss (|s̄| , K) with xss (|s̄′| , K) in statement (2) of the
proposition is thus applied as follows: When there exist two xss (|s̄| , K) and
two xss (|s̄′| , K), the proposition compares the non-degenerate with each other
and the degenerate with each other; when there exist two steady states for s̄
and one for s̄′ (or vice versa), the proposition comparesmax {xss (|s̄| , K)} with
max {xss (|s̄′| , K)}; finally, when there is only one steady state for each norm,
the proposition compares the unique xss (|s̄| , K) with the unique xss (|s̄′| , K).
Moreover, whenever there exist two stable steady states for a given norm,

the welfare distribution in the degenerate steady state first-order stochasti-
cally dominates the welfare distribution in the non-degenerate steady state
(see Lemma 19 below). Hence, we apply the same comparison rule to the
comparison of welfare distributions in statement (5) of the proposition.
Proof for the case α ≥ 1: Statements (1)-(4) are proved in Section D.4.1

and statement (5) is proved by Lemma 20.
Proof for the case α < 1:

• Statement 1): The ‘if’part follows from Lemma 14. As for the ‘only
if’part, we show in the proof of Proposition 2 that the function G is
strictly positive at some point iffK > Kmin. Hence, if K ≤ Kmin, then
∀xi we have xi+1 ≤ xi, which means that there can be no convergence
from the left to any steady state, implying that a stable steady state
with a single norm cannot exist.

• Statement 2): Lemma 14 shows that at most two stable single norm
steady states may exist: a degenerate and a non-degenerate (the nota-
tion of x with various ornaments is defined in equation (28)). Lemma 15

30When α > 1 this follows from the fact that in this case f ′ (xi;K, |s̄|) is decreasing at
every xi (see equation 23). The case α = 1 is analyzed separately under Section D.4.1 below.
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implies that when comparing xss of two norms s̄ and s̄′ (where |s̄| ≤ |s̄′|)
in statement (2) of the proposition, we need to compare only the non-
degenerate stable steady states. To see why, note that one of the fol-
lowing two scenarios must hold: (i) there exists a degenerate stable
steady state for s̄′, in which case (by Lemma 15) the maximal share
of xss under both norms is 1, and so we have to compare only the non-
degenerate stable steady states, if both exist; (ii) there does not exist
a degenerate stable steady state for s̄′, in which case either there ex-
ists a degenerate stable steady state for s̄, hence it is immediate that
max {xss (|s̄| , K)} = 1 > max {xss (|s̄′| , K)}, or there does not exist a
degenerate stable steady state for s̄, in which case we again have to com-
pare only the non-degenerate stable steady states. Thus, it is suffi cient
to compare xss (|s̄| , K) in the non-degenerate stable steady states, if they
exist. Statement 2 then follows from part (3) of Lemma 11.

• Statement 3): Follows from parts (1)-(3) of Lemma 13 (note that ẋ, x̂
and x̌ are defined in equation (28)).

• Statement 4): Follows from parts (4) and (5) of Lemma 13.

• Statement 5): Follows from Lemma 20.

D.4.1 The case of α ≥ 1

We here prove statements (1)-(4) of Proposition 3 for the case α ≥ 1. We
prove α > 1 and α = 1 separately.
α > 1
When α > 1 we get by (23) that lim

xi→+0
f ′ (xi;K, |s̄|) = K/α lim

xi→+0
(xiK)1/α−1 =

∞, implying that there is convergence to the single-norm equilibrium (whose
existence for every K > Kmin (|s̄|) = 0 was shown in the proof of Proposi-
tion 2) from every xi > 0 (this proves statement 1). It thus follows that in
this case xconv (|s̄|) = 0 and so (i) xconv (|s̄|) is independent of |s̄| and K; (ii)
xss (|s̄|) > xconv (|s̄|) ; and (iii) if 0 ≤ xi ≤ xconv (|s̄|), then it must be the case
that xi = 0 and so xi+1 = xi = 0, i.e., there is convergence to a stable steady
state where each type follows her heart (xss (|s̄|) = 0). This proves statements
3 and 4. Now note that since f ′ (xi;K, |s̄|) is decreasing at every xi (see equa-
tion 23) there can exist at most one stable steady state for each combination of
s̄ and K. Increasing |s̄| has the effect of decreasing xss (|s̄|), as it everywhere
weakly decreases xi+1 as a function of xi (by increasing region (2) in equation
(23), and since the function f in this region is smaller the larger is |s̄|). This
proves statement 2.
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α = 1
When α = 1 we have two separate cases to consider. The first one is when

|s̄| < 1. Here Kmin (|s̄|) was shown to equal 1 (see the proof of Proposition
2). Here the function f is piecewise linear, where for K < 1 it stays below the
45 degree line (see the proof of Proposition 2) and so there is no single-norm
equilibrium; and for K > 1 it stays above the 45 degree line until it reaches
1 and stays there (see equation 23), implying a single-norm equilibrium at
xi = 1. Thus xss (|s̄|) = 1 (hence independent of |s̄|, which proves statement
(2)), and there exists a stable steady state if and only if K > Kmin (|s̄|) = 1
with a share of followers xss (|s̄|) (if K = 1 the function f lies on the 45 line
degree in the first region, and so there is a continuum of steady states but
none is stable). It follows that if and only if K > 1 then there is convergence
to xss (|s̄|) from any xi > 0, which proves statements (1) and (3). Hence,
xconv (|s̄|) = 0, which is independent of |s̄| and K, which proves statement (4).
The second case is when |s̄| = 1 (and it was shown in the proof of Proposition 2
that Kmin (|s̄|) = 2). Here the function f (see equation 23) starts immediately
in region (2), and is above the 45 degree line if and only if K > 2. The same
arguments used in proving the previous case apply here, with xss (|s̄|) = 1 and
xconv (|s̄|) = 0.

D.4.2 The case of α < 1

The proof of statements (1)-(4) of Proposition 3 for the case α < 1 builds on
a few preliminary results and auxiliary lemmas which are presented here.
Note first that Lemmas 1 and 2 show that alienation recreates alienation.

Hence, the full dynamics can be described by the dynamics of x, the share
of norm followers, as given in equation (24). Following equation (26), it is
straightforward to see that xi+1 = f (xi;K, |s̄|) is convex within each of the first
two regions and has a kink at the border between the regions. Together with
G′ (0;K, |s̄|) < 0 (see equation (25)), this means we can define the following
values of xi+1 (see Figure 7) that exhaust the possible fix points, and which
will be used throughout the upcoming lemmas.

x̂ ≡ {xi : xi+1 = xi and xi is in the first region} (28)

x̌ ≡ {xi : xi+1 = xi and xi is in the second region and G′ > 0}
x̃ ≡ {xi : xi+1 = xi and xi is in the second region and G′ < 0}

ẍ ≡
{
xi : (xiK)1/α = 1− |s̄|

}
(i.e., at the border between regions (1) and (2))

ẋ ≡
{
xi : (xiK)1/α = 1− |s̄| and G (xi) = 0 and G′2 (xi) < 0

}
xend ≡ {xi : xi+1 = xi = 1 } (i.e., at the endpoint)
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Figure 7: Some variations of the G function of equation (24), depicting the
potential fix points defined in equation (28). Note that these variations of G
are not exhaustive but are only meant to complement the proof.52



Note that when G (ẍ) = 0 then either G′2 (xi) < 0, in which case ẍ = ẋ, or
G′2 (xi) > 0.

Lemma 9 Consider a given xi. Then G′ (xi : xi < ẍ) > G′ (xi : xi > ẍ).
Proof. Let G1, G2 and G3 denote the values of G in regions (1), (2) and (3)
respectively. When xi < ẍ, G1 applies, and when xi > ẍ, G2 applies. Then for
a given xi, G′1 = 1

α
K1/α (xi)

1/α−1 − 1 > 1
2α
K1/α (xi)

1/α−1 − 1 = G′2.

Lemma 10 G′ is weakly falling in |s̄| for any xi < (1 + |s̄|)α /K.
Proof. When xi < (1 + |s̄|)α /K we are in region (1) or region (2) of equation
(25). Here, dG

′
1

d|s̄| =
dG′2
d|s̄| = 0. Moreover, ẍ = (1− |s̄|)α /K decreases in |s̄|. This

implies that if |s̄| increases, region (2) expands at the expense of region (1).
Then, by Lemma 9, we get that G′ is weakly falling in |s̄|.

Lemma 11 1) If x̂ exists then it is independent of |s̄|. 2) If x̌ exists then it
is weakly increasing in |s̄|. 3) If x̃ exists it is weakly decreasing in |s̄|.
Proof. 1) By definition x̂ is in region 1. Hence G1 applies. Since G1 is
independent of |s̄| so must x̂ be. 2) By definition x̌ is in region 2. Lemma
10 together with G (0) = 0 imply that G is weakly falling in |s̄| in region 1
and 2. Combined with the fact that G′ (x̌) > 0 (by definition) this implies x̌
(if it exists) is weakly increasing in |s̄|. 3) Same logic as part 2 but now with
G′ (x̃) < 0.

Lemma 12 If ∃x̂ for some |s̄| then ∃x̂ for any |s̄′| < |s̄|.
Proof. G1 is independent of |s̄|. Then the fact that |s̄′| < |s̄| implies that
region (1) is broader under |s̄′|, so if ∃x̂ for some |s̄| then ∃x̂ for any |s̄′| < |s̄|.

Lemma 13 Suppose K > Kmin. Let xconv ≡ {xi : xi = min {x̂, x̌}} (when x̂
or x̌ or both exist). Then:

1. If xi > xconv (|s̄|) there is convergence to a stable single norm steady state
where a share xss (|s̄|) > xconv (|s̄|) of the population state s̄.

2. Otherwise, provided that @ẋ, if 0 ≤ xi < xconv (|s̄|), there is convergence
to a stable steady state where each type follows her heart (xss (|s̄|) = 0).

3. Furthermore, if ∃ẋ, then when 0 < xi < ẋ there is convergence to a stable
steady state where each type follows her heart (xss (|s̄|) = 0), and when
ẋ ≤ xi < xconv there is convergence to an unstable single norm steady
state where a share ẋ state the norm.31

31In line with our general treatment of unstable steady states as converging to less confor-
mity, statement (3) in the proposition treats this special case as one where xi, upon reaching
ẋ, only passes through it and continues to xss = 0.
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4. xconv increases in |s̄|.

5. xconv decreases in K.

Proof. We start with statement 2) G′ (x̂) > 0 since G1 (0) = 0, G′1 (0) < 0
and G1 is convex. G′ (x̌) > 0 by definition. This implies x̂ and x̌ are unstable
steady states. Furthermore, they are the only unstable states.32 Hence, if x̂
exists, it must be the smallest strictly positive steady state, and so G1 (0) = 0
and G′1 (0) < 0 imply that ∀xi < x̂ = xconv we have G (xi) < 0, i.e., xi+1 < xi.
Otherwise there is no steady state in the first region, in which case x̌ must be the
smallest strictly positive steady state. Then again G1 (0) = 0 and G′1 (0) < 0
imply that xi+1 < xi ∀xi < xconv. Thus, the instability of xconv implies that
xss (|s̄|) = 0.
1) In the proof of Proposition 2 we showed that G > 0 for some xi iff

K > Kmin. This implies x̂ or x̌ or both exist. Since G′ > 0 at both, this
implies xi+1 > xi in a neighborhood of xi > xconv, which implies convergence
to a stable steady state.
3) When ∃ẋ, we know by convexity of G1 (and since the definition of x̂

requires that G′ > 0 at x̂) that x̂ does not exist. Hence, the only possible fix
points are ẋ, x̌ and xend. Note that by the definition of ẋ it must be stable in
a neighborhood above ẋ. By convexity of G1, ẋ must be unstable from below.
Since there are no other fix points below ẋ, xi < ẋ implies convergence to
xss = 0. This concludes the first subsentence. Furthermore, by instability of x̌
and stability of ẋ from above we know that if xi ∈ ]ẋ, xconv[ , then there will be
convergence to ẋ which implies the second subsentence.
4) xconv ≡ x̂ whenever ∃x̂. From Lemma 11 we know that x̂ is independent

of |s̄| and from Lemma 12 we know it exists iff |s̄| is suffi ciently small. Hence,
as |s̄| is increased, xconv is either constant, or it makes a discrete jump to
equal x̌ (which we know exists since K > Kmin while in this scenario x̂ seizes
to exist). Furthermore, by Lemma 11 we know x̌ is increasing in |s̄|. Put
together, this implies that xconv is either constant or increasing in |s̄|.
5) By definition of x̂ we get x̂ = K1/(α−1), which decreases in K. By

definition of x̌ and using equation (24) we get an implicit expression H =

(x̌K)1/α+1−|s̄|−2x̌ = 0 defining x̌. Using the implicit function theorem we get

dx̌/dK = − (x̌)1/αK1/α−1/α/
(
K1/α (x̌)1/α−1 /α− 2

)
< 0 ⇔ K1/α (x̌)1/α−1 >

2α. From equation (25) this condition corresponds to the condition for G′2 > 0,

32To see this note that x̃ must be stable by G′ (x̃) < 0. Furthermore, recall that @ẋ.
Hence, the only way for ẍ to be a steady state is if G (ẍ) = 0 and G′ (ẍ) > 0, which implies
ẍ = x̂ (see above). Finally, if xend exists in region 3 it must be stable since G′3 < 0 and if
xend exists in region 1 or 2 then it must be that either xend = x̌ or xend = x̂.
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which holds by the definition of x̌. Hence xconv is locally decreasing in K. Note
now that, by equation (24), G1 and G2 are increasing in K. Hence, as K
increases, we cannot switch from xconv = x̂ to xconv = x̌. This implies that
xconv is decreasing in K also globally.

Lemma 14 Suppose K > Kmin. Then there exists a stable steady state with
a single norm at xss = x̃ or at xss = 1 or at both. No other stable steady state
with a single norm exists.
Proof. When K > Kmin, a stable steady state must exist (see the proof of
Proposition 2). All the steady states except for x̃ and 1 must be unstable since
they all imply G′ > 0 on at least one side of the steady state. Hence, when
K > Kmin there exists a stable steady state at xss = x̃ or at xss = 1 or at both,
and since xss 6= 0, the steady state contains a single norm.

Lemma 15 Let p be a step function as in (6) and D as given in (4) with
α > 0. Consider two norms s̄ and s̄′ where |s̄| ≤ |s̄′|. If there exists a
degenerate stable steady state for s̄′ then there exists a degenerate stable steady
state for s̄ too.
Proof. The condition for existence of a degenerate stable steady state for s̄′ is
K1/α ≥ 1 + |s̄′| (see the definition of region 3 in equation 23). Since |s̄| ≤ |s̄′|
we immediately get that K1/α ≥ 1 + |s̄|, hence there exists a degenerate stable
steady state for s̄ too.

D.4.3 Welfare results

Statement (5) of Proposition 3 is proved by Lemma 20 below. But first we
present some auxiliary results.

Lemma 16 Let p be a step function as in (6) and D as given in (4) with
α > 0. Then, in any single norm stable steady state, welfare decreases in
|t− s̄|.
Proof. Consider first a degenerate stable steady state. In a degenerate stable
steady state the welfare of each individual is solely determined by her disso-
nance from going to the norm, hence it is immediate that welfare decreases
in the distance from the norm. Now consider a non-degenerate stable steady
state. There are two groups of types to consider: the types close to the norm,
who fully conform, and the types far from the norm, who follow their hearts.
Within the group who fully conforms, welfare differs only due to the differences
in D. As D increases in the distance to the norm, welfare within this group
is strictly decreasing in |t− s̄|. Furthermore, the type furthest away from the
norm among them is indifferent between conforming and following her heart.
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The types far from the norm follow their hearts and suffer only the loss from
social pressure, which, for p being a step function, is fixed at K. Among them
we have the indifferent type, implying that these types are ranked at the bottom
of the welfare distribution in society, and so welfare (weakly) decreases in the
distance from the norm within this group, hence decreases in |t− s̄| globally.

Definition 3 We call r (t, s̄) ∈ [0, 1] the welfare ranking of an individual of
type t in a given equilibrium with a norm at s̄, if the fraction of people in
society whose welfare is higher than that of t equals r (t, s̄).

Lemma 17 Let p be a step function as in (6) and D as given in (4) with
α > 0. Consider two norms s̄ and s̄′ where |s̄| ≤ |s̄′|, such that for each norm
there exists a degenerate stable steady state (xss (|s̄| , K) = xss (|s̄′| , K) = 1).
Then the welfare distribution in the steady state corresponding to s̄ first-order
stochastically dominates the welfare distribution in the steady state correspond-
ing to s̄′.
Proof. In a degenerate stable steady state the welfare of all individuals is
solely determined by their dissonance from going to the norm, and equals
−D (|t− s̄|). Given Lemma 16, a type with ranking r ≤ 1 − |s̄′| is at dis-
tance d = r from the norm in both steady states and has the same ranking
under s̄ and under s̄′, where in both cases her welfare equals −D (d). A
type with ranking 1 − |s̄′| < r < 1 − |s̄| has welfare of −D (r) under s̄ and
−D (2r − 1 + |s̄′|) < −D(r) under s̄′, because, under s̄′ this type is at distance
2r − 1 + |s̄′| > r from the norm (as the types at one side of the norm were
already exhausted). Finally, a type with ranking r ≥ 1 − |s̄| has welfare of
−D (2r − 1 + |s̄|) under s̄ and −D (2r − 1 + |s̄′|) ≤ −D (2r − 1 + |s̄|) under
s̄′.

Lemma 18 Let p be a step function as in (6) and D as given in (4) with
α > 0. Consider two norms s̄ and s̄′ where |s̄| ≤ |s̄′|, such that for each
norm there exists a non-degenerate stable steady state (xss (|s̄| , K) 6= 1 and
xss (|s̄′| , K) 6= 1). Then the welfare distribution in the steady state corre-
sponding to s̄ first-order stochastically dominates the welfare distribution in
the steady state corresponding to s̄′.
Proof. From Lemma 16 we know that in both steady states welfare decreases
in the distance from the respective norm. Hence the welfare of the conformers,
who are types close to the norm, is higher than that of the non conformers, who
are types far from the norm. From Lemma 11 part (3) and the proof of Lemma
14, we know that xss (|s̄| , K) ≥ xss (|s̄′| , K). Thus, the bottom 1− xss (|s̄| , K)
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in both welfare distributions are people who follow their heart and their welfare,
which is solely determined by the social pressure imposed on them, is −K.
Right above them, in terms of welfare, there are the xss (|s̄| , K)− xss (|s̄′| , K)
types who follow their heart under s̄′ but conform under s̄. Their welfare equals
−K under s̄′ and is higher under s̄ (otherwise they could follow their heart
under s̄ too and get −K). Finally, the top 1 − xss (|s̄′| , K) in both welfare
distributions are people who conform in both cases. If, in the steady state
under s̄′, the conformers are on both sides of the norm (as can happen for
α > 1), then they are on both sides of the norm also under s̄, which implies
the same number of conformers under both norms. Hence, in both welfare
distributions a ranking r ≤ 1 − xss (|s̄′| , K) corresponds to distance d = r
from the norm, implying the same welfare under both distributions for the type
ranked r. Otherwise, the conformers under s̄′ are only on one side of the
norm, and a similar reasoning to that of the proof to Lemma 17 applies: types
with ranking r ≤ 1− |s̄′| have the same dissonance D (r) in both steady states
but are better off under s̄ because there are less non-conformers who pressure
them, and types with ranking 1− |s̄′| < r < 1− |s̄| are strictly better off under
s̄ both in terms of dissonance and social pressure.

Lemma 19 Let p be a step function as in (6) and D as given in (4) with
α > 0. Consider a norm s̄ such that there exist two stable steady states for this
norm, one degenerate (xss (|s̄| , K) = 1) and one non-degenerate (xss (|s̄| , K) 6=
1). Then the welfare distribution in the degenerate stable steady state first-
order stochastically dominates the welfare distribution in the non-degenerate
stable steady state.
Proof. From Lemma 16 we get that the same welfare ranking applies to the
two welfare distributions, where at the top of the ranking are those conforming
in the two steady states, ordered by their distance from the norm, and after
them the types who do not conform in the non-degenerate stable steady state,
again ordered by their distance to the norm. The types at the top of the ranking,
who conform in the two steady states, are all better-off in the degenerate stable
steady state, because, while their dissonance is the same in both cases, they
suffer from an additional social pressure in the non-degenerate stable steady
state, from the actions chosen by the non conformers. The types at the bottom
of the ranking, who conform only in the degenerate stable steady state, are also
all better-off in that case, because their choice to conform implies that they are
better-off by conforming, so for them L = D (|t− s̄|) < P (s; s′) = K, while
their loss in the non-degenerate stable steady state equals K (which is the social
pressure on the non conformers).
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Lemma 20 Consider the dynamic model in (11) with p being a step function
as in (6) and D as given in (4) with α > 0. Then the welfare distribution
under s̄ first-order stochastically dominates the welfare distribution under s̄′ if
and only if |s̄| ≤ |s̄′|.
Proof. Let |s̄| ≤ |s̄′|. If |s̄| = |s̄′| then symmetry implies that the welfare
distributions are the same under both norms and the proposition holds in the
weak sense. Otherwise there are two separate cases to consider. Case (i): there
exists a degenerate stable steady state for s̄′. By Lemma 15 this implies that
there exists a degenerate stable steady state for s̄ too, and by Lemma 17 we get
that the welfare distribution in the degenerate stable steady state corresponding
to s̄ first-order stochastically dominates the welfare distribution in the degen-
erate stable steady state corresponding to s̄′. If in addition there exists also a
non-degenerate stable steady state for one (and only one) of the norms, then
19 implies that no further comparisons are needed (recall that in this case we
compare max {xss (|s̄| , K)} with max {xss (|s̄′| , K)}). Finally, if there exist a
non-degenerate stable steady state for each of the two norms, then Lemma 18
implies that also the welfare distribution in the non-degenerate stable steady
state corresponding to s̄ first-order stochastically dominates the welfare distri-
bution in the non-degenerate stable steady state corresponding to s̄′. Case (ii):
there does not exist a degenerate stable steady state for s̄′, i.e., there exists only
a non-degenerate one, in which case there are three sub-cases: (a) For s̄ there
exist two stable steady states, one degenerate and one non-degenerate, and then
by Lemmas 18 and 19 we get that both welfare distributions under s̄ first-order
stochastically dominate the one welfare distribution under s̄′. (b) For s̄ there
exists only a non-degenerate stable steady state, and then by Lemma 18 we get
that the welfare distribution under s̄ first-order stochastically dominates the
welfare distribution under s̄′. (c) For s̄ there exists only a degenerate stable
steady state. Then the ranking r that corresponds to distance d from the norm
is at least as low under s̄′ as it is under s̄ (where, recall, the lower is r the
better is the ranking), yet the welfare at this distance is lower under s̄′. This
is so because either the type at distance d conforms under s̄′, in which case her
dissonance is the same in both steady states, but she suffers from an additional
social pressure in the non-degenerate stable steady state of s̄′, from the actions
chosen by the non conformers; or the type at distance d follows her heart under
s̄′, in which case her welfare is −K, whereas in the degenerate stable steady
state of s̄ all types have welfare higher than −K (otherwise they would follow
their hearts and get −K).
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E Appendix: Inverting societies

Let
sl ≡ s̄+ 1 and

σ ≡ s− s̄.
These notations will be useful for proofs that deal with the case in which s̄ < 0
and y > s̄ + 1, where the distribution of actions is asymmetric around s̄, and
sl then denotes the size of the uniform part to the left of s̄, which equals the
distance of s̄ from the left corner of the types distribution, −1.

E.1 Proof of Lemma 3
When D is a step function taking the value of 0 or 1 and P (s) has a unique
min point at s̄, we immediately have

s∗ (t) =

{
s̄ if 1 + P (s̄) ≤ P (t)

t if 1 + P (s̄) > P (t)
. (29)

Since, by assumption, P is increasing on each side of the norm, we get that
types suffi ciently far from the norm will state the norm and types suffi ciently
close to the norm will state their type.�

E.2 Proof of Lemma 4
If [s̄− y, s̄+ y] ∩ [−1, 1] = [s̄− y, s̄+ y], the distribution of actions is com-
posed of a mass of individuals at s̄ and a uniform part that is symmetric
around s̄. The pressure that results from each of the two parts of this dis-
tribution of actions increases in the distance from s̄ (see Lemma 5 regarding
the contribution from the uniform part), and so the lemma holds. Otherwise,
assume without loss of generality that s̄ < 0 and that all types at [−1, s̄+ y]
follow their hearts, with y > s̄+ 1. The aggregate P (s) that results from this
distribution of actions can be written as

P (s) =

{Kx |s− s̄|β +K 1
2

(s+1)β+1+(s̄+y−s)β+1
β+1

if s ≤ s̄+ y

Kx |s− s̄|β +K 1
2

(s+1)β+1−(s−s̄−y)β+1

β+1
if s > s̄+ y

(30)

with

x =

(
1− y

2
− s̄+ 1

2

)
.
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From the following expression of P ′(s)

P ′ (s) =


−K

(
1− y

2
− s̄+1

2

)
β (s̄− s)β−1 +K 1

2
(s+ 1)β −K 1

2
(s̄+ y − s)β if s < s̄

K
(
1− y

2
− s̄+1

2

)
β (s− s̄)β−1 +K 1

2
(s+ 1)β −K 1

2
(s̄+ y − s)β if s̄ < s ≤ s̄+ y

K
(
1− y

2
− s̄+1

2

)
β (s− s̄)β−1 +K 1

2
(s+ 1)β −K 1

2
(s− s̄− y)β if s > s̄+ y

(31)
it is clear that (a) P ′ (s) → −∞ as s →− s̄ and P ′ (s) → ∞ as s →+ s̄; and
(b) P (s) is decreasing in s for s < s̄ (recall that y > s̄ + 1) and is increasing
in s for s > s̄ + y. Moreover, when −1+s̄+y

2
< s ≤ s̄ + y (i.e., s in the right

half of the uniform part), we get that (s+ 1) > (s̄+ y − s) , hence P ′ (s) is
positive too (this comes from the fact that the part of P (s) that originates in
the uniform part is increasing in the distance from −1+s̄+y

2
, the center of this

part). Therefore, the global min can only be found at s ∈
[
s̄, −1+s̄+y

2

]
. In this

range we have

P ′ (s) = K

(
1− y

2
− s̄+ 1

2

)
β (s− s̄)β−1 +K

1

2
(s+ 1)β −K 1

2
(s̄+ y − s)β .

Note first that (i) if y = s̄+ 1, the distribution of actions is symmetric around
s̄, and so P ′ (s) ≥ 0 at the range s ∈

[
s̄, −1+s̄+y

2

]
; and (ii) if y = 1 − s̄ (this

is the distance from s̄ to the furthest edge), then P ′ (s) < 0 at the range
s ∈

[
s̄, −1+s̄+y

2

]
, since Lemma 5 implies that P (s) is increasing in the distance

from 0 > −1+s̄+y
2

. Differentiating with respect to y we get

dP ′ (s)

dy
=

1

2
K
[
−β (s− s̄)β−1 − β (s̄+ y − s)β−1

]
< 0 (32)

This inequality, together with i) and ii), then implies that ∃y ∈ ]s̄+ 1, 1− s̄[ ,
denoted by ymax (s̄) , such that P ′ (s) ≥ 0 at the whole range s ∈

[
s̄, −1+s̄+y

2

]
if and only if y ≤ ymax (s̄) .33 We will now show that ymax (s̄) ≥ 1, by showing
that for y = 1 and every given s̄, P ′ (s) ≥ 0 at the whole range s ∈

[
s̄, −1+s̄+y

2

]
.

Rewriting the expression for P ′(s) we get

P ′ (s) =
1

2
K
[
(2− y − sl) βσβ−1 + (sl + σ)β − (y − σ)β

]
. (33)

33This already takes into account the fact that the range
[
s̄, −1+s̄+y

2

]
is itself increasing

in y.
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Differentiating with respect to sl we get

dP ′ (s)

dsl
=

1

2
K
[
−βσβ−1 + β (sl + σ)β−1

]
≤ 0 (34)

This inequality suggests that P ′(s) is minimal when sl is maximal (i.e., equals
1 − ε, where s̄ = −ε → 0). Note that in this case σ → 0, as the range of s
shrinks to be s ∈

[
−ε, −ε

2

]
. Plugging s = −λε into (33), and letting λ ∈ [0.5, 1],

we then have

P ′ (s) =
ε

2
β (−λε+ ε)β−1 +

1

2
(−λε+ 1)β − 1

2
(−ε+ 1 + λε)β

=
εβ

2
β [(1− λ)]β−1 +

1

2
(1− λε)β − 1

2
[1− (1− λ) ε]β ,

we get34

P ′ (s) =
εβ

2
β [(1− λ)]β−1 +

1

2

[
β (1− 2λ) ε+O(ε2)

]
and so, if β < 1

lim
ε→0

P ′ (s) = lim
ε→0

εβ

2
β [(1− λ)]β−1 = 0+

and if β = 1

lim
ε→0

P ′ (s) =
ε

2
[1 + 1− 2λ] = 0+.

This means that even for the maximal sl, P ′(s) is positive everywhere when
y = 1, implying that ymax (s̄) ≥ 1.�

E.3 Proof of Proposition 4
The proof of the proposition builds on a few auxiliary lemmas that are outlined
first. The actual proof of the proposition follows after the lemmas.

Lemma 21 If β = 1 then ymax (s̄) = 1 ∀s̄.
Proof. Lemma 4 implies that ymax (s̄) ≥ 1. Plugging in β = 1 and letting
s →+ s̄ in equation 31 yields P ′ (s) = K(1 − y). This expression is negative
for y > 1, which, by the definition of ymax (s̄) implies that ymax (s̄) ≤ 1. Thus
ymax (s̄) = 1 ∀s̄.

34In the following expression, O(ε2) is the standard mathematical notation for an element
in the order of ε2.
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Lemma 22 Suppose that β < 1 and sl ∈ [0, 1] . Then (1− sl) β−2+(sl + 1)β <
0.
Proof. (1− sl) β ≥ 0 and 2 − (sl + 1)β ≥ 0. However, we have (sl + 1)β <

sl + 1 = 2− (1− sl) < 2− (1− sl) β, and so (1− sl) β −
[
2− (sl + 1)β

]
< 0.

Lemma 23 Suppose β ≤ 1. Let s̄ ≤ 0 and y ≤ ymax (s̄), and suppose that
all types t ∈ [s̄− y, s̄+ y] ∩ [−1, 1] follow their hearts and the rest state s̄. If
type t = s̄ + y is indifferent between the two corner solutions s∗ (t) = s̄ and
s∗ (t) = t, then for any type the best response is

s∗ (t) =

{
s̄ if |t− s̄| > y

t otherwise
.

Proof. For types with t > s̄ the result follows from Lemmas 3 and 4. As
for types t < s̄, if [s̄− y, s̄+ y] ∩ [−1, 1] = [s̄− y, s̄+ y] then the distribution
of actions is symmetric around s̄ and the result follows from P then being
symmetric and monotonically increasing in |s− s̄|. Otherwise, by construction
all types at [−1, s̄+ y] follow their hearts, where y > s̄ + 1. We need to show
that indeed all types with t < s̄ have strict preference for the solution s∗ (t) = t.
Since we know from Lemma 4 that P is strictly increasing in the distance from
s̄ while D is fixed, it is suffi cient to show that s∗ (t) = t for the type t = −1.
Looking at t = −1, the fact that P gets its global min point at s̄ and equation
(29) imply that it is suffi cient to show that 1+P (s̄)−P (−1) ≥ 0. Furthermore,
note that the indifference of type t = s̄+y implies that 1+P (s̄)−P (s̄+ y) = 0.
Therefore, it is suffi cient to show that P (s̄+ y) ≥ P (−1):

P (s̄+ y) =Kxyβ +K
1

2

(s̄+ y + 1)β+1

β + 1
,

P (−1) =Kx |−1− s̄|β +K
1

2

(s̄+ y + 1)β+1

β + 1
,

and so P (s̄+ y) ≥ P (−1) if and only if y ≥ s̄+1, which holds by assumption.

Lemma 24 Let s̄ ∈ [−1, 1] and let D be given by (12), and suppose that β ≤ 1.
For every y ≤ ymax (s̄), let S(y) denote a distribution of actions in society such
that all types t ∈ [s̄− y, s̄+ y]∩ [−1, 1] follow their hearts while the rest choose
s̄. Denote by K(y) the value of K that, given the pressure function P (s) that
results from S (y), implies indeed s∗(t) = s̄ for all types with |t− s̄| > y and
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s∗(t) = t for all types with |t− s̄| ≤ y. Then, when β < 1, K(y) has either a
U-shape or a W -shape, and when β = 1, K (y) is monotonically decreasing.
Proof. Without loss of generality, let s̄ ≤ 0. The given distribution of actions
and the fact that y ≤ ymax (s̄) imply by Lemma 4 that P is increasing in |σ|
(recall σ ≡ s− s̄). Moreover, from Lemma 3 we know that

s∗ (t) =

{
s̄ if 1 + P (s̄) ≤ P (t)

t if 1 + P (s̄) > P (t)

which implies types suffi ciently far from the norm will state the norm and
types suffi ciently close to the norm will state their type. We are looking for
the value of K for which the type who is indifferent between the two options is
at distance y from s̄. I.e., 1 + P (s̄) = P (s̄+ y) . Lemma 23 implies that this
distance y applies to both sides. However, as y grows from 0, we move from a
region where the uniform part is symmetric around s̄ (when y ≤ sl) to a region
where it is asymmetric (when y ∈ [sl, 2− sl]). Therefore the analysis will be
first performed separately for each region, and then the two analyses will be
combined.
Region (1): y ≤ sl
In this region the uniform part of S is symmetric around the norm and so

the share of individuals following the norm is x = 1− y and P (σ) is given by:

P (σ) =

{Kx |σ|β +K 1
2

(|σ|+y)β+1+(y−|σ|)β+1
β+1

if |σ| ≤ y

Kx |σ|β +K 1
2

(|σ|+y)β+1−(|σ|−y)β+1

β+1
if |σ| > y

(35)

The type who is indifferent between the two options is at distance y from s̄,
i.e., 1 + P (0) = P (y) , if

1/K +
1

2

2yβ+1

β + 1
= (1− y) yβ +

1

2

(2y)β+1

β + 1

⇒ 1/K = (1− y) yβ +
(
2β − 1

) yβ+1

β + 1
. (36)

Region (2): y ∈ [sl, 2− sl]
In this region the uniform part of S is asymmetric around the norm, and

the share of individuals following the norm is x =
(
1− y

2
− sl

2

)
. Rewriting (30)
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we get that P (σ) is given by:

P (σ) =

{Kx |σ|β +K 1
2

(sl+σ)β+1+(y−σ)β+1

β+1
if σ ≤ y

Kx |σ|β +K 1
2

(sl+σ)β+1−(σ−y)β+1

β+1
if σ ≥ y

.

The type who is indifferent between the two options is at distance y from s̄,
i.e., 1 + P (0) = P (y) , if

1/K +
1

2

(sl)
β+1 + (y)β+1

β + 1
=
(

1− y

2
− sl

2

)
yβ +

1

2

(sl + y)β+1

β + 1
⇒

1/K =
(

1− y

2
− sl

2

)
yβ +

1

2

(sl + y)β+1 − (sl)
β+1 − yβ+1

β + 1
.(37)

Joining the two regions:
Following equations 36 and 37, we can get the following expression for 1

K

as a function of y.

1

K
(y) =

{ (1− y) yβ +
(
2β − 1

)
yβ+1

β+1
if y ≤ sl(

1− y
2
− sl

2

)
yβ + 1

2
(sl+y)β+1−(sl)

β+1−yβ+1
β+1

if y ∈ [sl, 2− sl]
(38)

Differentiating in both regions yields

d(1/K)

dy
=

{
(1− y) yβ−1β − yβ

(
2− 2β

)
if y ≤ sl(

1− y
2
− sl

2

)
βyβ−1 − yβ + 1

2
(sl + y)β if y ∈ [sl, 2− sl]

. (39)

When β = 1 we get that d(1/K)
dy

= 1− y in both regions, hence 1/K is a strictly
increasing function of y in the range [0, 1] (and K (y) is strictly decreasing in
y ∈ [0, 1]). Since in this case ymax = 1 (see Lemma 21), we get that the lemma
holds for β = 1. We continue now with the case of β < 1. Differentiating once
more

d2(1/K)

dy2

=

{ −yββ + (1− y) yβ−2 (β − 1) β − βyβ−1
(
2− 2β

)
< 0 if y ≤ sl(

1− y
2
− sl

2

)
β (β − 1) yβ−2 − 3

2
βyβ−1 + 1

2
β (sl + y)β−1 < 0 if y ∈ [sl, 2− sl]

(40)

so that 1/K is concave in y in both regions. Moreover, it is easy to verify that
1
K

(y) is continuous at y = sl, the border between the two regions. If s̄ = 0
(sl = 1), then only the first region applies. It is easy to verify that in the first
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region we get the following {d(1/K)
dy

> 0 as y → 0

d(1/K)
dy

< 0 as y → 1
,

and so in this case 1
K

(y) is hill-shaped. Otherwise s̄ < 0 (sl < 1). For the
applicability of 1

K
(y) in this lemma we require that y ≤ ymax (s̄). When s̄ < 0

we still have d(1/K)
dy

> 0 as y → 0, but sl < 1 ≤ ȳ ≡ min {ymax (s̄) , 2− sl}
(recall that from Lemma 4 we know that ymax (s̄) ≥ 1), and so region (2)
applies to large enough values of y. Moreover, d2(1/K)

dy2
< 0 implies that d(1/K)

dy

is strictly decreasing in y. Hence, ȳ ≥ 1 implies that d(1/K)
dy
|y=ȳ ≤ d(1/K)

dy
|y=1 =

1
2

[
(1− sl) β − 2 + (sl + 1)β

]
, which by Lemma 22 is strictly negative. Hence

we know that 1
K

(y) has a positive slope at y → 0 and a negative slope at
y = min {ymax (s̄) , 2− sl}, and in between it is concave in each of the regions.
It thus follows that 1

K
(y) has at least one and at most two max points and that

these max points are internal, i.e. 1
K

(y) is either hill-shaped or M-shaped, and
so K(y) is either U-shaped or W -shaped.

Lemma 25 Let D be given by (12) and let β < 1. Suppose there exists a
value of K such that a single-norm equilibrium at s̄ ∈ [−1, 1], where all types
t ∈ [s̄− y, s̄+ y]∩ [−1, 1] follow their hearts while the rest choose s̄, exists for
some y > ymax (s̄). Then K ≥ Kmin (|s̄|).
Proof. Without loss of generality, let s̄ ≤ 0. Since the existence of the equi-
librium that is described in the lemma requires that t = s̄+y will be indifferent
between following her heart and choosing s̄, and since y > ymax (s̄) ≥ 1 ≥ sl,
the value of K that may allow such an equilibrium (if it indeed exists) is given
by equation (37), with first and second derivatives as in the second lines of
equations (39) and (40) respectively. Then, the fact that d2(1/K)

dy2
< 0 implies

that the value of d(1/K)
dy

at any y > ymax (s̄) is strictly smaller than d(1/K)
dy
|y=1 =

1
2

[
(1− sl) β − 2 + (sl + 1)β

]
, which by Lemma 22 is negative. Hence, 1

K
(y)

is decreasing when y > ymax (s̄), implying that for any y > ymax (s̄) , an equi-
librium as described in the lemma requires K(y) > K(ymax (s̄)) ≥ Kmin (|s̄|) .

Lemma 26 Let D be given by (12) and suppose that β ≤ 1. Then the only
possible distribution of actions in a single-norm equilibrium at s̄ ∈ [−1, 1] is
one where all types t ∈ [s̄− y, s̄+ y]∩[−1, 1] for some y > 0 follow their hearts
while the rest choose s̄.
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Proof. First note that if D is a step function as in (12), then for any t ∈
[−1, 1] , either s∗ (t) = t or s∗ (t) ∈ arg min (P ). Then, the existence of a
single-norm equilibrium at s̄ implies that (i) s̄ ∈ arg min (P ) and (ii) s∗ (t) = t
for every t for whom s∗ (t) 6= s̄. Together with the uniform distribution of
types, this implies that the distribution of actions can contain only uniform
parts apart from the peak at s̄.
Moreover, the continuity of P (s) implies that for types suffi ciently close

to s̄, 1 + P (s̄) > P (t) (since then P (t) → P (s̄)), and so the distribution
of actions must necessarily contain a uniform part that is attached to s̄. We
will now show that there can be no other uniform parts in the distribution of
actions. Without loss of generality, let s̄ ≤ 0, and suppose that there exist
(one or more) uniform parts that are detached from s̄. Consider the rightmost
uniform part. Since P is continuous, at the left edge of this specific uniform
part there must be a type t who is indifferent between s∗ (t) = t and s∗ (t) = s̄,
i.e., for whom 1+P (s̄) = P (t) . Note also that the sources of the pressure P (s)
can be divided into two sections — those that compose the rightmost uniform
part, and those that lie to the left of this uniform part. The sources of the first
section impose the same pressure on the type at the left edge of the rightmost
uniform part and on the type at the right edge of this uniform part (due to
symmetry). The sources of the second section impose more pressure on the
latter, because this type is farther away from the norm. Together with the fact
that D is the same for both types, this implies that 1 + P (s̄) < P (t) for this
latter type, in contradiction to the assumption that this type chooses s∗ (t) = t.
Since a rightmost and detached uniform part cannot exist this implies that no
detached uniform part can exist to the right of s̄. A similar argument applies
to the left of s̄ and hence we have shown that the only uniform part that can
exist is attached to s̄.
Finally, we need to show that this uniform part can be written as [s̄− y, s̄+ y]∩

[−1, 1] for some y, which boils down to showing that it cannot be asymmetric
if it does not touch any of the edges of the type distribution. I.e., this part
cannot be [s̄− y1, s̄+ y2] ⊂ [−1, 1] where y1, y2 > 0 and y1 6= y2. Suppose to
the contrary that this case holds. Then the aggregate pressure P (s) is given
by:

P (σ) =


Kx |σ|β +K 1

2
(σ+y1)β+1+(y2−σ)β+1

β+1
if − y1 ≤ σ ≤ y2

Kx |σ|β +K 1
2

(y2−σ)β+1−(−y1−σ)β+1

β+1
if σ < −y1

Kx |σ|β +K 1
2

(σ+y1)β+1−(σ−y2)β+1

β+1
if σ > y2

(41)

where x = y1+y2
2
. Moreover, both the type t1 = s̄−y1 and the type t2 = s̄−y2 are

indifferent between s∗ (t) = t and s∗ (t) = s̄. Hence it must hold simultaneously
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that 1 + P (0) = P (−y1) and 1 + P (0) = P (y2), i.e., P (−y1) = P (y2) .
Substituting σ = −y1 and σ = y2 in equation (41) we get

Kxyβ1 +K
1

2

(y2 + y1)β+1

β + 1
= Kxyβ2 +K

1

2

(y2 + y1)β+1

β + 1

⇒ yβ1 = yβ2

which contradicts y1 6= y2.

Lemma 27 Suppose β ≤ 1. Kmin (|s̄|) is weakly decreasing in |s̄|.
Proof. We start with the case β < 1. First note that Kmin is never found
on the border between the regions (1) and (2),35 since d(1/K)

dy
|y→+sl is strictly

greater (unless sl = 0) than d(1/K)
dy
|y→−sl. We can therefore rewrite equation

(38) as a function of s̄ for the two regions and differentiate 1/K w.r.t. s̄. This
yields

d (1/K)

ds̄
=

{
0 if y ≤ s̄+ 1

−yβ

2
+ 1

2
(s̄+ y + 1)β − 1

2
(s̄+ 1)β if y ∈ [s̄+ 1,min {ymax (s̄) , 1− s̄}]

(42)

d2 (1/K)

ds̄2
=

{
0 if y ≤ s̄+ 1

1
2
β (s̄+ y + 1)β−1 − 1

2
β (s̄+ 1)β−1 if y ∈ [s̄+ 1,min {ymax (s̄) , 1− s̄}]

(43)

Note that d(1/K)
ds̄
|y→+s̄+1 =

(
2β−1 − 1

)
(s̄+ 1)β < 0 and d2(1/K)

ds̄2
≤ 0. These

results imply that 1
K

(y) is constant in s̄ in the first region and is strictly de-
creasing in s̄ in region (2) (note that this does not violate the continuity of
1
K

(y) as can be verified by plugging y = sl in equation (38)). Hence, since we
have been analyzing the case of s̄ ≤ 0, more generally K(y) is weakly decreas-
ing in |s̄|. In particular Kmin is weakly decreasing in |s̄| —it stays constant if
Kmin is achieved in region (1) both before and after the change in |s̄|, and is
strictly decreasing if Kmin is achieved in region (2) after the change in |s̄|.
Now for the case β = 1. Plugging β = 1 into equation (38) we get that

both regions are independent of s̄. Hence, Kmin is independent of s̄.

Proof of Proposition 4
Lemma 24 implies that for any s̄ ∈ [−1, 1], one can construct a distribution

of stances, denoted by S(y), such that all types t ∈ [s̄− y, s̄+ y] ∩ [−1, 1] for
some y ≤ ymax (s̄) follow their hearts while the rest choose s̄, if a suitable value
of K is chosen. This means S(y) forms a single-norm equilibrium. Moreover,
this lemma says that K(y), the value for which this single-norm equilibrium

35These regions are defined in the proof of Lemma 24.
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exists for a given y, is either U-shaped or W-shaped as a function of y when
β < 1; and K(y) is strictly decreasing in y with a min point at y = ymax when
β = 1. When y → 0 we have

lim
y→0

1/K = lim
y→0

{
(1− y) yβ +

(
2β − 1

) yβ+1

β + 1

}
= 0,

so that K(y) → ∞. Let Kmin (|s̄|) denote the minimal value of K(y). It thus
immediately follows that for K ≥ Kmin (|s̄|) there exists a fix point y while for
K < Kmin (|s̄|) there does not. This proves the if part of statement (1). As
for the only if part of the statement, note that Lemma 26 implies that in any
single-norm equilibrium, all types t ∈ [s̄− y, s̄+ y]∩[−1, 1] for some y < 1+|s̄|
follow their hearts while the rest choose s̄. It thus suffi ces to show that if such
an equilibrium exists for some y > ymax (s̄), then still K ≥ Kmin (|s̄|). For
β < 1 this is proved in Lemma 25. For β = 1 we know from Lemma 21
that ymax = 1. Then, when y > ymax = 1, no K can sustain a single-norm
equilibrium at s̄. This can be seen by setting β = 1 and letting s →+ s̄ in
equation 31, and noting that, for y > 1, s̄ is not the global min point of P and
so cannot be the norm given that D is a step function. As for statement (2) of
the proposition, the fact that Kmin is weakly decreasing in |s̄| follows directly
from Lemma 27.�

E.4 Proof of Proposition 5
The proof of the proposition builds on a few auxiliary lemmas, and on expres-
sions within these lemmas, that are outlined first. The actual proof of the
proposition follows after the lemmas.

Lemma 28 Suppose β ≤ 1. Suppose in some generation i there exists a
cutoff distance from the norm yi, such that all types in that generation that
fulfill |t− s̄| > yi follow the norm and all types fulfilling |t− s̄| ≤ yi follow
their hearts and that yi ≤ ymax (s̄). Then there exists a cutoff yi+1 in the next
generation, such that all types that fulfill |t− s̄| > yi+1 follow the norm and
all types that fulfill |t− s̄| ≤ yi+1 follow their hearts. Furthermore yi+1 is an
increasing function of yi.
Proof. When yi ≤ ymax (s̄) then by Lemma 4 P is increasing with distance
from s̄. Since D is a fixed cost it implies that types suffi ciently far from s̄
follow s̄ and types suffi ciently close follow their t (note that this cutoff may be
such that all types choose s = t). By Lemma 23 we know that if the cutoff type
t = s̄+ yi+1 is such that s̄− yi+1 < −1 then type t = −1 strictly prefers stating
her type. This implies that we only need to focus on the indifferent type t > s̄.
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The indifferent type (which we define as tc ≡ s̄+ yi+1) is such that

L (tc, tc) = Pi+1 (tc) = Pi+1 (s̄) +D (tc, s̄) = L (s̄, tc) .

Define
F ≡ D (s̄, tc) /K + Pi+1 (s̄) /K − Pi+1 (tc) /K = 0.

Then F = 0 implicitly gives us yi+1 as a function of yi). For a given yi, F can
take one of the following forms:

F = (44)

F1 ≡ 1
K

+1
2

(s̄+1)β+1+(yi)
β+1

β+1
−1

2

[
(1− yi − s̄) (yi+1)β + (s̄+yi+1+1)β+1+(yi−yi+1)β+1

β+1

]
if yi ≥ yi+1,s̄− yi<-1

F2 ≡ 1
K

+
yβ+1i

β+1
−
[
(1− yi) (yi+1)β + 1

2
(yi+1+yi)

β+1+(yi−yi+1)β+1

β+1

]
if yi ≥ yi+1, s̄− yi ≥ -1

F3 ≡ 1
K

+1
2

(s̄+1)β+1+(yi)
β+1

β+1
−1

2

[
(1− yi − s̄) (yi+1)β + (s̄+yi+1+1)β+1−(yi+1−yi)β+1

β+1

]
if yi ≤ yi+1,s̄− yi<-1

F4 ≡ 1
K

+
yβ+1i

β+1
−
[
(1− yi) yβi+1 + 1

2
(yi+1+yi)

β+1−(yi+1−yi)β+1
β+1

]
if yi ≤ yi+1, s̄− yi ≥ -1

Note that when s̄− yt → −1 then F1 = F2 and F3 = F4; that when yi+1 → yi
then F1 = F3 and F2 = F4; and finally that when s̄ − yi → −1 and yi+1 → yi
then F1 = F3 = F2 = F4. Hence, since each of F1, F2, F3 and F4 is continuous
then F is a continuous function and hence yi+1 is a continuous function of
yi. This implies that, if yi+1 is an increasing function yi for each of F1, F2, F3

and F4, then yi+1 is an increasing function of yi also globally. By the implicit
function theorem we have

dyi+1

dyi
= − Fyi

Fyi+1
.

Note that the bracket in each F equals P (s) |s=yi+1 , which implies that

Fyi+1 = − dP

dyi+1

= −dP
ds
|s=yi+1 , (45)

which we know is negative by Lemma 4. Hence, if Fyi is positive then
dyi+1
dyi

is
positive.

Fyi =


1
2

(yi)
β + 1

2
(yi+1)β − 1

2
(yi − yi+1)β if yi ≥ yi+1, s̄− yi < −1

yβi + yβi+1 − 1
2

(yi+1 + yi)
β − 1

2
(yi − yi+1)β if yi ≥ yi+1, s̄− yi ≥ −1

1
2
yβi + 1

2
yβi+1 − 1

2
(yi+1 − yi)β if yi < yi+1, s̄− yi < −1

yβi + yβi+1 − 1
2

(yi+1 + yi)
β − 1

2
(yi+1 − yi)β if yi > yi+1, s̄− yi > −1

(46)

69



From this expression one can see that Fyi is strictly positive on all rows:
the first and third row trivially follow from 1

2
(yi)

β > 1
2

(yi − yi+1)β and the
second and fourth row follow since 1

2
yβi + 1

2
yβi+1 ≥ 1

2
(yi+1 + yi)

β and 1
2
yβi >

1
2

(yi − yi+1)β.

Lemma 29 Suppose β ≤ 1. Then:

1. ymax (s̄) (from Lemma 4) is weakly increasing in |s̄|.

2. Let K(y) be implicitly given by equation (37) and let ỹ denote an implicit
solution to this equation for a given value of K. Then if K ′(ỹ) > 0, ỹ is
weakly increasing in |s̄|, and if K ′(ỹ) < 0, ỹ is weakly decreasing in |s̄|

Proof. ymax (s̄) is the maximum value of y such that P (s) is monotonically
increasing in |s− s̄|. In Lemma 4 we show that it is unique for a given s̄, such
that P (s) is monotonically increasing if and only if y ≤ ymax (s̄). For β = 1
we know from Lemma 21 that ymax = 1 ∀s̄. For β < 1 we will show that
ymax (sl) is decreasing in sl (recall that sl ≡ s̄ + 1), which is equivalent to the
first statement in the lemma. Suppose that sl is given, and that y = ymax (sl).
It follows then that ∃s ∈ [−1, 1] such that P ′(s) = 0. If we then increase sl by
some ε while keeping y = ymax (sl), we get by equation (34) that ∃s ∈ [−1, 1]
such that P ′(s) < 0, implying that P (s) is not monotonically increasing in
|s− s̄| for any y ≤ ymax (sl). This means that ymax (sl + ε) < ymax (sl), i.e.,
ymax (s̄) is increasing in |s̄| as in statement (1).
2) Equation (37) depicts the function K(y) in region (2) (as defined in

Lemma 24). From the proof of Lemma 24 we know that if β < 1 then K(y)
is weakly decreasing in |s̄| and if β = 1 then K(y) is constant in |s̄|, and this
holds in particular for region (2). It thus follows that, for a given value of K,
any implicit solution ỹ for which K ′(ỹ) > 0 is weakly increasing in |s̄|, and
any implicit solution ỹ for which K ′(ỹ) > 0 is weakly decreasing in |s̄|.

Proof of Proposition 5
Statement 1): Recalling that F = 0 in equation (44) implicitly gives us

yi+1(yi), we can see in that equation that when yi = 0, the only way for F to
equal zero is to have F = F4 = 1/K−yβi+1, implying that yi+1(0) > 0.36 Lemma
28 further shows that yi+1 is an increasing function of yi. If K < Kmin (|s̄|) , we
know from Lemma 24 that no steady state exists. Otherwise, ifK ≥ Kmin (|s̄|) ,
36To see this note that when yi = 0, F4 and F2 are the only relevant cases and that if

F = F2 then by construction it must be that yi+1 = 0 implying F = F2 ≡ 1/K 6= 0, which
contradicts F = 0.
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then by Lemma 24 we know that a steady state exists (at least one). Next, note
that F in equation (44) is strictly decreasing inK (this applies to F1, F2, F3 and
F4). This implies that FK < 0, which together with Fyi+1 < 0 (see equation
45) implies that dyi+1

dK
= − FK

Fyi+1
< 0, i.e., that the function yi+1(yi) goes down

whenK increases. This means that whenK < Kmin (|s̄|) , the function yi+1(yi)
always stays above the 45 degree line (i.e. the line that implies yi+1 = yi);
when K = Kmin (|s̄|) the function yi+1(yi) is tangent to the 45 degree line, and
when K > Kmin (|s̄|) the function yi+1(yi) crosses the 45 degree line at least
once. It thus follows that when K = Kmin (|s̄|), any steady state would not
be stable, as there can be no convergence to it from the right. Furthermore,
if K > Kmin (|s̄|), it implies together with yi+1 (0) > 0 that there must be at
least one stable steady state, as there is at least one point where the function
yi+1(yi) crosses the 45 degree line, starting above it and continuing below it.
Denoting the leftmost stable steady state by yss and min {y (Kmin (s̄))} by
ymin (s̄) (note that y (Kmin (s̄)) is unique if K(y) is U -shaped and may have at
most two solutions when it is W -shaped). Then we know that yss ≤ ymin (s̄)
because our analysis up till now implies that yi+1(ymin (s̄)) < ymin (s̄).37 From
yi+1 (0) > 0 we know that yss 6= 0, and since yss ≤ ymin (s̄) , it follows that
xss ∈ ]0, 1[.
Statement 2): Let s̄ and s̄′ be two norms such that |s̄| ≤ |s̄′|. First note x

is decreasing if y is increasing. Hence, to show that xss (|s̄| , K) ≤ xss (|s̄′| , K),
it is suffi cient to show that yss (|s̄| , K) ≥ yss (|s̄′| , K). In what follows, we will
show that, for given s̄ ≤ 0 and K, there exist at most two stable steady states
with a norm and whenever two such steady states exist, one has a truncated
left uniform part (when s̄− yss < −1) and one has equally long uniform parts
on each side of the norm (s̄ − yss > −1). Our comparison rule is: if each of
|s̄| and |s̄′| has a unique stable steady state, then we compare these; if one of
|s̄| and |s̄′| has a unique stable steady state and the other has two, then we
compare min {yss (|s̄|)} with min {yss (|s̄′|)}; and if |s̄| and |s̄′| have two stable
steady states each, we compare the truncated steady states with each other
and the non-truncated steady states with each other.
Let now K > Kmin (|s̄|) and take a steady state, be it stable or unstable.

To verify stability we need to compute dyi+1/dyi at the steady state — it is
stable from both sides if and only if the derivatives are smaller than 1. To
simplify calculations, note first from (46) that in steady states, where yi+1 = yi,
dF1
dyi

= dF3
dyi

and dF2
dyi

= dF4
dyi
. This means we can work solely with F3 and F4,

37Note that ymin (s̄) is a steady state when K = Kmin (|s̄|), in which case yi+1(ymin (s̄)) =
ymin (s̄). As K is further increased, yi+1(ymin (s̄)) goes down.
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depending on the region of y, as defined in Lemma 24.38 If the steady state
falls in the first region, where y < sl, then F4 applies. There we have

dyi+1

dyi
=− Fyi

Fyi+1

=−
yβt + yβt+1 − 1

2
(yt+1 + yt)

β − 1
2

(yt+1 − yt)β

−
[
(1− yt) βyβ−1

t+1 + 1
2

(yt+1 + yt)
β − 1

2
(yt+1 − yt)β

] (47)

=
2yβi − 2β−1yβi[

(1− yi) βyβ−1
i + 2β−1yβi

]
which is strictly smaller than 1 iff

2yβi − 2β−1yβi < (1− yi) βyβ−1
i + 2β−1yβi

yi<
β

(2− 2β + β)
.

One can verify that β

(2−2β+β)
is the FOC solution in region (1) (to see this, one

can equate the first part of equation (39) to 0 and solve for y). From Lemma
24 we know that this is the only local extremum in region (1) and that this
is a minimum point. Hence, in this region, a steady state yi is stable if and
only if dK

dy
|yi < 0. If instead the steady state falls in the second region, where

y > sl, then F3 applies. There

dyi+1

dyi
=− Fyi

Fyi+1

=−
1
2
yβt + 1

2
yβt+1 − 1

2
(yt+1 − yt)β

−
[(

1− yt
2
− (s̄+1)

2

)
βyβ−1

t+1 + 1
2

(s̄+ yt+1 + 1)β − 1
2

(yt+1 − yt)β
](48)

=
yβi[(

1− yi
2
− (s̄+1)

2

)
βyβ−1

i + 1
2

(s̄+ yi + 1)β
]

which is smaller than 1 iff

(1− yi − s̄) βyβ−1
i + (s̄+ yi + 1)β − 2yβi > 0.

38Unless the steady state falls exactly at the border between the two regions, where y = sl,
in which case there is convergence to this steady state only from one side.

72



This inequality (short of a factor of 1/2) corresponds to d(1/K)/dy being
positive in the second region, as can be seen in the second region of equation
(39). That is, in this region too, a steady state yi is stable if and only if
dK
dy
|yi < 0. Finally, we know that in steady states, equation (38) holds. If

the steady state is in region (1) of this equation (where y is relatively small),
then it is independent of s̄. Otherwise the steady state is in region (2) (where
y is relatively large). Then part (2) of Lemma 29 along with stability under
dK
dy
|yi < 0 implies that in region (2) yss is decreasing in |s̄| . Therefore, we we

get the following observations: (I) if a norm s̄ has two stable steady states, one
non-truncated (region (1)) and one truncated (region (2)), then y is smaller in
the non-truncated steady state. (II) if s̄′ has a non-truncated steady state, then
it must be that also s̄ has a non-truncated steady state (since in region 1 yss
is independent of |s̄|). Together, these two observations imply that whenever
s̄′ has a non-truncated steady state, then either (i) both norms have only
a non-truncated steady state, in which case yss (|s̄|) = yss (|s̄′|); (ii) s̄′ has
only a non-truncated steady state while s̄ has two steady states, in which
case (I) implies we should compare only the non-truncated to each other thus
again yss (|s̄|) = yss (|s̄′|); (iii) both norms have two steady states, where the
non-truncated have the same value of yss and the truncated are such that
yss (|s̄′|) ≤ yss (|s̄|).
The only cases left to deal with are those where s̄′ has only a truncated

steady state. If this is the case, then either (i) s̄ also has only a truncated
steady state, implying that yss (|s̄′|) ≤ yss (|s̄|) (since we showed that yss, in
truncated steady states, is falling in |s̄|); or (ii) s̄ has a non-truncated steady
state, in which case (I) implies that we must compare this steady state to the
unique (and truncated) steady state of s̄′. To see that statement (2) of the
proposition holds for this case too, take a third norm s̄′′ such that the distance
of s̄′′ from −1 equals yss (|s̄|) in the non-truncated steady state. Then, since
we know that yss is constant in region (1), we get that s̄′′ has a stable steady
state with yss (|s̄′′|) = yss (|s̄|), and this steady state is at the border of region
(2), hence yss (|s̄′|) ≤ yss (|s̄′′|) = yss (|s̄|).
Statement 3): Since K > Kmin (|s̄|) is given, we know from the proof of

statement (1) that there exists a stable steady state with a single norm s̄ such
that there is convergence to it from any yi < yss. To show convergence to a
stable steady state from the right, let yconv ≡ min {yuss, ymax (|s̄|)}, where yuss
is the rightmost steady state in [0, ymax (|s̄|)] that is unstable from both sides, if
such a one exists. Suppose yuss does not exist, so that yconv = ymax (|s̄|). Then
either there is a unique, and stable, steady state yss, and therefore yi+1 < yi
∀yi ∈ ]yss, ymax (|s̄|)], implying convergence to yss; or, there may be steady
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states in ]yss, ymax (|s̄|)] that are unstable only from one side, in which case
yi+1 < yi in their neighborhood, implying once again convergence to yss. Oth-
erwise yconv = yuss, and the complete instability of yuss implies that when
yi
−→ yuss, yi+1 < yi, and so there is convergence to a stable steady state from

any yi < yuss.
39

Statement 4): Revisiting Lemma 29, part (1) of that lemma implies that
yconv (|s̄|) is increasing in |s̄| whenever yconv = ymax (|s̄|) . If instead yconv =
yuss, then it was shown in the proof to statement (2) of this proposition that
yconv (|s̄|) is weakly increasing in |s̄|. This concludes the proof.�
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