arXiv:hep-lat/9112001v1l 8 Apr 1992

Vectorized Cluster Search]j

Hans Gerd Evertz

Supercomputer Computations Research Institute,
Florida State University,

Tallahassee, FL 32306
email: evertz@Qscri.fsu.edu

Abstract

Contrary to conventional wisdom, the construction of clusters on a lat-
tice can easily be vectorized, namely over each “generation” in a breadth
first search. This applies directly to e.g. the single cluster variant of the
Swendsen-Wang algorithm. On a CRAY-YMP, total CPU time was reduced
by a factor 3.5 — 7 in actual applications.

*Submitted to Computer Physics Communications


http://arxiv.org/abs/hep-lat/9112001v1

Introduction

The vectorization described in this paper applies to “breadth first searches” in
general. We shall describe it in the framework of cluster construction in a spin
system. Monte Carlo simulations of many discrete and continuous spin systems
have been revolutionized in recent years by the advent of “cluster algorithms” that
eliminate or strongly reduce critical slowing down [, B, B]. As an improvement over
the original multi-cluster Swendsen-Wang algorithm [[I], the single-cluster variant
[B] further reduces critical slowing down for many systems. Where possible, it is
now often the method of choice in computer time intensive simulations.

Until recently, there seemed to be one severe drawback to cluster algorithms,
namely that they were supposed to be intrinsically non-vectorizable. The corre-
sponding loss in speed often greatly reduced the original gain in critical slowing
down. Recently the Swendsen-Wang (multi-cluster) algorithm has been put into
vectorized [ and into parallelized [{] form. In this paper we treat the more
favourable single-cluster-variant and show how to vectorize the corresponding
breadth-first-search.

Cluster construction and breadth first search

We work on a euclidean ‘square’ lattice of arbitrary size and dimension. The
abovementioned cluster algorithms amount to specifying a procedure for defining
bonds (on/off) between lattice sites. Sets of lattice sites connected through such
bonds are called clusters.

In the single-cluster algorithm, an initial site is chosen at random, and the clus-
ter to which it belongs is then determined (constructed) by a search. (Bonds are
often evaluated only during this search). Two commonly used search algorithms
are “depth-first” and “breadth-first” search. We shall use the latter.

Breadth first search:

(1) start a list C' with one entry 4, i = iy = initial site
(2) for each neighbour j of site i that does not yet belong to the cluster:
— determine if bond < ¢5 > is on or off;

— if bond is on, then:
add j to list C of cluster members;
mark site 7 as belonging to cluster

(3) repeat (2) for i = next entry in list C, until list is exhausted.

2



Vectorized search

The above search contains “generations” of sites, where the first generation is {i},
and each following generation consists of those direct neighbours of the previous
generation that are newly entered into the list C.

We can now just vectorize over each generation in order to create the next one.
There is one possible vector conflict, namely that a new site could be neighbour of
more than one site of the current generation, and could thus be added to the list
more than once. This conflict is easily avoided by considering only neighbours in
one direction during each vectorized loop, and then treating directions in an outer
loop. Thus the vectorized cluster search, as it runs on a CRAY-YMP, is this:

** Initialization

...define array: neighbour_site(site,direction)
...define array or function: bond_is_on(site_1,site_2)
...ilnitialize array: site_is_in_cluster(site)=.false.
list_end=1

list_entry(list_end) = initial_site
end_of_generation=0

**x Cluster construction
10 start_of_generation = end_of_generation + 1
end_of_generation list_end
do 20 mu=1,number_of_directions
CDIR$ IVDEP ! tell compiler to ignore vector dependencies in "do 30"
do 30 index=start_of_generation,end_of_generation
site_i=list_entry(index)
site_j=neighbour_site(site_i,mu)
if (site_is_in_cluster(site_j)) goto 20
if (bond_is_on(site_i,site_j)) then
site_is_in_cluster(site_j) = .true.
list_end = list_end+1
list_entry(list_end) = site_j
endif
30 continue
20 continue
if (1ist_end.gt.end_of_generation) goto 10

Now the array “list_entry” contains a unique list of addresses of all sites in the
cluster.



Results

The vector length during a cluster search is initially 1. It will then rise one or more
times and in the end be small again. Maximum and average length are influenced
by cluster size, cluster shape, and dimensionality of the lattice. A small additional
gain in speed (about 10 — 30 % on a CRAY) can be obtained be letting small loops
run in scalar mode (below a length of about 4 on the CRAY-YMP).

Our vectorization is not suitable for the multi-cluster Swendsen-Wang algo-
rithm, because the average cluster size is very small there.

We have been using the vectorized algorithm in several large scale Monte Carlo
simulations on a CRAY-YMP. For a two-dimensional spin model [f] at an average
cluster size of 1000, the observed average vector length was 34, and the complete
update routine ran about 3.5 times faster than the non-vectorized version. A
three-dimensional simulation [[] with complicated inner loop (complicated function
“bond_is_on”) ran about 7 times faster at average cluster size 1000. A similar gain
was observed for a four-dimensional O(4)-model.

We have thus shown how a rather small modification will vectorize the breadth-
first-search algorithm, resulting in a large gain in CPU time.

References

[1] R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58 (1987) 86.
2] U. Wolff, Phys. Rev. Lett. 62 (1989) 361.

[3] For reviews, see e.g. U. Wolff, in Lattice ‘89, Capri 1989, N. Cabbibo et al. editors,
Nucl. Phys. B (Proc. Suppl.) 17 (1990) 93; A. D. Sokal, in Lattice 90, Tallahassee
1990, U. M. Heller et al. editors, Nucl. Phys. B (Proc. Suppl.) 20 (1991) 55.

[4] H. Mino, Computer Physics Communications 66 (1991) 25.

[5] P. Rossi, G. P. Tecchiolli, preprint, October 1991; also A. N. Burkitt, D. W. Heer-
mann, Computer Physics Communications 54 (1989) 201.

[6] H. G. Evertz, M. Hasenbusch, M. Marcu, K. Pinn, and S. Solomon, Phys. Lett. B254
(1991) 185, J. Phys. I'1 (1991) 1669.

[7] H. G. Evertz, R. Ben-Av, M. Marcu, and S. Solomon, Phys. Rev. D 44 (1991) 2953.



