CS 5150, SP22

Lecture 16: Program design

Lecture goals

e Distinguish between heavyweight and lightweight design processes
e Document static and dynamic designs using UML diagrams
e Leverage design patterns to reuse solutions to common problems

Program design models
Program design
e Goal: represent software architecture in form that can be implemented as one or more
executable programs
e Specifies:
o Programs, components, packages, classes, class hierarchies
o Interfaces, protocols
o Algorithms, data structures, security mechanisms, operational procedures
e Historically (e.g. aerospace), program design done by domain engineers,
implementation done by programmers
Heavyweight design
e Program design and coding are separate
o Use models to specify program in detail, before beginning to code
o UML provides modeling notation
Lightweight design
e Program design and coding are interwoven
o Development is iterative
o Assisted by integrating multiple development tools (IDEs)
e Fine line between “lightweight” and “sloppy”
Mixed approach
e Use models to specify outline design
e Work out details iteratively during coding
UML models for design
e Diagrams give general overview
o Principal elements
o Relationships between elements
e Specifications provide details about each element
In a heavyweight process, specifications should have sufficient detail so that corresponding
code can be written unambiguously. Ideally, specification is complete before coding begins.
UML model choices
e Requirements
o Use case diagram: use cases, actors, and relationships
e Architecture

CS 5150, SP22

o Component diagram: interfaces and dependencies between components
o Deployment diagram: configuration of processing nodes and the components
that execute on them
e Program design
o Class diagram (structural): classes, interfaces, collaborations, and relationships
o Sequence diagram (dynamic): set of objects and their relationships

Structural (static) modeling

Class diagram
e C(lass: Set of objects with the same attributes, operations, relationships, and semantics
e "Operation" in UML = "method" in Java

_ name
Window
origin attributes [local, instance, and class
. & (static) variables]
size
open()
close() methods
move()
display()
responsibilities [optional text]

Example: Hello World applet

import java.applet.Applet;
import java.awt.Graphics;
class HelloWorld extends Applet {
public void paint(Graphics g) {
g.drawString("Hello!", 10, 20);
}
}

class

name HelloWorld

methods paint()

CS 5150, SP22

Annotations

name

methods

Relationships

class
HelloWorld
optional annotation
paint() [__________| |
g.drawString("Hello!", 10, 20)

e Association: show multiplicity of links between instances of classes

O
O
O
O

Analogous to relations in entity-relation diagrams
Bidirectional — doesn't imply ownership or composition
Solid line with multiplicity at each end, optional label
See Sommerville, Figure 5.9

e Dependency

O
O

A change to one class may affect the semantics of another
Dashed arrow with stick head, pointing to the dependency

e Generalization (inheritance)

@)

@)

Objects of a specialized (child) class are substitutable for objects of a generalized
(parent) class
Solid arrow with enclosed head pointing from child to parent

e Realization (interfaces)

O
O

A class is guaranteed to fulfil a contract specified by another class
Dashed arrow with enclosed head

e Aggregation

@)

An instance of one class (the whole) is composed of objects of other classes (the
parts)

To reduce coupling, prefer composition over inheritance

See Sommerville, Figure 5.13

CS 5150, SP22

Example: Hello World applet relationships
«interface»
MenuContainer

s

Applet

HelloWorld

e e = D Graphics

@irt()
Tools for UML-based design
e Rational Rose (and derivatives)

Lightweight design
e Less detail
o Only show "interesting" behaviors and attributes with ownership significance
e less permanent
o May only exist on whiteboard during design brainstorming
o Reduces maintenance of keeping documents in-sync with code
e Less sequential
o Only design what you need for current task
o Use lessons from implementation to iterate on designs
e Leverage tooling and modern languages
o Generate diagrams from source code
o Generate specifications from comments
o IDEs highlight attributes and methods
e Still need design activities, documentation to be successful
Class design
Given a real-life system, how do you decide which classes to use?
e Given a real-life system, how do you decide which classes to use?

CS 5150, SP22

e Step 1: Identify set of candidate classes
o What terms do users and implementers use to describe the system?
o Is each candidate class crisply defined?
o What are the candidate classes' responsibilities? Are they balanced?
o What attributes and methods does each class need to carry out its
responsibilities?
e Step 2: Refine list of classes
o Improve clarity of design
o Increase coherence within classes, reduce coupling between classes
Application and solution classes
e Application classes represent application concepts.
o Use Noun Identification to generate candidate application classes
e Solution classes represent system concepts
o User interface objects, databases, etc.
Example
Noun identification

The library contains books and journals. It may have several copies of a
given book. Some of the books are reserved for short-term loans only. All
others may be borrowed by any library member for three weeks.
Members of the library can normally borrow up to six items at a time, but
members of staff may borrow up to 12 items at one time. Only members

of staff may borrow journals.

The system must keep track of when books and journals are borrowed

and returned, and enforce the rules.

CS 5150, SP22

Candidate classes

Noun Comments Candidate
Library the name of the system no
Book yes
Journal yes
Copy yes
ShortTermLoan event no (?)
LibraryMember yes
Week measure no
MemberOfLibrary repeat of LibraryMember no
ltem book or journal yes (?)
Time abstract term no
MemberOfStaff yes
System general term no
Rule general term no

Candidate relations

Book isan ltem
Journal isan ltem
Copy isacopyofaB ook
LibraryMember
Item
MemberOfStaff is a LibraryMember
Candidate methods
LibraryMember borrows Copy
LibraryMember returns Copy
MemberOfStaff borrows Journal
MemberOfStaff returns Journal

CS 5150, SP22

Candidate class diagram

MemberOfStaff LibraryMember
4‘>
1 1
on loan on loan
*
0..12 0..
Journal Copy) Book
is a copy of
1.* 1

Moving towards final design
e Reuse: Wherever possible use existing components, or class libraries
o They may need extensions.
e Restructuring: Change the design to improve understandability, maintainability
o Merge similar classes, split complex classes
e Optimization: Ensure that the system meets anticipated performance
requirements
o Change algorithms, more restructuring
e Completion: Fill all gaps, specify interfaces, etc.
e Design is iterative
o As the process moves from preliminary design to specification,
implementation, and testing it is common to find weaknesses in the program
design. Be prepared to make major modifications.
Class design advice
e Classes should be easy to use correctly and hard to use incorrectly
o See Effective C++, Third Edition
e Avoid cyclic dependencies (tight coupling)
o While allowed, can lead to awkwardness in build procedure, limit portability

Dynamic modeling
e Interaction diagrams: show a set of objects and their relationships
o Includes messages sent between objects
e Sequence diagrams: time ordering of messages

CS 5150, SP22

Object notation

Classes Objects
AnyClass anObject:AnyClass
attributel
attribute2 or
methodl() :AnyClass
method2()
or
or anObject
AnyClass The names of objects are underlined.

Message notation

call

return

send

create object

destroy object

returnCopy(c)
L
okToBorrow() local
4_
status

notifyReturn(b) asynchronous signal

~.
<<create>>
stereotypes
<<destroy>> _ P

»X

CS 5150, SP22

Example: Sequence diagram for changing student program

/\ :MEngStudent

Cornellian

1: getName()

I
2: <<create>> PhDStuglent(name)
]

> :PhDStudent

"X

3: <<destroy>>

See also Sommerville, Figure 7.7

Design patterns

Reusable design patterns
e Design templates that solve recurring problems in a variety of different systems
e Popularized by "Gang of Four"
o E.Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994
e Avoid reinventing the wheel; adopt proven solutions with known tradeoffs
e When developers are familiar with design patterns, they can be used to quickly
communicate complex relationships between classes
Properties of patterns
e Meaningful name
e Description of the problem setting
o Explains where pattern may be applied
e Description of solution
o Notalibrary, but a "design template"; can be instantiated in different ways
o Often expressed graphically
e Statement of consequences
o Results and tradeoffs of applying the pattern in the problem setting
Implementation
e Design patterns make extensive use of inheritance and abstract classes/interfaces
o Classes that provide concrete implementations for abstract methods can
participate in the pattern

CS 5150, SP22

Observer pattern
e Setting: A variety of entities (for example, different graphical views) need to be updated
whenever the state of an object changes
e Solution
o Observers: notified when Subject state changes; should update (i.e. display)
accordingly
o Subject: notifies Observers when its state changes
e Consequences
o Subject not coupled to concrete Observers
o Lack of coupling may impede performance optimizations
o Redundant updates may be triggered
o Control flow for Observers is inverted, can be hard to trace
See Sommerville, Figure 7.12

Examples
e Swing JButton (subject) and ActionListener (observer)

10

