
CS 5150, SP22

 1

Lecture 16: Program design
Lecture goals

• Distinguish between heavyweight and lightweight design processes
• Document static and dynamic designs using UML diagrams
• Leverage design patterns to reuse solutions to common problems

Program design models
Program design

• Goal: represent software architecture in form that can be implemented as one or more
executable programs

• Specifies:
o Programs, components, packages, classes, class hierarchies
o Interfaces, protocols
o Algorithms, data structures, security mechanisms, operational procedures

• Historically (e.g. aerospace), program design done by domain engineers,
implementation done by programmers

Heavyweight design
• Program design and coding are separate

o Use models to specify program in detail, before beginning to code
o UML provides modeling notation

Lightweight design
• Program design and coding are interwoven

o Development is iterative
o Assisted by integrating multiple development tools (IDEs)

• Fine line between “lightweight” and “sloppy”
Mixed approach

• Use models to specify outline design
• Work out details iteratively during coding

UML models for design
• Diagrams give general overview

o Principal elements
o Relationships between elements

• Specifications provide details about each element
In a heavyweight process, specifications should have sufficient detail so that corresponding
code can be written unambiguously. Ideally, specification is complete before coding begins.

UML model choices
• Requirements

o Use case diagram: use cases, actors, and relationships
• Architecture

CS 5150, SP22

 2

o Component diagram: interfaces and dependencies between components
o Deployment diagram: configuration of processing nodes and the components

that execute on them
• Program design

o Class diagram (structural): classes, interfaces, collaborations, and relationships
o Sequence diagram (dynamic): set of objects and their relationships

Structural (static) modeling
Class diagram

• Class: Set of objects with the same attributes, operations, relationships, and semantics
• "Operation" in UML = "method" in Java

Example: Hello World applet
import java.applet.Applet;
import java.awt.Graphics;
class HelloWorld extends Applet {
 public void paint(Graphics g) {
 g.drawString("Hello!", 10, 20);
 }
}

CS 5150, SP22

 3

Annotations

Relationships

• Association: show multiplicity of links between instances of classes
o Analogous to relations in entity-relation diagrams
o Bidirectional – doesn't imply ownership or composition
o Solid line with multiplicity at each end, optional label
o See Sommerville, Figure 5.9

• Dependency
o A change to one class may affect the semantics of another
o Dashed arrow with stick head, pointing to the dependency

• Generalization (inheritance)
o Objects of a specialized (child) class are substitutable for objects of a generalized

(parent) class
o Solid arrow with enclosed head pointing from child to parent

• Realization (interfaces)
o A class is guaranteed to fulfil a contract specified by another class
o Dashed arrow with enclosed head

• Aggregation
o An instance of one class (the whole) is composed of objects of other classes (the

parts)
o To reduce coupling, prefer composition over inheritance
o See Sommerville, Figure 5.13

HelloWorld

paint()
g.drawString("Hello!", 10, 20)

class

name

methods

op-onal annota-on

CS 5150, SP22

 4

Example: Hello World applet relationships

Tools for UML-based design

• Rational Rose (and derivatives)
Lightweight design

• Less detail
o Only show "interesting" behaviors and attributes with ownership significance

• Less permanent
o May only exist on whiteboard during design brainstorming
o Reduces maintenance of keeping documents in-sync with code

• Less sequential
o Only design what you need for current task
o Use lessons from implementation to iterate on designs

• Leverage tooling and modern languages
o Generate diagrams from source code
o Generate specifications from comments
o IDEs highlight attributes and methods

• Still need design activities, documentation to be successful
Class design
Given a real-life system, how do you decide which classes to use?

• Given a real-life system, how do you decide which classes to use?

Applet

HelloWorld

paint()
Graphics

B

C

«interface»
MenuContainer

A

CS 5150, SP22

 5

• Step 1: Identify set of candidate classes
o What terms do users and implementers use to describe the system?
o Is each candidate class crisply defined?
o What are the candidate classes' responsibilities? Are they balanced?
o What attributes and methods does each class need to carry out its

responsibilities?
• Step 2: Refine list of classes

o Improve clarity of design
o Increase coherence within classes, reduce coupling between classes

Application and solution classes
• Application classes represent application concepts.

o Use Noun Identification to generate candidate application classes
• Solution classes represent system concepts

o User interface objects, databases, etc.
Example
Noun identification

CS 5150, SP22

 6

Candidate classes

Candidate relations

Candidate methods

Book is an Item
Journal is an Item
Copy is a copy of a B ook
LibraryMember
Item
MemberOfStaff is a LibraryMember

CS 5150, SP22

 7

Candidate class diagram

Moving towards final design

• Reuse: Wherever possible use existing components, or class libraries
o They may need extensions.

• Restructuring: Change the design to improve understandability, maintainability
o Merge similar classes, split complex classes

• Optimization: Ensure that the system meets anticipated performance
requirements

o Change algorithms, more restructuring
• Completion: Fill all gaps, specify interfaces, etc.
• Design is iterative

o As the process moves from preliminary design to specification,
implementation, and testing it is common to find weaknesses in the program
design. Be prepared to make major modifications.

Class design advice
• Classes should be easy to use correctly and hard to use incorrectly

o See Effective C++, Third Edition
• Avoid cyclic dependencies (tight coupling)

o While allowed, can lead to awkwardness in build procedure, limit portability

Dynamic modeling
• Interaction diagrams: show a set of objects and their relationships

o Includes messages sent between objects
• Sequence diagrams: time ordering of messages

CS 5150, SP22

 8

Object notation

Message notation

CS 5150, SP22

 9

Example: Sequence diagram for changing student program

See also Sommerville, Figure 7.7

Design patterns
Reusable design patterns

• Design templates that solve recurring problems in a variety of different systems
• Popularized by "Gang of Four"

o E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994

• Avoid reinventing the wheel; adopt proven solutions with known tradeoffs
• When developers are familiar with design patterns, they can be used to quickly

communicate complex relationships between classes
Properties of patterns

• Meaningful name
• Description of the problem setting

o Explains where pattern may be applied
• Description of solution

o Not a library, but a "design template"; can be instantiated in different ways
o Often expressed graphically

• Statement of consequences
o Results and tradeoffs of applying the pattern in the problem setting

Implementation
• Design patterns make extensive use of inheritance and abstract classes/interfaces

o Classes that provide concrete implementations for abstract methods can
participate in the pattern

CS 5150, SP22

 10

Observer pattern
• Setting: A variety of entities (for example, different graphical views) need to be updated

whenever the state of an object changes
• Solution

o Observers: notified when Subject state changes; should update (i.e. display)
accordingly

o Subject: notifies Observers when its state changes
• Consequences

o Subject not coupled to concrete Observers
o Lack of coupling may impede performance optimizations
o Redundant updates may be triggered
o Control flow for Observers is inverted, can be hard to trace

See Sommerville, Figure 7.12
Examples

• Swing JButton (subject) and ActionListener (observer)

