
CLASSIFICATION OF THE 17 WALLPAPER GROUPS

VIVEK SASSE

Abstract. Using basic group theory, we define and examine the various wall-

paper groups. We then classify them based on their lattice types and prove

there are exactly 17 different groups, up to an isomorphism. Additionally, we
provide a short description and examples of each group.
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1. Introduction

Looking at a piece of wallpaper, or any repeating pattern, one might be surprised
that there is a lot of mathematics lurking behind that pattered paper. It turns out
that any two-dimensional infinitely repeating pattern, called a wallpaper pattern,
falls into one of 17 classes based on its symmetries. These symmetries include rota-
tions, reflections, translations, and other transformations that preserve the pattern.
These 17 classes, called the wallpaper groups, provide an interesting way to apply
basic group theory to both geometry and art. Their three-dimensional analogues,
the space groups, have scientific applications, as they are essential to crystallogra-
phy. This paper seeks to enumerate and classify the 17 wallpaper groups.

To start, we will first introduce the group E2, or the Euclidean group. It is
the set of all isometries of the plane, or all functions that preserve distances in
the plane. We will we not prove it here (see [1] for a full discussion and proof),
but we can think of elements in this group as pairs (v,M), where v is a vector in
R2 and M is a linear transformation of R2 that preserves distance. Here, M is the
2× 2 matrix representation of the transformation in the standard basis. The group
operation is defined as follows:

(w, N)(v,M) = (w +Nv, NM).

The pair (v,M) is identified with the function f(x) = Mx + v. Now we see that
the group operation represents function composition.
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Additionally, it can be proved that for all (v,M) ∈ E2, M has a relatively simple
form. Formally, M is a member of the orthogonal group O2(R), which is the group
of all linear transformations that preserve distance. This group is quite interesting
in itself, but all we care about is that it means M comes in one of two forms, Aθ
or Bα, where

Aθ =

[
cos θ − sin θ
sin θ cos θ

]
and Bα =

[
cosα sinα
sinα − cosα

]
.

Geometrically, Aθ represents a rotation by θ radians about the origin, and Bα
represents a reflection about a line that passes through the origin and makes a
angle of α

2 radians with the x-axis (again, see [1] for a full proof/discussion).
Obviously, E2 contains translations, rotations, and reflections. E2 also includes

another type of transformation called a glide reflection, defined below:

Definition 1.1. A glide reflection is a reflection followed by a translation parallel
to the reflection axis.

It turns out that all members of E2 are one of these four transformation types,
as summarized in the next theorem.

Theorem 1.2. All members of E2 are either a translation, a rotation, a reflection,
or a glide reflection.

Proof. (This proof is mostly taken from [1]). To prove the theorem, we will take
a general transformation, and, based on its orthogonal matrix, classify it as one of
the four types. Let our general transformation be (v,M). If M = I, where I is the
identity matrix, then we have a translation. If we have (v, Aθ) (where θ 6= 0), then
we claim we have a rotation. To see this, remember that a rotation keeps one point
fixed, the center. Hence, we would like to solve the equation f(c) = Aθc + v = c
for c to find the center of this presumed rotation. Rewriting our equation, we have
v = (I −Aθ)c. Since

det(I −Aθ) =

∣∣∣∣1− cos θ sin θ
− sin θ 1− cos θ

∣∣∣∣ = 2− 2 cos θ > 0,

I − Aθ is invertible and we have c = (I − Aθ)−1v. Thus, we can write the trans-
formation as

f(x) = Aθx + v = Aθx + c−Aθc = Aθ(x− c) + c,

so (v, Aθ) = (c, I)(0, Aθ)(−c, I). This we can easily see is a rotation by θ radians
about c.

If (v,M) = (v, Bα), there are two cases. When Bαv = −v, this means that v is
perpendicular to the reflection line of Bα. Hence, (v, Bα) = (1

2v, I)(0, Bα)(− 1
2v, I).

Because v is perpendicular, (v, Bα) is a reflection about a line that makes an angle
of α

2 with the x-axis, and is shifted by 1
2v from the origin.

When Bαv 6= −v, define w = v −Bαv. Consequently,

Bαw = Bα(v −Bαv) = Bαv −B2
αv = Bαv − v = −w.

Hence w is perpendicular to the reflection. Now we can project v onto w and
define 2a = v·w

‖w‖2 w, and b = v− 2a. Thus, a is perpendicular to b, so b is parallel

to the reflection, and we can decompose the element as (v, Bα) = (b, I)(2a, Bα),
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which is a reflection followed by a parallel translation. Hence, (2a + b, Bα) is a
glide reflection. See Figure 1 for a diagram.

Hence we have proved all elements of E2 are either a translation, a reflection, a
rotation, or a glide reflection; and have also investigated the representation of the
four isometries in pair form. �

Figure 1. Decomposition of glide reflection

Definition 1.3. Let G be a subgroup of E2. If I represents the identity matrix,
then the translation subgroup T of G is defined as T = {(v, I) ∈ G}.

As its name implies, T is the set of all translations in G. It is easy to check that
T is a subgroup of G, as a translation composed with a translation gives another
translation.

Definition 1.4. Let G be a subgroup of E2. Then the point group H of G is
defined as H = {M | (v,M) ∈ G}.

The point group H encodes the types of reflections and rotations possible in G.
Importantly, H is not necessarily a subgroup of G. For instance, if G had only glide
reflections and no reflections or rotations, H would consist of reflections (matricies
in the form Bα) and would therefore not be a subgroup.

Now we can finally formally define a wallpaper group:

Definition 1.5. A wallpaper group G is a subset of E2 with a finite point group
H and a translation subgroup T generated by two linearly independent translations.

The definition includes “two linearly independent translations” to make sure we
have a pattern that repeats in the whole plane. Otherwise, we would include the
frieze groups, which have translations in only one direction, and the rosette groups,
which have no translations [3].
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2. Lattices

Definition 2.1. The lattice L of a wallpaper group G it the set of all points in
R2 that the origin gets mapped to by the functions in the translation subgroup T .

If we choose two translations in G, represented by their vectors a and b, such
that a is of minimum length and b is a vector of minimum length among those
skew to a, then a and b form a basis for the lattice. Hence, all points in the lattice
are in the form ma + nb, where m,n ∈ Z. (For a proof of this statement refer to
[1])

Using inequalities, we can classify the types of lattices:

Theorem 2.2. There are exactly 5 types of lattices.

For the proof, see [1]
Here are their names and definitions:

(a) Oblique: ‖a‖ < ‖b‖ < ‖a− b‖ < ‖a + b‖
(b) Rectangular: ‖a‖ < ‖b‖ < ‖a− b‖ = ‖a + b‖
(c) Centered Rectangular: ‖a‖ < ‖b‖ = ‖a− b‖ < ‖a + b‖
(d) Square: ‖a‖ = ‖b‖ < ‖a− b‖ = ‖a + b‖
(e) Hexagonal: ‖a‖ = ‖b‖ = ‖a− b‖ < ‖a + b‖

Figure 2 illustrates each case. Although it seems like we left out the case ‖a‖ =
‖b‖ < ‖a − b‖ < ‖a + b‖, Figure 2F shows that if we choose a different basis, we
get a centered rectangular lattice.

Another important property of the lattice is that the elements of the point group
are symmetries of the lattice. This is summarized below:

Theorem 2.3. The point group H of a wallpaper group G acts on the lattice L of
the group.

Proof. For proof see [1]. �

3. Preliminaries

To classify the wallpaper groups, we must define when they are ”the same.” For
our purposes we will classify up to isomorphism, which means isomorphic groups
are considered the same. Hence, the next theorem and its corollary will be useful
(and presented without proof):

Theorem 3.1. An isomorphism between wallpaper groups sends translations to
translations, rotations to rotations, reflections to reflections, and glide reflections
to glide reflections.

Corollary 3.2. Two isomorphic wallpaper groups have isomorphic point groups.

Proof. For the proof of these statements, see [1] �

With just these basic definitions, we can quickly prove this meaningful result:

Theorem 3.3 (Crystallographic Restriction). The point group H of a wallpaper
group G can only contain rotations of order 1,2,3,4, or 6.

Proof. Since H is finite, all elements (including rotations) must be of finite order.
Now consider a line of points in the lattice A−O −B, each separated by distance
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(a) Oblique Lattice
(b) Rectangular Lattice

(c) Centered Rectangular Lattice (d) Square Lattice

(e) Hexagonal Lattice

(f) Repeat Case

Figure 2. Lattice Types

d. Consider a rotation of order q, which is a rotation by 2π
q radians. Rotate point

A by 2π
q and B by − 2π

q about O. The resulting points A′, B′ lie on a line parallel

to the original line, as demonstrated in Figure 3. Since this rotation preserves the
lattice, the distance between A′ and B′ must equal d′ = md where m is an integer.
By trigonometry, d′ = 2d cos 2π

q . Hence, we have 2 cos 2π
q = m, which only happens

when cos 2π
q = 0,± 1

2 ,±1. This corresponds to q = 1, 2, 3, 4 or 6. �
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Figure 3. Illustration of the proof of Theorem 3.3

A potentially confusing aspect of wallpaper groups is their names. The naming
system may seem convoluted at first, but it makes more sense considering that it
is inherited from classifying the 230 space groups, the three dimensional analogs of
wallpaper groups. The standard notation contains up to 4 letters and numbers, like
p4mm. The first letter is either p or c, where p means a primitive cell and c means
a centered cell. The distinction between the types of cells is mostly conventional,
introduced to make descriptions of the groups easier. A primitive cell contains
lattice points only on its vertices, while a centered cell has lattice points on the
vertices and one in the center. We also choose a ”main” translation axis, which is
usually taken to be horizontal.

The second symbol is a number n, which indicates the highest order rotation.
The third symbol represents a reflection or glide reflection perpendicular to the
main axis, where m means a reflection, g indicates a glide reflection axis, and 1
means neither. The fourth symbol represents a symmetry axis at angle α to the
main axis, where α = π for n = 1, 2, α = π

4 for n = 4, and α = π
3 for n = 3, 6.

The type of transformation in fourth slot is represented by m,1, or g, which are
interpreted the same way as the third symbol. If the third and fourth symbols
are omitted, it means there are no reflections or glide reflections. Additionally, the
notation sometimes drops numbers or letters if they can be inferred and do not
cause conflicts. For example, the full name of cm is c1m1.

4. Classification

We will classify the 17 groups by examining each lattice type as a case, closely
following the method laid out in [1].

Some notational notes: G is the wallpaper
group being considered, and Aθ and Bα are ma-
trices defined the same as above. The symbol a
is the shortest translation of the group, oriented
horizontally, and b is the other translation and
basis vector of the lattice. The point group is
represented by H. Additionally, the following
section has many lattice diagrams, all of which
use the legend to the right.
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Case 1: Oblique lattice. The only symmetries in O2(R) that preserve an oblique
lattice (parallelogram) are the identity I or a rotation by π radians, −I. Hence,
the possible point groups are {I} or {I,−I}.

Case 1.1: The point group is {I}. This gives us the group p1. This is the simplest
group, containing only translations. Hence, there are almost no restrictions, the
only one being that the lattice forms a parallelogram. The lengths of the transla-
tions and the angle between them can have any value.

Case 1.2: The point group is {±I}. This gives us the group p2, which contains
translations and 180◦ rotations, but no reflections or glide reflections. Like p1,
the lengths of the parallelogram lattice can be any length and meet at any angle.
But because of the rotations, the pattern inside the cell has some restrictions (see
Figure 4)

The point groups {I} and {±I} will appear multiple times in later cases, but
we will ignore them, knowing they do not give us any new groups.

p1 p2

Figure 4. Lattice diagrams for Case 1 [6, 7]

Case 2: Rectangular lattice. We can easily see that in addition to {±I}, the
horizontal reflection B0 and vertical reflection Bπ preserve the lattice. Hence, all
point groups in this case must be subgroups of {I,−I,B0, Bπ}. As discussed before,
we will skip point the groups {I} and {±I}.

Case 2.1: The point group is {I,B0}. This point group gives us two different
groups, depending on how B0 is realized in the group. If the group contains re-
flections (of the form (0, B0)), then we have the group pm. The group pm has no
rotations, but has reflections and translations. The reflection axes are all parallel,
and parallel to one side of the lattice cell.

If the wallpaper group contains no reflections, but has {I,B0} as its point group,
then B0 must be realized as a glide reflection. This gives us the group pg. This
group has only glide reflections and translations. Similar to pm, all glide reflection
axes are parallel and are parallel to one side of the lattice cell.

Case 2.2: The point group is {I,Bπ}. This is equivalent to Case 2.1, as we are just
switching horizontal with vertical.
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Case 2.3: The point group is {±I,B0, Bπ}. This case gives three different groups,
again based on how B0 and Bπ are realized. If both B0 and Bπ are realized as
reflections, we get pmm. This group contains reflections in two different directions
and 180◦ rotations.

If B0 is realized by a reflection and Bπ by a glide reflection, we get pmg. And if
the roles of Bπ and B0 are reversed, we still have pmg, as we are just exchanging
horizontal and vertical like Case 2.2. This group contains all four types of trans-
formations. It has reflection axes in one direction and glide reflection axes in a
perpendicular direction.

If there are no reflections, then B0 and Bπ are realized as glide reflections and
we have pgg. This group has no reflections, but has glide reflections in two per-
pendicular directions.

pm pg pmm

pmg pgg

Figure 5. Lattice diagrams for Case 2 [8, 9, 10, 11, 12]

Case 3: Centered Rectangular lattice. Like in the case of the rectangular
lattice, the transformations that preserve the lattice are {I,−I,B0, Bπ}, so all point
groups must be subgroups of that. Again, we will ignore H = {I} and H = {±I}.

Case 3.1: The point group is {I,B0}. This case gives only one group, cm, which
we will investigate further than most other groups. The reflection B0 must be
realized as (v, B0) ∈ G for some v ∈ R2. Choose the origin to be a point along the
reflection/glide axis so that 2v is a multiple of a. Now we have two cases:
If 2v = ka, where k is an even integer, then (−v, I) = (− 1

2ka, I) is a translation
in the group. Hence, also using that a and v lie along the reflection axis of B0,
(−v, I)(v, B0) = (0, B0) is a reflection in the group.

Elements that are not translations in the group will have the form (ma+nb, B0).
Using that (ma + nb, B0)(0, B0) = (ma + nb, I), thus m,n ∈ Z. Hence, we have

(ma + nb, B0) = ((m+ 1
2n)a + 1

2n(2b− a), B0)

where m,n ∈ Z. If n is even and m = − 1
2 , then we have horizontal reflections that

are parallel. If n is odd, we have glide reflection axes that are not reflection axes
(m + 1

2n is not an integer). Note, all these axes (glide or standard reflection) are
parallel.
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If k is odd, then we have that

(− 1
2 (k + 1)a + b, I)( 1

2ka, B0) = (1
2 (2b− a), B0)

is element of G. This is a reflection as 2b − a is perpendicular to the horizontal
reflection axis. We can move our origin so (0, B0) is an element of the group, and
then we get the case when k is even.
As we have seen, cm has no rotations, but has glide reflections and normal reflec-
tions, which are all parallel, alternate, and are separated by multiples of 1

2 (2b−a).

Case 3.2: The point group is {I,Bπ}. As previous cases, this the same as Case 3.1,
except we exchange vertical and horizontal.

Case 3.3: The point group is {±I,B0, Bπ}. This case gives a group called cmm.
Using the same logic as Case 3.1, we can prove that B0 and Bπ are realized as both
reflections and glide reflections. Along with 180◦ rotations, this group has both
reflection and glide reflection axes, in both horizontal and vertical directions.

cm cmm

Figure 6. Lattice diagrams for Case 3 [13, 14]

Case 4: Square lattice. The maximal point group for this case is
H = {I, Aπ

2
,−I, A 3π

2
, B0, Bπ

2
, Bπ, B 3π

2
}. The subgroups of {I}, {±I}, {I,B0},

{I,Bπ}, {±I,B0, Bπ} have already been investigated before, so we will skip them.

Case 4.1: The point group is {I,Bπ
2
} or {I,B 3π

2
}. When the point group is {I,Bπ

2
},

if we choose a + b and b as a new lattice basis, we see this case is isomorphic to
cm. A similar change of basis for the case where H = {I,B 3π

2
} gives us cm again.

Case 4.2: The point group is {±I,Bπ
2
, B 3π

2
}. Again, a change of basis like Case

4.1 gives us the group cmm.

Case 4.3: The point group is {I,Aπ
2
,−I, A 3π

2
}. This case gives the group p4, which

has no reflections or glide reflections, but has rotations of order 4 and order 2.

Case 4.4: The point group is {I, Aπ
2
,−I, A 3π

2
, B0, Bπ

2
, Bπ, B 3π

2
}. As we will see,

this case gives rise to two different groups. The point group is D4 (the symmetry
group of the square) and is generated by elements Aπ

2
and B0, so all that matters

is how these elements are realized.
The first situation is when B0 can be realized as a reflection. Then we get the

group p4m. This actually forces all reflections in the point group to be realized as
reflections in the wallpaper group, which we will now prove. Choose an origin so
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that (0, Aπ
2

) is in G. Since B0 is realized as a reflection, then it is realized in the
form (µb, B0), since b is perpendicular to the reflection axis. Now, we have that

(0, Aπ
2

)(µb, B0) = (−µa, Bπ
2

)

(−µa, Bπ
2

)2 = (−µa− µb, I)

are elements of p4m, so µ ∈ Z. Thus,

(−µb, I)(µb, B0) = (0, B0)

is inG, and by composing this with (0, Aπ
2

) multiple times, we see thatB0, Bπ
2
, Bπ, B 3π

2

are all realized by reflections.
The group p4m has reflections in four different directions, all separated by 45◦.

It also contains glide reflection axes in two directions, and 90◦ and 180◦ rotations.
The second situation is when B0 cannot be realized as a reflection. Choose an

origin so that (0, Aπ
2

) ∈ G and consider the realization of B0, (v, B0). Since a and
b are linearly independent, thus (v, B0) = (λa +µb, B0) for some λ, µ ∈ R. Hence,

(λa + µb, B0)(λa + µb, B0) = (2λa, I).

So (2λa, I) ∈ G and 2λ must be an integer. If 2λ is even, then

(−λa, I)(λa + µb, B0) = (µb, B0)

is a reflection in G (b is perpendicular to the horizontal reflection axis of B0). This
is a contradiction, so 2λ must be odd and

(( 1
2 − λ)a, I)(λa + µb, B0) = ( 1

2a + µb, B0)

is a glide reflection in G. Additionally, we have that

(0, Aπ
2

)( 1
2a + µb, B0) = (1

2b− µa, Bπ
2

)

and

( 1
2b− µa, Bπ

2
)2 = (( 1

2 − µ)(a + b), I)

are elements in G, so 1
2 − µ is an integer. Hence

((µ− 1
2 )a, I)( 1

2b− µa, Bπ
2

) = (1
2a + 1

2b, Bπ
2

)

is an element of G. Since 1
2a + 1

2b is perpendicular to the reflection axis of Bπ
2

,
thus Bπ

2
is realized by a reflection (not glide) in G. Similarly, Bπ is only a glide

reflection in G, whereas B 3π
2

is a normal reflection axis in G. The realizations of

Bπ and B 3π
2

can be proved by composing the previous results with the appropriate

rotations.
The group given from this second case is called p4g. This group contains similar

transformations to p4m, but oriented differently. There are glide axes in perpen-
dicular directions, and reflection axes oriented 45◦ to the glides. It also has 90◦ and
180◦ rotations. Looking at Figure 7, we can see that the order 4 rotation centers
lie at the intersection of reflection axes for p4m, but not for p4g. This will be
important in showing these two groups are not isomorphic.
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p4 p4m p4g

Figure 7. Lattice diagrams for Case 4 [15, 16, 17]

Case 5: Hexagonal lattice. The maximal point group is
{I, Aπ

3
, A 2π

3
,−I, A 4π

3
, A 5π

3
, B0, Bπ

3
, B 2π

3
, Bπ, B 4π

3
, B5π3

}, which is just D6, the sym-

metry group of a regular hexagon. All point groups in this case must be subgroups
of D6. The subgroups {I}, {±I}, {±I,B0, Bπ} will not be considered as they have
already been dealt with.

Case 5.1: The point group is {I,B kπ
3
} for 0 ≤ k ≤ 5, k ∈ Z. For k = 0, we have

{I,B0}, which is case 3.2, so we get cm. When k = 1, if we replace a,b with
a + b,b− a, this becomes a centered rectangular lattice with point group {I,B0}
(effectively rotating by π

6 radians), so we get cm again. For the rest of the k values,
we can do a similar change of basis to arrive at group the cm.

Case 5.2: The point group is {±I,Bπ
3
, B 4π

3
} or {±I,B 2π

3
, B 5π

3
}. With a change of

a basis similar to Case 5.1, we get centered rectangular lattices with point group
{±I,B0, Bπ}, and get cmm.

Case 5.3: The point group is {I, A 2π
3
, A 4π

3
}. This gives us the group p3, which has

no reflections or glide reflections, but has rotation centers of order 3.

Case 5.4: The point group is {I, A 2π
3
, A 4π

3
, B0, B 2π

3
, B 4π

3
}. Even though there are

3 different reflections in the point group, this gives us only one group, p31m.
Choose an origin so that (0, A 2π

3
) is in the group. Consider a realization of B0,

(λa + µb, B0). We have that

(λa + µb, B0)2 = (2λa, I)

((λa + µb, B0)(0, A 4π
3

))2 = (λa + µb, B 2π
3

)2 = ((λ+ 2µ)b, I)

((λa + µb, B0)(0, A 2π
3

))2 = (λa + µb, B 4π
3

)2 = ((λ− µ)(a− b), I)

are all elements of G, so 2λ, λ + 2µ and λ − µ are all integers. Consequently,
λ + 2µ + 2(λ − µ) − 2λ = λ is an integer, and it follows that µ is also an integer.
Hence,

(−λa− µb, I)(λa + µb, B0) = (0, B0)

is an element of G. Applying rotations, we see that B0, B 2π
3

, and B 4π
3

are all

realized by reflections, and there are no possibilities of other groups.
The group p31m has reflection and glide axes in 3 different axes, separated by

120◦. It also has 120◦ rotations.
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When describing p31m, we should be careful as it often gets confused with
the next group p3m1. In fact, many textbooks (including references [1] and [2])
incorrectly switch this label. As discussed in [4], it is believed this interchange is a
notational error that has been copied into many reference textbooks.

Case 5.5: The point group is {I, A 2π
3
, A 4π

3
, Bπ

3
, Bπ, B 5π

3
}. Similar to Case 5.4, we

will show this only gives one group, p3m1. Choose an origin so that (0, A 2π
3

) is a

member of G. Consider the realization of Bπ
3

, (λa + µb, Bπ
3

). Squaring this, we
have that

(λa + µb, Bπ
3

)2 = ((λ+ µ)(a + b), I),

is a member of G, so µ+λ is an integer. Now, with more calculations we have that

(0, A 2π
3

)(λa + µb, Bπ
3

) = (λ(b− a)− µa, Bπ)

(λ(b− a)− µa, Bπ)2 = (λ(2b− a), I)

are members of the group, so λ is an integer. Consequently, µ is also an integer,
and we have that

(−λa− µb, I)(λa + µb, Bπ
3

) = (0, Bπ
3

)

is a member of G. Applying rotations, we have that Bπ
3
, Bπ and B 5π

3
are realized as

(0, Bπ
3

), (0, Bπ) and (0, B 5π
3

), which are all reflections. Hence, since the realizations

of the B elements in the point group are all characterized, and these elements
generate the point group, we only get one wallpaper group from this case.

Similar to p31m, p3m1 has reflection and glide reflection axes in three different
directions, along with 120◦ rotations. Looking at Figure 8, notice that for group
p3m1 all rotation centers lie at the intersection of reflection axes, while this is
not the case for p31m. We will use this fact latter to show these groups are not
isomorphic.

Case 5.6: The point group is {I, Aπ
3
, A 2π

3
,−I, A 4π

3
, A 5π

3
}. This gives us the group

p6. This group has no reflections or glide reflections, but has rotations of multiple
orders. As we can see from the point group, there are rotations of order 2,3, and 6.

Case 5.7: The point group is {I, Aπ
3
, A 2π

3
,−I, A 4π

3
, A 5π

3
, B0, Bπ

3
, B 2π

3
, Bπ, B 4π

3
, B5π3

}.
This gives us group p6m. Using the same computations as in cases 5.4 and 5.5, we
can show that B0, . . . , B 5π

3
must all be realized as reflections.

This group contains reflection and glide axes in six different directions, along
with three different types of rotations: 180◦ rotations, 120◦ rotations, and 60◦

rotations.
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p3 p31m p3m1

p6 p6m

Figure 8. Lattice diagrams for Case 5 [18, 19, 20, 21, 22]

5. Uniqueness

Now that we have seen 17 different groups, we must prove they are all are
distinct isomorphism classes. From Corollary 3.2, we know that if two groups are
isomorphic, they must have isomorphic point groups. Hence, we only have to check
that wallpaper groups that have point groups of the same order are not isomorphic,
as if two point groups have different order, then their associated wallpaper groups
are not isomorphic. We include the following helpful table of wallpaper groups and
their respective point groups, taken from [1].

G H G H
p1 trivial p4 Z4

p2 Z2 p4m D4

pm Z2 p4g D4

pg Z2 p3 Z3

pmm Z2 × Z2 p3m1 D3

pmg Z2 × Z2 p31m D3

pgg Z2 × Z2 p6 Z6

cm Z2 p6m D6

cmm Z2 × Z2

In the following theorems, we will prove uniqueness by collecting the wallpaper
groups by the order of their point group, and then proving all groups in a collection
are distinct from each other.

Theorem 5.1. No two of p2, pm, pg, and cm are isomorphic.

Proof. The group p2 contains rotations, while none of the others do, so it is not
isomorphic to pm, pg or cm. Groups pm and cm contain reflections, while pg
does not, so pg is not isomorphic to cm or pg.

Finally, cm has glide reflections whose glide part does not lie in the group.
Remembering our investigations from Case 3.2, we can plug m = 0 and n = 1 into
the formula to get that
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( 1
2a + 1

2 (2b− a), B0) = (1
2a, I)( 1

2 (2b− a), B0)

is a member of cm. The glide part ( 1
2a, I) is not a translation in cm, but when

composed with the reflection it is. Compare this with pm. Choose origin so
(0, B0) ∈ pm. Hence, all non-translations have the form

(ma + nb, B0) = (ma + nb, I)(0, B0) = (ma, I)(nb, B0)

where m,n ∈ Z. For glide reflections (m 6= 0), we see the glide is a multiple of a
and is therefore in the group. Hence, cm and pm are not isomorphic.

�

Theorem 5.2. No two of pmm, pmg, pgg, cmm, and p4 are isomorphic

Proof. Since p4 contains no reflections or glide reflections, but the other four have
reflections or glide reflections, p4 is not isomorphic to pmm, pmg, pgg, or cmm.
Groups cmm, pmg, and pmm all contain reflections, while pgg does not, so pgg
is not isomorphic to the other groups. Similar to Theorem 5.1, the glide part of
any glide reflection in pmm belongs to the group, unlike groups pmg and cmm,
which have axes for exclusively glide reflections. Hence, pmm is not isomorphic to
cmm or pmg.

Lastly, in pmg, since Bπ is realized only as a glide reflection, all reflections
are horizontal. Therefore, the composition of two reflections gives a translation.
Compare this with cmm, where there are vertical and horizontal reflections, which
when composed give a rotation by π radians. Hence, cmm and pmg are not
isomorphic.

�

Theorem 5.3. p4m and p4g are not isomorphic.

Proof. Consider the element (0, Aπ
2

), which is a member of both groups with proper
choice of origin. We will see that (0, Aπ

2
) can be written as the composition of two

reflections in p4m, but not p4g.
From Case 4.5, we know that for p4m, (0, B0) and (0, Bπ

2
) are members of p4m.

Also, we have (0, Bπ
2

)(0, B0) = (0, Aπ
2

).
Now we will prove that it is impossible to factorize (0, Aπ

2
) as two reflections in

p4g. Any factorization has the form (0, Aπ
2

) = (v, Bα)(w, Bβ). Since Bα · Bβ =
Aα−β (left to the reader as an exercise), our only possible options are α = π

2 , β = 0;

α = π, β = π
2 ; α = 3π

2 , β = π; or α = 0, β = 3π
2 . In all four cases, one of

the factors contains either B0 or Bπ. Since B0 or Bπ are realized only as glide
reflections, factors containing them will never be reflections. Hence, it is impossible
to factorize (0, Aπ

2
) as two reflections in p4g.

Hence, we have that p4g and p4m are not isomorphic. �

Theorem 5.4. p31m and p3m1 are not isomorphic.

Proof. Similar to the previous theorem, we will prove that (a, A 2π
3

) can be factorized

as the product of two reflections in p3m1, but not in p31m. From Case 5.5, we
know that we can factorize (a, A 2π

3
) as

(a, I)(0, Bπ)(0, Bπ
3

) = (a, Bπ)(0, Bπ
3

) = (a, A 2π
3

).
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Now, consider the hypothetical factorization in p31m, (a, A 2π
3

) = (v, Bα)(w, Bβ).

Since Bα · Bβ = Aα−β , we have three cases: α = 2π
3 , β = 0; α = 4π

3 , β = 2π
3 ; or

α = 0, β = 4π
3 .

Consider the case α = 2π
3 , β = 0. Since (v, B 2π

3
) and (w, B0) are both reflections,

v = λ(b− 2a) and w = µ(2b− a). Hence, we have

(λ(b− 2a), B 2π
3

)(µ(2b− a), B0) = ((µ− 2λ)a + (λ+ µ)b, A 2π
3

) = (a, A 2π
3

),

so µ− 2λ = 1 and λ+ µ = 0. Solving gives us λ = − 1
3 and µ = 1

3 . But this means
that

( 1
3 (2b− a), B0)(0, B0) = (1

3 (2b− a), I)

is a translation in p31m. But this is a contradiction, as 2
3 ,−

1
3 /∈ Z. The other two

cases are the same as this, but rotated by 2π
3 radians, so they are also impossible.

Hence, (a, A 2π
3

) cannot be factorized in p31m as the composition of two reflections.

Hence, p3m1 and p31m are not isomorphic.
�
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