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Abstract—Physical watermarking is a well known solution for
detecting integrity attacks on Cyber-Physical Systems (CPSs)
such as the smart grid. Here, a random control input is injected
into the system in order to authenticate physical dynamics
and sensors which may have been corrupted by adversaries.
Packet drops may naturally occur in a CPS due to network
imperfections. To our knowledge, previous work has not con-
sidered the role of packet drops in detecting integrity attacks.
In this paper, we investigate the merit of injecting Bernoulli
packet drops into the control inputs sent to actuators as a
new physical watermarking scheme. With the classical linear
quadratic objective function and an independent and identically
distributed packet drop injection sequence, we study the effect
of packet drops on meeting security and control objectives. Our
results indicate that the packet drops could act as a potential
physical watermark for attack detection in CPSs.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) such as the smart grid
are complex engineering systems that could involve any
combination of sensing, processing, networking and control
functionalities. A major consideration in the design of CPSs is
security. There have been many types of attacks considered in
the context of cyber-physical security. In this paper, we focus
on integrity attacks where malicious agents inject inputs at sen-
sors and actuators. In particular, we consider replay attacks and
focus on detecting them. Classical methods to detect anomalies
in the system use passive detection techniques where the
defender uses finely tuned algorithms to make a decision about
the health of the system. However, they are ineffective against
stealthy adversaries who can construct attacks that produce
viable sensor measurements. In this paper, we consider an
active detection method called physical watermarking.

To verify the health of a CPS, the components and dynamics
of the system must be authenticated. The authentication has to
be performed not only in the cyber world, but also within the
framework of the physical dynamics. In the cyber space, this
is enabled by cryptographic tools; however, such tools may be
vulnerable to attacks. Therefore, the extra security dimension
in the physical dynamics plays a crucial role in reinforcing
security. Physical watermarking is a well known solution to
authenticate the correct operation of a control system [1]–
[7]. In physical watermarking a randomly generated input or
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watermark that is known to legitimate parties is injected into
the physical system. It is expected that this input can be traced
in the measurement of the true output. If an attacker is unaware
of this physical watermark, (s)he cannot adequately emulate
the system as it is not possible to consistently generate the
component of the output associated with this known random
input. In this paper, we investigate the role of packet drop
injections as a new physical watermarking scheme.

Detecting and acting against attacks on CPSs have been
active topics of research. In particular, stealthy attacks such
as false data injection attacks [8], [9], zero dynamics at-
tacks [10]–[12], and replay attacks [13] are among the many
considered in the literature. Pasqualetti et al.’s work in [11]
introduces a general continuous-time control system where an
adversary can insert arbitrary errors to an unknown subset of
sensors and actuators with particular applications to smart grid
scenarios. In [12], the authors investigate the problem of robust
control and estimation in the presence of an adversary that is
capable of inserting arbitrary errors in sensor measurements.
Bad data detection techniques, such as the largest residue test
[14], have long been used for systems with a static model
including the smart grid. Reference [8], on the other hand,
considers false data injection attacks where the attacker is
aware of the grid’s configuration and can inject a stealthy
input into the measurements that lies in the range space of
the observation matrix to change state estimation. In reference
[15], false data injection attacks are considered on the grid
from the system operator’s point of view.

Prior works do not consider the probable scenario where
there are packet drops in the communication channels. Packet
drops occur naturally in the context of smart grid communica-
tions. In particular, both command and measurement channels
could be subjected to packet drops due to, e.g., imperfections
at the wireless and/or wired communication networks [16],
[17]. Packet drops at the command and measurement channels
change the system dynamics in a specific form, see e.g. [18],
[19]. In this paper, we view the packet drops as a means to
create watermarked dynamics and we explore the possibility to
authenticate the system via intentional packet drop injections.
We allow the controller to inject independent and identically
distributed packet drops at the channel to the actuators with
certain probability. Such a mechanism is easy to implement
using, e.g., switches and pulses and they are applicable for
a wide range of applications. The motivation to inject packet



drops at the controller is to obtain authenticated dynamics that
enable detecting adversarial actions with higher probability.
We investigate the feasibility of replay attacks under packet
drop injections. We provide extensive numerical results for
attack detection performance in systems enhanced by our
watermarked dynamics. In particular, as applied to smart
grids, we investigate the use of a correlation based detector
along with a Bernoulli pulse watermark to detect attacks on
automatic power generation control.

The following is the structure we use in the rest of the
paper. In section II, we provide details of the system and
attack models. In section IV, we elucidate necessary details
about LQG control in a control loop with packet drops. In
section V, we analyze the role of packet drop injections as a
watermarking scheme under replay attacks. In section VI, we
provide extensive numerical results for the real life operation
and performance of physical watermarking via packet drop
injections. In section VII, we conclude the paper.

As notation, we use xt1:t2 to refer to the set
{xt1 , xt1+1, · · · , xt2}. XT is the transpose of X . {ak}
is used to denote a sequence.

II. SYSTEM AND ATTACK MODELS

A. System Model

We model the system using discrete time linear time invari-
ant (LTI) dynamics with packet drops at the control channel
as shown in Fig. 1:

xk+1 = Axk + ηkBuk + wk, (1)
yk = Cxk + vk, (2)

where xk ∈ Rn is the state vector at time k, uk ∈ Rp is
the control input at time k, and yk ∈ Rm denotes sensor
measurements taken at time k. Moreover, ηk ∈ {0, 1} is an
independent identically distributed (IID) packet drop process
generated at the controller and known at the actuator and
the estimator. Here, ηk = 0 indicates a packet drop and
P(ηk = 0) = pd is the packet drop probability. In the model,
wk ∼ N (0, Q) is IID process noise and vk ∼ N (0, R) is
IID measurement noise. We assume that (A,C) is detectable.
Moreover, (A,B) and (A,Q

1
2 ) are stabilizable.

Remark 1 In our model, the packet drops are generated by
the controller and injected into the system to create a dy-
namical component that enables security at the physical level.
Our proposal can be incorporated in the case when packet
drops occur due to channel imperfections while transferring
commands from the controller to the actuator.

B. Attack Model

We consider a specific integrity attack termed the replay
attack. Here, the adversary has the ability to read and modify
all sensor outputs. In particular, y0:k ⊂ Irak , where Irak is
the attackers information. Without loss of generality (WLOG),
we assume the replay attack starts at time 0. Additionally,
the attacker may insert his own inputs. When inserting the
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Fig. 1: System model under normal operation. When a replay
attack occurs, the attacker replaces the output yk with its time
lagged version. The plant input may also be compromised.

input Braurak where urak ∈ Rp′
, the attacker has the option of

modifying the defender’s actuators or using his/her own. This
yields the following attack dynamics for k ≥ 0:

xk+1 = Axk +Buk +Braurak + wk, (3)
yk = Cxk +Dradrak + vk. (4)

The adversary is modeled to act as follows:
• Record a sufficiently long sequence of outputs y0:T ′ .
• Starting at time T , replace yk with yk−T . Thus Dradrak =
yk−T − Cxk − vk for T ≤ k ≤ T + T ′.

• The attacker adds some harmful input Braurak .

III. ATTACK DETECTION IN A PHYSICALLY
WATERMARKED SYSTEM

Starting from [1], the use of physical watermarking to detect
replay attacks in control systems has been considered in the
literature, e.g., in [2]–[7]. In these works, a physical watermark
∆uk is a secret random control input which we insert on top
of the optimal control input u∗k to authenticate the system:

uk = u∗k + ∆uk. (5)

Here, the adversary can not read the defender’s control in-
put uk and does not know realizations of the watermark
sequence. Let us consider an IID Gaussian watermark1 with
∆uk ∼ N (0,Q). Note that the IID property allows the
watermark to act like a secret nonce that the operator can use to
verify normal operation. Under normal operation, the defender
expects to see his/her watermark embedded in the sensor
outputs through the dynamics of the system. Under replay
attack, the sensor measurements instead contain responses to
a sequence of independently selected watermarks which are
tracked by the operator. This causes an alert when the freshness
of the watermarks cannot be verified.

We assume the defender constructs algorithms which lever-
age his/her information Ik to make a decision, whether the

1Please see [4] for the treatment of a general stationary Gaussian watermark.



system operates normally H0 or under attack H1. In a thresh-
old based detector, this can be formulated as

gk(Ik)
H1

≷
H0

τk. (6)

We assume the defender knows the system model
{A,B,C,Q,R, x̂0|−1} as well as the input and output
histories given by u−∞:k and y−∞:k. However, the defender
is in general unaware of the parameters of the attack model
including Ba, Da, ua0:k−1, and da0:k.

A particular set of detectors that the defender could utilize
are the residue detectors based on the parameter zk , yk −
CAx̂k−1 − ηk−1CBuk−1, which is the difference between
observed and expected behavior. A well known example is a
χ2 detector:

gk(Ik) =

k∑
t=k−WS+1

zTt (CPCT +R)−1zt (7)

where WS denotes window size. Here, given the threshold
τk, the probability of detection βk and the probability of false
alarm αk are:

βk = Pr (gk (Ik) > τk|H1) , αk = Pr (gk (Ik) > τk|H0) .

Another set of detectors that are used in the context of replay
attacks are correlation detectors. We examine the application
of a correlation detector in a microgrid example in Section VI.

IV. LQG CONTROL WITH PACKET DROPS

Let us assume that the following information set Ik =
{y−∞,k, η−∞,k−1} is available to the estimator at time k.
Along with model knowledge, this information is leveraged to
obtain an estimate x̂k and generate an input uk. We consider
LQG cost optimization:

J = min lim
N→∞

E

[
1

2N + 1

N∑
k=−N

(
xTkWxk + ηku

T
k Uuk

)]
(8)

where U and W matrices are positive semidefinite and the op-
timization is performed over all inputs uk that are measurable
with respect to the information set Ik. Note that the separation
principle holds [19] and the optimal estimator and controller
can be designed separately. A Kalman filter is used to obtain
minimum mean squared error estimates x̂k = E[xk|Ik]. The
innovation or residual zk = yk −CAx̂k−1 − ηk−1CBuk−1 is
used to recursively update the state estimate as follows:

x̂k = x̂k|k=1 +Kzk, x̂k|k−1 = Ax̂k−1 + ηk−1Buk−1,

where K is the stationary Kalman filter gain due to
(A,C,Q,R):

K = PCT (CPCT +R)−1 (9)

P = APAT +Q−APCT (CPCT +R)−1CPAT (10)

and x̂0|−1 is the initial apriori Kalman state estimate. The
optimal control is in the following form u∗k = Lkx̂k where

Lk = −(BTSk+1B + U)−1BTSk+1A and

Sk = ATSk+1A+W (11)

− (1− pd)ATSk+1B(BTSk+1B + U)−1BTSk+1A

We note that as k →∞, Lk converges to L = −(BTS∞B +
U)−1BTS∞A where S∞ satisfies the Riccati equation:

S∞ = ATS∞A+W (12)

− (1− pd)ATS∞B(BTS∞B + U)−1BTS∞A.

We assume that pd is sufficiently small so that (12) has a
solution. The long term average LQG cost due to the packet
drops is (c.f. [19]) given as follows:

Lemma 1 Optimal cost J∗ is

J∗ = tr(S∞Q) + tr[(ATS∞A+W − S∞)(P −KCP )].

Proof: From equation (27) in [19], we have the optimal finite
horizon cost, J∗N , found as follows:

J∗N =q−N +

N∑
k=−N

tr(Sk+1Q)

+

N∑
k=−N

tr(ATSk+1A+W − Sk)Pk|k (13)

where q−N is a bounded constant (specified in [19]) and

Pk|k = Pk − PkC
T (CPkC

T +R)−1CPk (14)

Here, Pk denotes the apriori error covariance. As N → ∞,
Pk|k → P − KCP and Sk → S∞. Thus, 1

2N+1J
∗
N →

tr(S∞Q) + tr[(ATS∞A+W − S∞)(P −KCP )]. �
It is worthwhile to note that J∗ can be computed in closed
form when packet drops occur only in the control channel.
This is not possible in the general setting of [19] with sensor
and control packet drops. We also note that the dependence
of J∗ on pd is due to S∞. In the sequel, we assume that the
system has been running for a long time (i.e. from k = −∞)
so that the Kalman and state feedback gains have converged
to K and L, respectively.

V. PACKET DROP INJECTIONS AS PHYSICAL
WATERMARKING

We now analyze the role of packet drop injections in
physical watermarking. In a scenario where the control packets
are dropped by following an IID Bernoulli sequence ηk as in
(1), the resulting dynamics have strong dependence on the
realization of the drop sequence. This dependence offers an
advantage to be used for attack detection in the same spirit as
the Gaussian physical watermark. In particular, packet drops
could be intentionally injected at the control stage possibly
adding to existing drops due to imperfect communications.
These injections enable a new type of secret nonce known to
the controller and kept hidden from potential attackers and
hence can be utilized for attack detection. We next consider
packet drop injections in the context of replay attack detection.



Note that a replay attack may or may not be effective
depending on the defender’s control strategy. For example,
in [3, Theorem 3], it is reported that replay attacks are
asymptotically stealthy (limk→∞ βk − αk = 0) in an LQG
setting without drops provided that the matrix A , (A +
BL)(I −KC) is Schur stable. On the other hand, [4] reports
that if A has a spectral radius greater than 1, then replay
attacks are asymptotically detectable with an exponentially
growing detection statistic. We consider the use of packet drop
injections when A is stable.

In particular, we consider residue detector performance
under replay attack. Let us denote zk and zrak as the residues
under normal and replay attack operations, respectively with
packet drop dynamics. We start by noting that

zk =zrak − CAk(ηk−10 )x̂0|−1 + CAk(η̃k−10 )x̂ra0|−1

− C
k∑

i=1

(
Ak−i(η

k−1
i )(A+ ηi−1BL)

−Ak−i(η̃
k−1
i )(A+ η̃i−1BL)

)
Kyrai−1, (15)

where x̂0|−1 and x̂ra0|−1 are the initial apriori Kalman state esti-
mates under normal and replay attack operations, respectively,
and yrak is the replayed output. Moreover, for any `1 ≤ `2:

A`2−`1(η`2`1+1) = Π`2
j=`1+1(A+ ηjBL)(I −KC) (16)

where A0 = I and η`2`1+1 denotes the sequence (η`1+1 . . . η`2).
In (15), {ηk} and {η̃k} are two binary drop sequences
independent from each other and i.i.d. across k. We note
that even when Ak(ηk−10 ) vanishes, the additive term
νk , C

∑k
i=1(Ak−i(η

k−1
i )(A+ ηi−1BL)−Ak−i(η̃

k−1
i )(A+

η̃i−1BL))Kyrai−1 renders the residue zk different than the
residue zrak under attack. For example, we can show that if
||(A+ BL)||1−pd ||A||pd ||(I −KC)|| < 1 where ||.|| denotes
the matrix norm, then Ak(ηk−10 ) vanishes in probability.
However, the additive term νk does not vanish and creates a
difference in the distributions of zk and zrak . This additive term
has a similar effect to that of the additive watermark in [4] and
can be leveraged to detect replay attacks. As an example, one
can characterize explicit or approximate distributions of the
additive term and analyze detection performance. Also note
that when pd = 0 or pd = 1 or (possibly) the packet drop
sequence is periodic, the effect of the additive term is lost since
A`2−`1(η`2`1+1) is equivalent to A`2−`1(η̃`2`1+1). In these cases,
the asymptotic stealthiness condition in, e.g., [3, Theorem 3],
could be adapted to the current setting. In the next section, we
provide real life examples and extensive numerical results to
determine the effects of packet drop injection watermarking
on both detection performance and overall cost.

VI. NUMERICAL RESULTS

In this section we evaluate the performance of physical
watermarking via packet drop injections on two systems. We
first consider replay attacks in the quadruple tank process [20].
Then, we examine a microgrid example [2].

A. Quadruple Tank Process
In the quadruple tank process, the desired system goal is to

control the water level of two tanks by leveraging two input
pumps. Two sensors are used to measure the water heights
of two tanks. The chosen sample period is 1 second. We use
an LQG controller with weighting matrices determined using
suggestions made in [21]. When examining the quadruple tank
process, the optimal state feedback matrix L is dependent on
the probability of drop pd. A χ2 detector with window size
10 is implemented to perform detection.

In Fig. 2 we examine security and performance trade-offs
through relationships between the probability of false alarm,
the probability of detection, and the packet drop rate. Results
were averaged over 1500 trials where each trial consists of a
run with 1000 time steps. In Fig. 2a, we plot several ROC
curves examining the probability of detection as a function of
the probability of false alarm for different packet drop rates. In
Fig. 2b, we plot the probability of detection as a function of the
drop rate for different false alarm probabilities ranging from
0.02 to 0.1. Note that detection performance peaks before the
drop rate equals one. This can be understood in the extreme
case where pd = 1. Here, the system is operating in an open
loop without control. Thus, when using a stable estimator, a
replay attack will always be asymptotically stealthy.
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Fig. 2: Probability of Detection as a Function of Probability
of Drop and Probability of False Alarm

In Fig. 3, we further characterize the tradeoff between
security and control performance by mapping the probability
of drop to the increased LQG cost (as a percentage of the
optimal LQG cost when pd = 0). In Fig. 3a, we observe the
relationship between control performance and drop probability
over the domain of pd. In Fig. 3b, we examine this relationship
over a smaller domain where the cost increase is restricted to
be less than 150% of the optimal cost. Both the empirical
cost, obtained by averaging results over 4,500 trials, and the
theoretical cost are shown. We observe that they closely agree.

In Fig. 4, we plot our χ2 detection statistic (with window
size 10) averaged over 10,000 trials during a replay attack as
a function of time for a system without packet drop injections
(Fig. 4a) and a system with packet drop injections (Fig. 4b).
Replay attacks commence at time 20. The probability of false
alarm in Fig. 4 is fixed to be 0.1 and pd = 0.7. The noticeable
temporary bumps in detection performance seen in both Fig. 4a
and Fig. 4b are likely due to initial state mismatches between
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Fig. 3: Percent Increase in LQG Cost as a Function of Drop
Probability

the true and replayed systems. An intelligent attacker can
choose to delay the start of a replay attack until the true and
replayed states closely match.
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Fig. 4: χ2 Detection Statistic vs Time

B. Microgrid
We now investigate a microgrid example borrowed from

[2], using an alternative watermarking design. Here, there are 5
loads and frequency control by a mechanical speed governor is
used to address small imbalances (roughly 1 percent) between
load and demand. The frequency should be kept close to
constant near 60 Hz. If the demand in a system far exceeds
the generation, resulting in a measured drop in frequency,
loads are shed to account for the imbalance. We use the linear
generator model found in [22, p. 386, Fig. 11.8], see also
[2]. ∆Pc, a control input which moves a steam valve in the
generator, is used for watermarking. Additionally, we use ∆ω
to denote a change in angular frequency.

In the attack model, the attacker has the ability to manipu-
late the system’s frequency sensors. The goal is to make the
operator believe the frequency in the system is dropping. The
defender in response sheds loads one at a time to address
perceived imbalances. The attacker, once a third load is shed,
relinquishes control on the frequency sensor and this way the
attacker forces the operator to supply power to only two loads.

As a response, we assume the defender inserts a watermark
at ∆Pc. As opposed to the packet drop injection watermark
considered in this paper, we evaluate a similar zero-mean
Bernoulli pulse watermark. In particular, we have

∆Pc(k) = ηkM(−1)k. (17)

where M is the magnitude of the pulse and ηk is an IID
Bernoulli random variable where P(ηk = 0) = pd. Observe
that a χ2 detector is ineffective against the proposed attack
because it will send an alarm in both the case that an attacker
modifies a frequency sensor as well as the case that a real
drop in frequency has occurred. As a result, we consider the
correlation based detectors used in [2]. Here, a virtual model
of the system with input ∆Pc is simulated by the defender. The
response ∆ω̂k is multiplied by the true frequency ∆ω to obtain
a correlation detector statistic gk. Under normal operation,

E[∆ω̂k∆ωk] = E[gk] = σ′2 > 0. (18)

Under a replay attack E[∆ω̂k∆ωk] = 0. Note that unlike (6),
a higher detection statistic indicates normal operation.

We simulate the microgrid over 70 seconds. Control inputs
are modified every 0.1 seconds. The amplitude M controls the
variance of the watermark, E[∆P 2

c (k)]. A correlation detector
with window of length 10 seconds is used. We first assume
the sensor is not under attack, but the frequency in the system
is dropping. The average frequency profile considered is given
by Fig. 5. Secondly, an attacker replays the same profile (with
noise independent of the watermark) from time 10 sec to 57.5
sec to force the defender to incorrectly shed loads.
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Fig. 5: Average Frequency Profile during Fault and Attack

In Fig. 6, we plot several ROC curves averaged over 1500
trials. The probability of detection is computed over the region
where gk has reached a steady state (20 to 57.5 seconds).
Three different watermark variances E[∆P 2

c (k)] and pd’s
are evaluated where we observe that increasing E[∆P 2

c (k)]
improves detection performance.
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In Fig. 7, we observe the detection statistics used by
the correlation detector under system fault and replay attack
scenarios as a function of time, averaged over 1500 trials. In
this setting, the variance of the watermark is set to 0.5. Since
the replayed profile is independent of the pulse watermark
under a replay attack the correlation drops to 0. Detection
delays occur due to the chosen 10 second detector window.
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As an additional measure of the watermark’s affect on
system performance, we consider the mean absolute deviation
of the measured frequency from the average frequency profile
with watermarking. Note that in the absence of watermarking,
the mean deviation is 0.0252 Hz for the simulation setting.

TABLE I: Mean Abs. Deviation from Avg. Freq. Profile (Hz)

E[∆P 2
c ] pd = 0.3 pd = 0.5 pd = 0.8

0.005 0.0254 0.0256 0.0258
0.05 0.0275 0.0288 0.0307
0.5 0.0429 0.0513 0.0604

VII. CONCLUSION

In this paper, we proposed a new physical watermarking
scheme for securing the smart grid and CPSs in general by
utilizing packet drop injections. In this scheme, the noisy
control input needed to authenticate the physical dynamics
of the system is obtained by dropping the control packets
randomly with certain probability. With the classical linear
quadratic objective function, we considered the effect of packet
drops on meeting security and control objectives. We analyzed
the trade-off between attack detection and control in this
setting. We provided extensive numerical results for the attack
detection performance of specific detectors under watermarked
dynamics due to packet drops, including a correlation based
detector in a microgrid system. Our results indicate that
IID Bernoulli packet drops could act as a potential physical
watermark for attack detection in cyber-physical systems. Cur-
rent work leaves several future directions to pursue. We will
explore possible ways to combine packet drop injections with

additive Gaussian watermarking to obtain hybrid schemes. We
will also expand upon the coexistence of network packet drops
and intentional packet drops. Additionally, we will work on
packet drop models that involve memory and intermittency.
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