

The Object-Oriented Thought Process

Fifth Edition

The Object-Oriented Thought Process

Fifth Edition

Matt Weisfeld

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi
Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019930825

Copyright © 2019 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-518196-6

ISBN-10: 0-13-518196-8

1 19

Microsoft and/or its respective suppliers make no representations about the suitability of the
information contained in the documents and related graphics published as part of the services
for any purpose. All such documents and related graphics are provided “as is” without warranty
of any kind. Microsoft and/ or its respective suppliers hereby disclaim all warranties and
conditions with regard to this information, including all warranties and conditions of
merchantability, whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective sup-pliers be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of
use, data or profits, whether in an action of contract, negligence or other tortious action, arising
out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or
typographical errors. Changes are periodically added to the information herein. Microsoft
and/or its respective sup-pliers may make improvements and/or changes in the product(s)

and/or the program(s) described herein at any time. Partial screenshots may be viewed in full
within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A.
and other countries. Screenshots and icons reprinted with permission from the Microsoft
Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft
Corporation.

Editor-in-Chief

Mark Taub

Development Editor

Mark Taber

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Indexer

Erika Millen

Proofreader

Abigail Manheim

Technical Reviewer

John Upchurch

Editorial Assistant

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Acknowledgments

As with the first four editions, this book required the combined efforts of many people. I would
like to take the time to acknowledge as many of these people as possible, for without them, this
book would never have happened.

First and foremost, I would like to thank my wife Sharon for all her help. Not only did she
provide support and encouragement throughout this lengthy process, she is also the first line
editor for all my writing.

I would also like to thank my mom and the rest of my family for their continued support.

It is hard to believe that the work on the first edition of this book began in 1998. For all these
years, I have thoroughly enjoyed working with everyone at Pearson—on all five editions.
Working with editors Mark Taber and Tonya Simpson on this edition has been a pleasure.

A special thanks goes to Jon Upchurch for his expertise with much of the code as well as the
technical editing of the manuscript. Jon’s insights into an amazing range of technical topics have
been of great help to me.

Finally, thanks to my daughters, Stacy and Stephanie, and my cat, Paulo, for always keeping me
on my toes.

About the Author

Matt Weisfeld is a college professor, software developer, and author based in Cleveland, Ohio.
Prior to teaching college full time, he spent 20 years in the information technology industry as a
software developer, entrepreneur, and adjunct professor. Weisfeld holds an MS in computer
science and an MBA. Besides several editions of The Object-Oriented Thought Process, Matt has
authored two other software development books and published many articles in magazines and
journals, such as informit.com, developer.com, Dr. Dobb’s Journal, The C/C++ Users Journal,
Software Development Magazine, Java Report, and the international journal Project
Management.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d like
to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like
about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and
email address. We will carefully review your comments and share them with the author and
editors who worked on the book.

Email: community@informit.com

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

Introduction

THIS BOOK’S SCOPE

As the title suggests, this book is about the object-oriented (OO) thought process. Although
choosing the theme and title of a book are important decisions, these decisions are not at all
straightforward when dealing with a highly conceptual topic. Many books deal with one level or
another of programming and object orientation. Several popular books cover topics including
OO analysis, OO design, OO programming, design patterns, OO data (XML), the Unified
Modeling Language (UML), OO web development, OO mobile development, various OO
programming languages, and many other topics related to OO programming (OOP).

However, while poring over all these books, many people forget that all these topics are built on
a single foundation: how you think in OO ways. Often, many software professionals, as well as
students, dive into these books without taking the appropriate time and effort to really
understand the design concepts behind the code.

I contend that learning OO concepts is not accomplished by learning a specific development
method, a programming language, or a set of design tools. Object-oriented development is,
simply put, a way of thinking. This book is all about the OO thought process.

Separating the languages, development practices, and tools from the OO thought process is not
an easy task. Often, people are introduced to OO concepts by diving headfirst into a
programming language. For example, many years ago a large number of C programmers were
first introduced to object orientation by migrating directly to C++ before they were even
remotely exposed to OO concepts.

It is important to understand the significant difference between learning OO concepts and
programming in an OO language. This came into sharp focus for me well before I worked on the
first edition of this book, when I read articles like Craig Larman’s “What the UML Is—and Isn’t,”
In this article he states,

Unfortunately, in the context of software engineering and the UML diagramming language,
acquiring the skills to read and write UML notation seems to sometimes be equated with skill in
object-oriented analysis and design. Of course, this is not so, and the latter is much more
important than the former. Therefore, I recommend seeking education and educational
materials in which intellectual skill in object-oriented analysis and design is paramount rather
than UML notation or the use of a case tool.

Thus, although learning a modeling language is an important step, it is much more important to
learn OO skills first. Learning UML before fully understanding OO concepts is similar to
learning how to read an electrical diagram without first knowing anything about electricity.

The same problem occurs with programming languages. As stated earlier, many C programmers
moved into the realm of object orientation by migrating to C++ before being directly exposed to
OO concepts. This would always come out in an interview. Quite often developers who claim to
be C++ programmers are simply C programmers using C++ compilers. Even now, with
languages such as C# .NET, VB .NET, Objective-C, Swift, and Java well established, a few key
questions in a job interview can quickly uncover a lack of OO understanding.

Early versions of Visual Basic are not OO. C is not OO, and C++ was developed to be backward
compatible with C. Because of this, it is quite possible to use a C++ compiler while using only C
syntax while forsaking all of C++’s OO features. Objective-C was designed as an extension to the
standard ANSI C language. Even worse, a programmer can use just enough OO features to make
a program incomprehensible to OO and non-OO programmers alike.

Thus, it is of vital importance that while you’re learning to use OO development environments,
you first learn the fundamental OO concepts. Resist the temptation to jump directly into a
programming language, and instead take the time to learn the object-oriented thought process
first.

WHAT’S NEW IN THE FIFTH EDITION

As stated often in this introduction, my vision for the first edition was to stick to the concepts
rather than focus on a specific emerging technology. Although I still adhere to this goal for the
fifth edition, I also introduce more of the “counter-arguments” than were present in the earlier
editions. By that I mean that although object-oriented development is, by far, the biggest game
in town, it is not the only one.

Since the first edition of this book was completed in 1999, many technologies have emerged and
some have faded. At the time, Java was just establishing itself and was the primary OO
development language. Web pages would soon become a part of daily life and business. We all
know how ubiquitous mobile devices have become. In the past 20 years software developers
have encountered XML, JSON, CSS, XSLT, SOAP, and RESTful Web Services. Android devices
use Java and now Kotlin, while iOS devices use Objective-C and Swift.

The point I am trying to make is that we have embraced a lot of technologies in the past 20 years
(and four editions of the book). My primary goal for this edition is to condense all of this down
to the original intent of the first edition, fundamental object-oriented concepts. I like to think
that whatever success the first edition of the book had was because it focused on fundamental
object-oriented concepts. In some ways we have gone full circle because this edition
encapsulates all the technologies mentioned above.

Finally, the concepts that ultimately encapsulate these technologies into a design methodology
are represented by SOLID, which is woven into all the chapters of this edition as well as two new
chapters at the end of the book.

The five SOLID principles are

• SRP—Single Responsibility Principle

• OCP—Open/Close Principle

• LSP—Liskov Substitution Principle

• IPS—Interface Segregation Principle

• DIP—Dependency Inversion Principle

I often think of the first nine chapters as representing what I consider classical object-oriented
principles. The last three chapters on design patterns, avoiding dependencies, and SOLID build
on the classical principles and present a strong methodology.

THE INTENDED AUDIENCE

This book is a general introduction to the concepts of object-oriented programming. The
term concepts is important because, while code is certainly used to reinforce the topics covered,
the primary focus of this book is to ground the reader in the object-oriented thought process. It
is also important for programmers to understand that OOP does not represent a distinct
paradigm (as many believe)—OOP is simply one part of a vast toolkit available to modern
software developers.

When the material for the first edition of this book was initially created in 1995, OOP was in its
infancy. I can say this because, other than pockets of OO languages such as Smalltalk, there
really were no true object-oriented languages in play at the time. C++, which does not enforce
object-oriented constructs, was the dominant C-based language. Java 1.0 was released in 1996
and C# 1.0 in 2002. In fact, when the first edition of this book was published in 1999, there was
no certainty that OO would actually become the leading development paradigm. (Java 2 wasn’t
even released until December 1998.) Despite its current dominance, there are some interesting
chinks in the OOP armor to be addressed.

Thus, the audience for the first edition differs from the audience today.

From 1995 until as late as 2010, I was basically retraining many structured programmers in the
art of OOP. The vast majority of these students had grown up with COBOL, FORTRAN, C, and
VB, both in college and on the job. Today, students graduating college, writing video games,
creating websites, or producing mobile apps have almost certainly learned programming using
an object-oriented language. Thus, the approach of the fifth edition of this book is significantly
different from the first edition, or second, etc. Rather than teaching structured programmers to
become OO developers, we are now teaching programmers who have grown up with OO
languages.

The intended audience for this book includes business managers, designers, developers,
programmers, and project managers: in short, anyone who wants to gain a general
understanding of what object orientation is all about. My hope is that reading this book will
provide a strong foundation for moving to other books covering more advanced topics.

THE BOOK’S APPROACH

It should be obvious by now that I am a firm believer in becoming comfortable with the object-
oriented thought process before jumping into a programming language or modeling language.
This book is filled with examples of code and UML class diagrams; however, you do not need to
know a specific programming language or UML to read it. After all I have said about learning
the concepts first, why is there so much code and class diagrams?

First, code and class diagrams are great for illustrating OO concepts. Second, they are integral to
the OO process and should be addressed at an introductory level. The key is not to focus on
Java, C#, and so on but to use them as aids in the understanding of the underlying concepts.

Note that I really like using UML class diagrams as a visual aid to illustrate classes, and their
attributes and methods. In fact, the class diagrams are the only component of UML used in this
book. I believe that the UML class diagrams offer a great way to model the conceptual nature of
object models. I continue to use object models as an educational tool to illustrate class design
and how classes relate to one another.

The code examples in the book illustrate concepts such as loops and functions; however,
understanding the code itself is not a prerequisite for understanding the concepts. It might be
helpful
to have a book at hand that covers specific languages’ syntax if you want to get more detailed.

I cannot state too strongly that this book does not teach Java, C# .NET, VB .NET, Objective-C,
Swift, or UML, all of which can command volumes unto themselves. It is also important to
understand that this is a book of concepts, and the intent of the examples in this book is not,
necessarily, to describe the optimal way to design your classes; they are an educational exercise
meant to get you thinking about OO concepts. For example, it is obvious that you won’t create
many models using penguins and barkless dogs on the job—but using them is a fun way to
demonstrate the concepts. With all of this in mind, it is my hope that this book will whet your
appetite for other OO topics, such as OO analysis, object-oriented design, and OO programming.

SOURCE CODE USED IN THIS BOOK

The sample code described throughout this book is available on the publisher’s website. Go to
informit.com/register and register your book for access to downloads.

1. Introduction to Object-Oriented Concepts
Although many programmers don’t realize it, object-oriented (OO) software development has
been around since the early 1960s. It wasn’t until the mid to late 1990s that the object-oriented
paradigm started to gain momentum, despite the fact that popular object-oriented
programming languages such as Smalltalk and C++ were already widely used.

The rise of OO methodologies coincides with the emergence of the Internet as a business and
entertainment platform. In short, objects work well over a network. And after it became obvious
that the Internet was here to stay, object-oriented technologies were already well positioned to
develop the new web-based technologies.

It is important to note that the title of this first chapter is “Introduction to Object-Oriented
Concepts.” The operative word here is “concepts” and not “technologies.” Technologies change
very quickly in the software industry, whereas concepts evolve. I use the term “evolve” because,
although they remain relatively stable, they do change. And this is what is really cool about
focusing on the concepts. Despite their consistency, they are always undergoing
reinterpretations, and this allows for some very interesting discussions.

This evolution can be easily traced over the past 25 years or so as we follow the progression of
the various industry technologies from the first primitive browsers of the mid to late 1990s to
the mobile/phone/web applications that dominate today. As always, new developments are just
around the corner as we explore hybrid apps and more. Throughout this journey, OO concepts
have been there every step of the way. That is why the topics of this chapter are so important.
These concepts are just as relevant today as they were 25 years ago.

THE FUNDAMENTAL CONCEPTS

The primary point of this book is to get you thinking about how the concepts are used in
designing object-oriented systems. Historically, object-oriented languages are defined by the
following: encapsulation, inheritance, and polymorphism (what I call “classical” OO). Thus, if a
language does not implement all of these, it is generally not considered completely object-
oriented. Along with these three terms, I always include composition in the mix; thus, my list of
object-oriented concepts looks like this:

• Encapsulation

• Inheritance

• Polymorphism

• Composition

We will discuss all these in detail as we proceed through the rest of the book.

One of the issues that I have struggled with right from the first edition of this book is how these
concepts relate directly to current design practices, which are always changing. For example,
there has always been debate about using inheritance in an OO design. Does inheritance actually
break encapsulation? (This topic will be covered in later chapters.) Even now, many developers
try to avoid inheritance as much as possible. So this raises the question: Should inheritance be
used at all?

My approach is, as always, to stick to concepts. Whether or not you use inheritance, you at least
need to understand what inheritance is, thus enabling you to make an educated design choice. It
is important not to forget that inheritance will almost certainly be encountered in code
maintenance, so you need to learn it regardless.

As mentioned in the introduction, the intended audience is those who want a general
introduction to fundamental OO concepts. With this statement in mind, in this chapter I present
the fundamental object-oriented concepts with the hope that you will then gain a solid
foundation for making important design decisions. The concepts covered here touch on most, if
not all, of the topics covered in subsequent chapters, which explore these issues in much greater
detail.

OBJECTS AND LEGACY SYSTEMS

As OO moved into the mainstream, one of the issues facing developers was the integration of
new OO technologies with existing systems. Lines were being drawn between OO and structured
(or procedural) programming, which was the dominant development paradigm at the time. I
always found this odd because, in my mind, object-oriented and structured programming do not
compete with each other. They are complementary because objects integrate well with
structured code. Even now, I often hear this question: are you a structured programmer or an
object-oriented programmer? Without hesitation, I would answer: both.

In the same vein, object-oriented code is not meant to replace structured code. Many non-
OO legacy systems (that is, older systems that are already in place) are doing the job quite well,
so why risk potential disaster by changing or replacing them? In most cases you should not
change them, at least not for the sake of change. There is nothing inherently wrong with systems
written in non-OO code. However, brand-new development definitely warrants the
consideration of using OO technologies (in some cases, there is no choice but to do so).

Although there has been a steady and significant growth in OO development in the past 25
years, the global community’s dependence on networks such as the Internet and mobile
infrastructures has helped catapult it even further into the mainstream. The explosion of
transactions performed on browsers and mobile apps has opened up brand-new markets, where
much of the software development is new and mostly unencumbered by legacy concerns. Even
when there are legacy concerns, there is a trend to wrap the legacy systems in object wrappers.

Object Wrappers

Object wrappers are object-oriented code that includes other code inside. For example, you can take
structured code (such as loops and conditions) and wrap it inside an object to make it look like an object.
You can also use object wrappers to wrap functionality such as security features, nonportable hardware
features, and so on. Wrapping structured code is covered in detail in Chapter 6, “Designing with
Objects.”

One of the most interesting areas of software development is the integration of legacy code with
mobile- and web-based systems. In many cases, a mobile web front end ultimately connects to
data that resides on a mainframe. Developers who can combine the skills of mainframe and
mobile web development are in demand.

You probably experience objects in your daily life without even realizing it. These experiences
can take place in your car, when you’re talking on your cell phone, using your home
entertainment system, playing computer games, and many other situations. The electronic
highway has, in essence, become an object-based highway. As businesses gravitate toward the

mobile web, they are gravitating toward objects because the technologies used for electronic
commerce are mostly OO in nature.

Mobile Web

No doubt, the emergence of the Internet provided a major impetus for the shift to object-oriented
technologies. This is because objects are well suited for use on networks. Although the Internet was at the
forefront of this paradigm shift, mobile networks have now joined the mix in a major way. In this book,
the term mobile web will be used in the context of concepts that pertain to both mobile app development
and web development. The term hybrid app is sometimes used to refer to applications that render in
browsers on both web and mobile devices.

PROCEDURAL VERSUS OO PROGRAMMING

Before we delve deeper into the advantages of OO development, let’s consider a more
fundamental question: What exactly is an object? This is both a complex and a simple question.
It is complex because learning any method of software development is not trivial. It is simple
because people already think in terms of objects.

TIP

In watching a YouTube video lecture presented by OO guru Robert Martin, his view is that the statement
that “people think in terms of objects” was coined by marketing people. Just some food for thought.

For example, when you look at a person, you see the person as an object. And an object is
defined by two components: attributes and behaviors. A person has attributes, such as eye color,
age, height, and so on. A person also has behaviors, such as walking, talking, breathing, and so
on. In its basic definition, an object is an entity that contains both data and behavior. The
word both is the key difference between OO programming and other programming
methodologies. In procedural programming, for example, code is placed into totally distinct
functions or procedures. Ideally, as shown in Figure 1.1, these procedures then become “black
boxes,” where inputs go in and outputs come out. Data is placed into separate structures and is
manipulated by these functions or procedures.

Figure 1.1 Black boxes.

Difference Between OO and Procedural

In OO design, the attributes and behaviors are contained within a single object, whereas in procedural, or
structured, design the attributes and behaviors are normally separated.

As OO design grew in popularity, one of the realities that initially slowed its acceptance was that
there were a lot of non-OO systems in place that worked perfectly fine. Thus, it did not make any
business sense to change the systems for the sake of change. Anyone who is familiar with any
computer system knows that any change can spell disaster—even if the change is perceived to be
slight.

This situation came into play with the lack of acceptance of OO databases. At one point in the
emergence of OO development, it seemed somewhat likely that OO databases would replace
relational databases. However, this never happened. Businesses have a lot of money invested in
relational databases, and one overriding factor discouraged conversion: they worked. When all
the costs and risks of converting systems from relational to OO databases became apparent,
there was no compelling reason to switch.

In fact, the business forces have now found a happy middle ground. Much of the software
development practices today have flavors of several development methodologies, such as OO
and structured.

As illustrated in Figure 1.2, in structured programming the data is often separated from the
procedures, and often the data is global, so it is easy to modify data that is outside the scope of
your code. This means that access to data is uncontrolled and unpredictable (that is, multiple
functions may have access to the global data). Second, because you have no control over who has
access to the data, testing and debugging are much more difficult. Objects address these
problems by combining data and behavior into a nice, complete package.

Figure 1.2 Using global data.

Proper Design

We can state that when properly designed, there is no such thing as global data in an OO model. This fact
provides a high amount of data integrity in OO systems.

Rather than replacing other software development paradigms, objects are an evolutionary
response. Structured programs have complex data structures, such as arrays, and so on. C++ has
structures, which have many of the characteristics of objects (classes).

However, objects are much more than data structures and primitive data types, such as integers
and strings. Although objects do contain entities such as integers and strings, which are used to
represent attributes, they also contain methods, which represent behaviors. In an object,
methods are used to perform operations on the data as well as other actions. Perhaps more
important, you can control access to members of an object (both attributes and methods). This
means that some members, both attributes and methods, can be hidden from other objects. For
instance, an object called Math might contain two integers, called myInt1and myInt2. Most likely,
the Math object also contains the necessary methods to set and retrieve the values
of myInt1 and myInt2. It might also contain a method called sum() to add the two integers
together.

Data Hiding

In OO terminology, data are referred to as attributes, and behaviors are referred to as methods.
Restricting access to certain attributes and/or methods is called data hiding.

By combining the attributes and methods in the same entity, which in OO parlance is
called encapsulation, we can control access to the data in the Math object. By defining these
integers as off-limits, another logically unconnected function cannot manipulate the
integers myInt1 and myInt2—only the Math object can do that.

Sound Class Design Guidelines

Keep in mind that it is possible to create poorly designed OO classes that do not restrict access to class
attributes. The bottom line is that you can design bad code just as efficiently with OO design as with any
other programming methodology. Simply take care to adhere to sound class design guidelines
(see Chapter 5, “Class Design Guidelines”).

What happens when another object—for example, myObject—wants to gain access to the sum
of myInt1 and myInt2? It asks the Math object: myObject sends a message to
the Math object. Figure 1.3 shows how the two objects communicate with each other via their
methods. The message is really a call to the Math object’s sum method. The sum method then
returns the value to myObject. The beauty of this is that myObject does not need to know how the
sum is calculated (although I’m sure it can guess). With this design methodology in place, you
can change how the Math object calculates the sum without making a change to myObject (as
long as the means to retrieve the sum do not change). All you want is the sum—you don’t
care how it is calculated.

Figure 1.3 Object-to-object communication.

Using a simple calculator example illustrates this concept. When determining a sum with a
calculator, all you use is the calculator’s interface—the keypad and LED display. The calculator
has a sum method that is invoked when you press the correct key sequence. You may get the
correct answer back; however, you have no idea how the result was obtained—either
electronically or algorithmically.

Calculating the sum is not the responsibility of myObject—it’s the Math object’s responsibility. As
long as myObject has access to the Math object, it can send the appropriate messages and obtain
the requested result. In general, objects should not manipulate the internal data of other objects
(that is, myObject should not directly change the value of myInt1 and myInt2). And, for reasons
we will explore later, it is normally better to build small objects with specific tasks rather than
build large objects that perform many.

MOVING FROM PROCEDURAL TO OBJECT-ORIENTED DEVELOPMENT

Now that we have a general understanding about some of the differences between procedural
and object-oriented technologies, let’s delve a bit deeper into both.

Procedural Programming

Procedural programming normally separates the data of a system from the operations that
manipulate the data. For example, if you want to send information across a network, only the
relevant data is sent (see Figure 1.4), with the expectation that the program at the other end of
the network pipe knows what to do with it. In other words, some sort of handshaking agreement

must be in place between the client and the server to transmit the data. In this model, it is quite
possible that no code is actually sent over the wire.

Figure 1.4 Data transmitted over a wire.

OO Programming

The fundamental advantage of OO programming is that the data and the operations that
manipulate the data (the code) are both encapsulated in the object. For example, when an object
is transported across a network, the entire object, including the data and behavior, goes with it.

A Single Entity

Although thinking in terms of a single entity is great in theory, in many cases, the behaviors themselves
may not be sent because both sides have copies of the code. However, it is important to think in terms of
the entire object being sent across the network as a single entity.

In Figure 1.5, the Employee object is sent over the network.

Figure 1.5 Objects transmitted over a wire.

Proper Design

A good example of this concept is an object that is loaded by a browser. Often, the browser has no idea of
what the object will do ahead of time because the code is not there previously. When the object is loaded,
the browser executes the code within the object and uses the data contained within the object.

WHAT EXACTLY IS AN OBJECT?

Objects are the building blocks of an OO program. A program that uses OO technology is
basically a collection of objects. To illustrate, let’s consider that a corporate system contains
objects that represent employees of that company. Each of these objects is made up of the data
and behavior described in the following sections.

Object Data

The data stored within an object represents the state of the object. In OO programming
terminology, this data is called attributes. In our example, as shown in Figure 1.6, employee
attributes could be Social Security numbers, date of birth, gender, phone number, and so on.
The attributes contain the information that differentiates between the various objects, in this
case the employees. Attributes are covered in more detail later in this chapter in the discussion
on classes.

Figure 1.6 Employee

attributes.

Object Behaviors
The behavior of an object represents what the object can do. In procedural languages the
behavior is defined by procedures, functions, and subroutines. In OO programming
terminology, these behaviors are contained in methods, and you invoke a method by sending a
message to it. In our employee example, consider that one of the behaviors required of an
employee object is to set and return the values of the various attributes. Thus, each attribute
would have corresponding methods, such as setGender() and getGender(). In this case, when
another object needs this information, it can send a message to an employee object and ask it
what its gender is.

Not surprisingly, the application of getters and setters, as with much of object-oriented
technology, has evolved since the first edition of this book was published. This is especially true
when it comes to data. Remember that one of the most interesting, not to mention powerful,
advantages of using objects is that the data is part of the package—it is not separated from the
code.

The emergence of XML has not only focused attention on presenting data in a portable manner;
it also has facilitated alternative ways for the code to access the data. In .NET techniques, the
getters and setters are considered properties of the data itself.

For example, consider an attribute called Name, using Java, that looks like the following:
public String Name;

The corresponding getter and setter would look like this:

public void setName (String n) {name = n;};

public String getName() {return name;};

Now, when creating an XML attribute called Name, the definition in C# .NET may look
something like this, although you can certainly use the same approach as the Java example:
private string strName;

public String Name

{

 get { return this.strName; }

 set {

 if (value == null) return;

 this.strName = value;

 }

}

In this technique, the getters and setters are actually properties of the attributes—in this
case, Name.

Regardless of the approach, the purpose is the same—controlled access to the attribute. For this
chapter, I want to first concentrate on the conceptual nature of accessor methods; we will get
more into properties in later chapters.

Getters and Setters

The concept of getters and setters supports the concept of data hiding. Because other objects should not
directly manipulate data within another object, the getters and setters provide controlled access to an
object's data. Getters and setters are sometimes called accessor methods and mutator methods,
respectively.

Note that we are showing only the interface of the methods, and not the implementation. The
following information is all the user needs to know to effectively use the methods:

• The name of the method

• The parameters passed to the method

• The return type of the method

To illustrate behaviors, consider Figure 1.7.

Figure

1.7 Employee behaviors.

In Figure 1.7, the Payroll object contains a method called CalculatePay()that calculates the pay
for a specific employee. Among other information, the Payroll object must obtain the Social
Security number of this employee. To get this information, the payroll object must send a
message to the Employee object (in this case, the getSocialSecurityNumber()method). Basically,
this means that the Payroll object calls the getSocialSecurityNumber() method of

the Employee object. The employee object recognizes the message and returns the requested
information.
To illustrate further, Figure 1.8 is a class diagram representing the Employee/Payrollsystem we
have been talking about.

Figure 1.8 Employee and payroll class

diagrams.

UML Class Diagrams

Because this is the first class diagram we have seen, it is very basic and lacks some of the constructs (such
as constructors) that a proper class should contain. Fear not—we will discuss class diagrams and
constructors in more detail in Chapter 3, “More Object-Oriented Concepts.”

Each class diagram is defined by three separate sections: the name itself, the data (attributes),
and the behaviors (methods). In Figure 1.8, the Employee class diagram’s attribute section
contains SocialSecurityNumber, Gender, and DateofBirth, whereas the method section contains
the methods that operate on these attributes. You can use UML modeling tools to create and
maintain class diagrams that correspond to real code.

Modeling Tools

Visual modeling tools provide a mechanism to create and manipulate class diagrams using the Unified
Modeling Language (UML). Class diagrams are used and discussed throughout this book. They are used
as a tool to help visualize classes and their relationships to other classes. The use of UML in this book is
limited to class diagrams.

We will get into the relationships between classes and objects later in this chapter, but for now
you can think of a class as a template from which objects are made. When an object is created,
we say that the objects are instantiated. Thus, if we create three employees, we are actually
creating three totally distinct instances of an Employee class. Each object contains its own copy
of the attributes and methods. For example, consider Figure 1.9. An employee object
called John (John is its identity) has its own copy of all the attributes and methods defined in

the Employee class. An employee object called Mary has its own copy of attributes and methods.
They both have a separate copy of the DateOfBirth attribute and the getDateOfBirth method.

Figure

1.9 Program spaces.

An Implementation Issue

Be aware that there is not necessarily a physical copy of each method for each object. Rather, each object
points to the same implementation. However, this is an issue left up to the compiler/operating platform.
From a conceptual level, you can think of objects as being wholly independent and having their own
attributes and methods.

WHAT EXACTLY IS A CLASS?

In short, a class is a blueprint for an object. When you instantiate an object, you use a class as
the basis for how the object is built. In fact, trying to explain classes and objects is really a
chicken-and-egg dilemma. It is difficult to describe a class without using the term object and
vice versa. For example, a specific individual bike is an object. However, someone had to
have created the blueprints (that is, the class) to build the bike. In OO software, unlike the

chicken-and-egg dilemma, we do know what comes first—the class. An object cannot be
instantiated without a class. Thus, many of the concepts in this section are similar to those
presented earlier in the chapter, especially when we talk about attributes and methods.

Although this book focuses on the concepts of OO software and not on a specific
implementation, it is often helpful to use code examples to explain some concepts, so Java code
fragments are used throughout the book to help explain some concepts when appropriate.
However, for certain key examples, the code is provided in several languages as downloads.

The following sections describe some of the fundamental concepts of classes and how they
interact.

Creating Objects

Classes can be thought of as the templates, or cookie cutters, for objects as seen in Figure 1.10. A
class is used to create an object.

Figure 1.10 Class

template.

A class can be thought of as a sort of higher-level data type. For example, just as you create an
integer or a float:

int x;

float y;

you can also create an object by using a predefined class:

myClassmyObject;

In this example, the names themselves make it obvious that myClass is the class and myObject is
the object.

Remember that each object has its own attributes (data) and behaviors (functions or routines).
A class defines the attributes and behaviors that all objects created with this class will possess.
Classes are pieces of code. Objects instantiated from classes can be distributed individually or as
part of a library. Because objects are created from classes, it follows that classes must define the
basic building blocks of objects (attributes, behavior, and messages). In short, you must design a
class before you can create an object.

For example, here is a definition of a Person class:
public class Person{

 //Attributes

 private String name;

 private String address;

 //Methods

 public String getName(){

 return name;

 }

 public void set Name(String n){

 name = n;

 }

 public String getAddress(){

 return address;

 }

 public void setAddress(String adr){

 address = adr;

 }

}

Attributes
As you already saw, the data of a class is represented by attributes. Each class must define the
attributes that will store the state of each object instantiated from that class. In the Personclass
example in the previous section, the Person class defines attributes for name and address.

Access Designations

When a data type or method is defined as public, other objects can directly access it. When a data type or
method is defined as private, only that specific object can access it. Another access modifier, protected,
allows access by related objects, which you'll learn about in Chapter 3.

Methods
As you learned earlier in the chapter, methods implement the required behavior of a class. Every
object instantiated from this class includes methods as defined by the class. Methods may
implement behaviors that are called from other objects (messages) or provide the fundamental,
internal behavior of the class. Internal behaviors are private methods that are not accessible by
other objects. In the Person class, the behaviors are getName(), setName(), getAddress(),
and setAddress(). These methods allow other objects to inspect and change the values of the
object’s attributes. This is a common technique in OO systems. In all cases, access to attributes
within an object should be controlled by the object itself—no other object should directly change
an attribute of another.

Messages

Messages are the communication mechanism between objects. For example, when Object A
invokes a method of Object B, Object A is sending a message to Object B. Object B’s response is
defined by its return value. Only the public methods, not the private methods, of an object can
be invoked by another object. The following code illustrates this concept:

public class Payroll{

 String name;

 Person p = new Person();

 p.setName("Joe");

 ... code

 name = p.getName();

}

In this example (assuming that a Payroll object is instantiated), the Payroll object is sending a
message to a Person object, with the purpose of retrieving the name via the getName() method.
Again, don’t worry too much about the actual code, because we are really interested in the
concepts. We address the code in detail as we progress through the book.

USING CLASS DIAGRAMS AS A VISUAL TOOL
Over the years, many tools and modeling methodologies have been developed to assist in
designing software systems. Right from the start, I have used UML class diagrams to assist in
the educational process. Although it is beyond the scope of this book to describe UML in any
detail, we will use UML class diagrams to illustrate the classes that we build. In fact, we have
already used class diagrams in this chapter. Figure 1.11 shows the Person class diagram we
discussed earlier in the chapter.

Figure 1.11 The Person class diagram.

As we saw previously, notice that the attributes and methods are separated (the attributes on the
top and the methods on the bottom). As we delve more deeply into OO design, these class
diagrams will get much more sophisticated and convey much more information on how the
different classes interact with each other.

ENCAPSULATION AND DATA HIDING

One of the primary advantages of using objects is that the object need not reveal all its attributes
and behaviors. In good OO design (at least what is generally accepted as good), an object should
reveal only the interfaces that other objects must have to interact with it. Details not pertinent to
the use of the object should be hidden from all other objects—basically a “need to know” basis.

Encapsulation is defined by the fact that objects contain both the attributes and behaviors. Data
hiding is a major part of encapsulation.

For example, an object that calculates the square of a number must provide an interface to
obtain the result. However, the internal attributes and algorithms used to calculate the square
need not be made available to the requesting object. Robust classes are designed with
encapsulation in mind. In the next sections, we cover the concepts of interface and
implementation, which are the basis of encapsulation.

Interfaces
We have seen that the interface defines the fundamental means of communication between
objects. Each class design specifies the interfaces for the proper instantiation and operation of
objects. Any behavior that the object provides must be invoked by a message sent using one of
the provided interfaces. The interface should completely describe how users of the class interact
with the class. In most OO languages, the methods that are part of the interface are designated
as public.

Private Data

For data hiding to work properly, all attributes should be declared as private. Thus, attributes are never
part of the interface. Only the public methods are part of the class interface. Declaring an attribute as
public breaks the concept of data hiding.

Let’s look at the example just mentioned: calculating the square of a number. In this example,
the interface would consist of two pieces:

• How to instantiate a Square object
• How to send a value to the object and get the square of that value in return

As discussed earlier in the chapter, if a user needs access to an attribute, a method is created to
return the value of the attribute (a getter). If a user then wants to obtain the value of an
attribute, a method is called to return its value. In this way, the object that contains the attribute
controls access to it. This is of vital importance, especially in security, testing, and maintenance.
If you control the access to the attribute, when a problem arises, you do not have to worry about
tracking down every piece of code that might have changed the attribute—it can be changed in
only one place (the setter).

From a security perspective, you don’t want uncontrolled code to change or retrieve sensitive
data. For example, when you use an ATM, access to data is controlled by asking for a PIN.

Signatures—Interfaces Versus Interfaces

Don't confuse the interfaces used to extend classes with the interface of a class. I like to equate the
interfaces, represented by methods, as “signatures.”

Implementations

Only the public attributes and methods are considered the interface. The user should not see any
part of the internal implementation, interacting with an object solely through class interfaces.
Thus, anything defined as private is inaccessible to the user and considered part of the class’s
internal implementation.

In the previous example, for instance the Employee class, only the attributes were hidden. In
many cases, there will be methods that also should be hidden and thus not part of the interface.
Continuing the example of the square root from the previous section, the user does not care how

the square root is calculated—as long as it is the correct answer. Thus, the implementation can
change, and it will not affect the user’s code. For example, the company that produces the
calculator can change the algorithm (perhaps because it is more efficient) without affecting the
result.

A Real-World Example of the Interface/Implementation Paradigm

Figure 1.12 illustrates the interface/implementation paradigm using real-world objects rather
than code. The toaster requires electricity. To get this electricity, the cord from the toaster must
be plugged into the electrical outlet, which is the interface. All the toaster needs to do to obtain
the required electricity is to implement a cord that complies with the electrical outlet
specifications; this is the interface between the toaster and the power company (actually the
power industry). That the actual implementation is a coal-powered electric plant is not the
concern of the toaster. In fact, for all the toaster cares, the implementation could be a nuclear
power plant or a local power generator. With this model, any appliance can get electricity, as
long as it conforms to the interface specification as shown in Figure 1.12.

Figure 1.12 Power plant example.

A Model of the Interface/Implementation Paradigm
Let’s explore the Square class further. Assume that you are writing a class that calculates the
squares of integers. You must provide a separate interface and implementation. That is, you
must specify a way for the user to invoke and obtain the square value. You must also provide the
implementation that calculates the square; however, the user should not know anything about
the specific implementation. Figure 1.13 shows one way to do this. Note that in the class
diagram, the plus sign (+) designates public and the minus sign (-) designates private. Thus, you
can identify the interface by the methods, prefaced with plus signs.

Figure 1.13 The Square class.

This class diagram corresponds to the following code:

Click here to view code image
public class IntSquare {

 // private attribute

 private int squareValue;

 // public interface

 public intgetSquare (int value) {

 SquareValue = calculateSquare(value);

 return squareValue;

 }

 // private implementation

 private intcalculateSquare (int value) {

 return value*value;

 }

}

Note that the only part of the class that the user has access to is the public method getSquare,
which is the interface. The implementation of the square algorithm is in the
method calculateSquare, which is private. Also notice that the attribute SquareValue is private
because users do not need to know that this attribute exists. Therefore, we have hidden the part
of the implementation: The object reveals only the interfaces the user needs to interact with it,
and details that are not pertinent to the use of the object are hidden from other objects.
If the implementation were to change—suppose you wanted to use the language’s built-in square
function—you would not need to change the interface. Here the code uses the Java library
method Math.pow, which performs the same function, but note that the interface is
still calculateSquare.

Click here to view code image
// private implementation

private intcalculateSquare (int value) {

 return = Math.pow(value,2);

}

The user would get the same functionality using the same interface, but the implementation
would have changed. This is very important when you’re writing code that deals with data; for
example, you can move data from a file to a database without forcing the user to change any
application code.

INHERITANCE

Inheritance enables a class to inherit the attributes and methods of another class. This provides
the ability to create new classes by abstracting out common attributes and behaviors from
another class.

One of the major design issues in OO programming is to factor out commonality of the various
classes. For example, suppose you have a Dog class and a Cat class, and each will have an
attribute for eye color. In a procedural model, the code for Dog and Cat would each contain this
attribute. In an OO design, the color attribute could be moved up to a class called Mammal—along
with any other common attributes and methods. In this case, both Dog and Cat inherit from
the Mammal class, as shown in Figure 1.14.

Figure 1.14 Mammal

hierarchy.

The Dog and Cat classes both inherit from Mammal. This means that a Dog class has the following
attributes:
eyeColor // inherited from Mammal

barkFrequency // defined only for Dogs

In the same vein, the Dog object has the following methods:
getEyeColor // inherited from Mammal

bark // defined only for Dogs

When the Dog or the Cat object is instantiated, it contains everything in its own class, as well as
everything from the parent class. Thus, Dog has all the properties of its class definition, as well as
the properties inherited from the Mammal class.

Behaviors

It is worth noting that behaviors today tend to be described in interfaces and that inheritance of
attributes is the most common use of direct inheritance. In this way, the behaviors are abstracted away
from their data.

Superclasses and Subclasses
The superclass, or parent class (sometimes called base class), contains all the attributes and
behaviors that are common to classes that inherit from it. For example, in the case of
the Mammal class, all mammals have similar attributes, such as eyeColor and hairColor, as well
as behaviors, such as generateInternalHeat and growHair. All mammals have these attributes
and behaviors, so it is not necessary to duplicate them down the inheritance tree for each type of
mammal. Duplication requires a lot more work, and perhaps more worrisome, it can introduce
errors and inconsistencies.
The subclass, or child class (sometimes called derived class) is an extension of the superclass.
Thus, the Dog and Cat classes inherit all those common attributes and behaviors from
the Mammal class. The Mammal class is considered the superclass of the Dog and the Catsubclasses,
or child classes.
Inheritance provides a rich set of design advantages. When you’re designing a Cat class,
the Mammal class provides much of the functionality needed. By inheriting from
the Mammalobject, Cat already has all the attributes and behaviors that make it a true mammal.

To make it more specifically a cat type of mammal, the Cat class must include any attributes or
behaviors that pertain solely to a cat.

Abstraction
An inheritance tree can grow quite large. When the Mammal and Cat classes are complete, other
mammals, such as dogs (or lions, tigers, and bears), can be added quite easily. The Catclass can
also be a superclass to other classes. For example, it might be necessary to abstract the Cat class
further, to provide classes for Persian cats, Siamese cats, and so on. Just as with Cat,
the Dog class can be the parent for GermanShepherd and Poodle (see Figure 1.15). The power of
inheritance lies in its abstraction and organization techniques.

Figure

1.15 Mammal UML diagram.

These multiple levels of abstraction are one of the reasons why many developers are wary of
using inheritance at all. As we will see often, it is difficult to decide how much abstraction is
required. For example, if a penguin is a bird and a hawk is a bird, should they both inherit from
a class called Bird—a class that has a fly method?

In most recent OO languages (such as Java, .NET, and Swift), a class can have only a single
parent class; however, a class can have many child classes. Some languages, such as C++, can
have multiple parents. The former case is called single inheritance, and the latter is
called multiple inheritance.

Multiple Inheritance

Consider a child that inherits from both parents. Which pair of eyes does the child inherit? This is a
significant problem when it comes to writing a compiler. C++ allows multiple inheritance; many
languages do not.

Note that the classes GermanShepherd and Poodle both inherit from Dog—each contains only a
single method. However, because they inherit from Dog, they also inherit from Mammal. Thus,
the GermanShepherd and Poodle classes contain all the attributes and methods included
in Dog and Mammal, as well as their own (see Figure 1.16).

Figure 1.16 Mammal

hierarchy.

Is-a Relationships
Consider a Shape example where Circle, Square, and Star all inherit directly from Shape. This
relationship is often referred to as an is-a relationship because a circle is a shape, and a square
is a shape. When a subclass inherits from a superclass, it can do anything that the superclass can
do. Thus, Circle, Square, and Star are all extensions of Shape.
In Figure 1.17, the name on each of the objects represents the draw method for the Circle, Star,
and Square objects, respectively. When we design this Shape system, it would be very helpful to
standardize how we use the various shapes. Thus, we could decide that if we want to draw a
shape, no matter what shape, we will invoke a method called draw. If we adhere to this decision,
whenever we want to draw a shape, only the draw method needs to be called, regardless of what
the shape is. Here lies the fundamental concept of polymorphism—it is the individual
object’s responsibility, be it a Circle, Star, or Square, to draw itself. This is a common concept
in many current software applications, such as drawing and word processing applications.

Figure 1.17 The shape hierarchy.

POLYMORPHISM

Polymorphism is a Greek word that literally means many shapes. Although polymorphism is
tightly coupled to inheritance, it is often cited separately as one of the most powerful advantages
to object-oriented technologies. When a message is sent to an object, the object must have a
method defined to respond to that message. In an inheritance hierarchy, all subclasses inherit
the interfaces from their superclass. However, because each subclass is a separate entity, each
might require a separate response to the same message.

For example, consider the Shape class and the behavior called draw. When you tell somebody to
draw a shape, the first question asked is, “What shape?” No one can draw a shape, because it is
an abstract concept (in fact, the draw method in the Shape code following contains no
implementation). You must specify a concrete shape. To do this, you provide the actual
implementation in Circle. Even though Shape has a draw method, Circle overrides this method
and provides its own draw method. Overriding basically means replacing an implementation of a
parent with one from a child.
For example, suppose you have an array of three shapes—Circle, Square, and Star. Even though
you treat them all as Shape objects, and send a draw message to each Shape object, the end result
is different for each because Circle, Square, and Star provide the actual implementations. In
short, each class is able to respond differently to the same draw method and draw itself. This is
what is meant by polymorphism.
Consider the following Shape class:
public abstract class Shape{

 private double area;

 public abstract double getArea();

}

The Shape class has an attribute called area that holds the value for the area of the shape. The
method getArea() includes an identifier called abstract. When a method is defined
as abstract, a subclass must provide the implementation for this method; in this case, Shape is
requiring subclasses to provide a getArea() implementation. Now let’s create a class
called Circle that inherits from Shape (the extends keyword specifies that Circleinherits
from Shape):

Click here to view code image
public class Circle extends Shape{

 double radius;

 public Circle(double r) {

 radius = r;

 }

 public double getArea() {

 area = 3.14*(radius*radius);

 return (area);

 }

}

We introduce a new concept here called a constructor. The Circle class has a method with the
same name, Circle. When a method name is the same as the class and no return type is
provided, the method is a special method, called a constructor. Consider a constructor as the
entry point for the class, where the object is built; the constructor is a good place to perform
initializations and start-up tasks.

The Circle constructor accepts a single parameter, representing the radius, and assigns it to
the radius attribute of the Circle class.
The Circle class also provides the implementation for the getArea method, originally defined
as abstract in the Shape class.
We can create a similar class, called Rectangle:

Click here to view code image
public class Rectangle extends Shape{

 double length;

 double width;

 public Rectangle(double l, double w){

 length = l;

 width = w;

 }

 public double getArea() {

 area = length*width;

 return (area);

 }

}

Now we can create any number of rectangles, circles, and so on and invoke
their getArea()method. This is because we know that all rectangles and circles inherit
from Shape, and all Shape classes have a getArea() method. If a subclass inherits an abstract
method from a superclass, it must provide a concrete implementation of that method, or else it
will be an abstract class itself (see Figure 1.18 for a UML diagram). This approach also provides
the mechanism to create other, new classes quite easily.

Figure 1.18 Shape UML

diagram.

Thus, we can instantiate the Shape classes in this way:
Circle circle = new Circle(5);

Rectangle rectangle = new Rectangle(4,5);

Then, using a construct such as a stack, we can add these Shape classes to the stack:
stack.push(circle);

stack.push(rectangle);

What Is a Stack?

A stack is a data structure that is a last-in, first-out system. It is like a coin changer, where you insert
coins at the top of the cylinder and, when you need a coin, you take one off the top, which is the last one
you inserted. Pushing an item onto the stack means that you are adding an item to the top (like inserting
another coin into the changer). Popping an item off the stack means that you are taking the last item off
the stack (like taking the coin off the top).

Now comes the fun part. We can empty the stack, and we do not have to worry about what kind
of Shape classes are in it (we just know they are shapes):

Click here to view code image
while (!stack.empty()) {

 Shape shape = (Shape) stack.pop();

 System.out.println ("Area = " + shape.getArea());

}

In reality, we are sending the same message to all the shapes:

shape.getArea()

However, the actual behavior that takes place depends on the type of shape. For
example, Circle calculates the area for a circle, and Rectangle calculates the area of a rectangle.
In effect (and here is the key concept), we are sending a message to the Shape classes and
experiencing different behavior depending on what subclass of Shape is being used.
This approach is meant to provide standardization for the interface across classes, as well as
applications. Consider an office suite application that includes a word processing and a
spreadsheet application. Let’s assume that both have a class called Office which contains an
interface called print(). This print() interface is required for all classes that are part of the
office suite. The interesting thing here is that although both the word processor and the
spreadsheet invoke the print() interface, they do different things: one prints a word processing
document and the other a spreadsheet document.

Polymorphism by Composition

In “classical” OO, polymorphism is traditionally implemented with inheritance; however, there is a way
to implement polymorphism using composition. We discuss this in Chapter 12, “The SOLID Principles of
Object-Oriented Design.”

COMPOSITION

It is natural to think of objects as containing other objects. A television set contains a tuner and
video display. A computer contains video cards, keyboards, and drives. Although the computer
can be considered an object unto itself, the drive is also considered a valid object. In fact, you
could open up the computer and remove the drive and hold it in your hand. Both the computer
and the drive are considered objects. It is just that the computer contains other objects—such as
drives.

In this way, objects are often built, or composed, from other objects: This is composition.

Abstraction

Just as with inheritance, composition provides a mechanism for building objects. In fact, I
would argue that there are only two ways to build classes from other
classes: inheritance and composition. As we have seen, inheritance allows one class to inherit
from another class. We can thus abstract out attributes and behaviors for common classes. For
example, dogs and cats are both mammals because a dog is-a mammal and a cat is-a mammal.
With composition, we can also build classes by embedding classes in other classes.

Consider the relationship between a car and an engine. The benefits of separating the engine
from the car are evident. By building the engine separately, we can use the engine in various
cars—not to mention other advantages. But we can’t say that an engine is-a car. This just doesn’t
sound right when it rolls off the tongue (and because we are modeling real-world systems, this is
the effect we want). Rather, we use the term has-a to describe composition relationships. A
car has-a(n) engine.

Has-a Relationships

While inheritance is considered an is-a relationship, a composition relationship is termed a has-
a relationship. Using the example in the previous section, a television has-a tuner and has-
a video display. A television is obviously not a tuner, so there is no inheritance relationship. In
the same vein, a computer has-a video card, has-a keyboard, and has-a disk drive. The topics of
inheritance, composition, and how they relate to each other are covered in great detail
in Chapter 7, “Mastering Inheritance and Composition.”

CONCLUSION

There is a lot to cover when discussing OO technologies. However, you should leave this chapter
with a good understanding of the following topics:

• Encapsulation—Encapsulating the data and behavior into a single object is of
primary importance in OO development. A single object contains both its data and
behaviors and can hide what it wants from other objects.

• Inheritance—A class can inherit from another class and take advantage of the
attributes and methods defined by the superclass.

• Polymorphism—Polymorphism means that similar objects can respond to the same
message in different ways. For example, you might have a system with many shapes.
However, a circle, a square, and a star are each drawn differently. Using polymorphism,
you can send each of these shapes the same message (for example, Draw), and each shape
is responsible for drawing itself.

• Composition—Composition means that an object is built from other objects.

This chapter covers the fundamental OO concepts, of which by now you should have a good
grasp.

2. How to Think in Terms of Objects
In Chapter 1, “Introduction to Object-Oriented Concepts,” you learned the fundamental object-
oriented (OO) concepts. The rest of the book delves more deeply into these concepts and
introduces several others. Many factors go into a good design, whether it is an OO design or not.
The fundamental unit of OO design is the class. The desired end result of OO design is a robust
and functional object model—in other words, a complete system.

As with most things in life, there is no single right or wrong way to approach a problem. There
are usually many ways to tackle the same problem. So when attempting to design an OO
solution, don’t get hung up in trying to do a perfect design the first time (there will always be
room for improvement). What you really need to do is brainstorm and let your thought process
go in different directions. Do not try to conform to any standards or conventions when trying to
solve a problem because the whole idea is to be creative.

In fact, at the start of the process, don’t even begin to consider a specific programming language.
The first order of business is to identify and solve business problems. Work on the conceptual
analysis and design first. Think about specific technologies only when they are fundamental to
the business problem. For example, you can’t design a wireless network without wireless
technology. However, it is often the case that you will have more than one software solution to
consider.

Thus, before you start to design a system, or even a class, think the problem through and have
some fun! In this chapter we explore the fine art and science of OO thinking.

Any fundamental change in thinking is not trivial. As a case in point, a lot has been mentioned
about the move from structured to OO development. As was mentioned earlier, one side effect of
this debate is the misconception that structured and object-oriented development are mutually
exclusive. This is not the case. As we know from our discussion on wrappers, structured and
object-oriented development coexist. In fact, when you write an OO application, you are using
structured constructs everywhere. I have never seen a program, OO or otherwise, that does not
use loops, if-statements, and so on. Yet making the switch to OO design does require a different
type of investment.

Changing from FORTRAN to COBOL, or even to C, requires you to learn a new language;
however, making the move from COBOL to C++, C# .NET, Visual Basic .NET, Objective-C,
Swift, or Java requires you to learn a new thought process. This is where the overused
phrase OO paradigm rears its ugly head. When moving to an OO language, you must first go
through the investment of learning OO concepts and the corresponding thought process. If this
paradigm shift does not take place, one of two things will happen: Either the project will not
truly be OO in nature (for example, it will use C++ without using OO constructs) or the project
will be a complete object-disoriented mess.

Three important things you can do to develop a good sense of the OO thought process are
covered in this chapter:

• Knowing the difference between the interface and implementation

• Thinking more abstractly

• Giving the user the minimal interface possible

We have already touched on some of these concepts in Chapter 1, “Introduction to Object-
Oriented Concepts,” and we now go into much more detail.

KNOWING THE DIFFERENCE BETWEEN THE INTERFACE AND THE

IMPLEMENTATION

As we saw in Chapter 1, one of the keys to building a strong OO design is to understand the
difference between the interface and the implementation. Thus, when designing a class, what
the user needs to know and, perhaps of more importance, what the user does not need to know
are of vital importance. The data hiding mechanism inherent with encapsulation is the means by
which nonessential data is hidden from the user.

Caution

Do not confuse the concept of the interface with terms like graphical user interface(GUI). Although a
GUI is, as its name implies, an interface, the term interfaces, as used here, is more general in nature and
is not restricted to a graphical interface.

Remember the toaster example in Chapter 1? The toaster, or any appliance for that matter, is
plugged into the interface, which is the electrical outlet—see Figure 2.1. All appliances gain
access to the required electricity by complying with the correct interface: the electrical outlet.
The toaster doesn’t need to know anything about the implementation or how the electricity is
produced. For all the toaster cares, a coal plant or a nuclear plant could produce the electricity—
the appliance does not care which, as long as the interface works as specified, correctly and
safely.

Figure 2.1 Power plant revisited.

As another example, consider an automobile. The interface between you and the car includes
components such as the steering wheel, gas pedal, brake, and ignition switch. For most people,
aesthetic issues aside, the main concern when driving a car is that the car starts, accelerates,
stops, steers, and so on. The implementation, basically the stuff that you don’t see, is of little
concern to the average driver. In fact, most people would not even be able to identify certain
components, such as the catalytic converter and gasket. However, any driver would recognize
and know how to use the steering wheel because this is a common interface. By installing a
standard steering wheel in the car, manufacturers are assured that the people in their target
market will be able to use the system.

If, however, a manufacturer decided to install a joystick in place of the steering wheel, most
drivers would balk at this, and the automobile might not be a big seller (except possibly gamers).
On the other hand, as long as the performance and aesthetics didn’t change, the average driver

would not notice whether the manufacturer changed the engine (part of the implementation) of
the automobile.

It must be stressed that the interchangeable engines must be identical in every way—as far as
the interface goes. Replacing a four-cylinder engine with an eight-cylinder engine would change
the rules and likely would not work with other components that interface with the engine, just as
changing the current from AC to DC would affect the rules in the power plant example.

The engine is part of the implementation, and the steering wheel is part of the interface. A
change in the implementation should have no impact on the driver, whereas a change to the
interface might. The driver would notice an aesthetic change to the steering wheel, even if it
performs in a similar manner. It must be stressed that a change to the engine that isnoticeable
by the driver breaks this rule. For example, a change that would result in noticeable loss of
power is actually impacting the interface.

What Users See

When we talk about users in this chapter, we primarily mean designers and developers—not necessarily
end users. Thus, when we talk about interfaces in this context, we are talking about class interfaces, not
GUIs.

Properly constructed classes are designed in two parts—the interface and the implementation.

The Interface

The services presented to an end user constitute the interface. In the best case, only the services
the end user needs are presented. Of course, which services the user needs might be a matter of
opinion. If you put 10 people in a room and ask each of them to do an independent design, you
might receive 10 totally different designs—and there is nothing wrong with that. However, as a
general rule, the interface to a class should contain only what the user needs to know. In the
toaster example, the user needs to know only that the toaster must be plugged into the interface
(which in this case is the electrical outlet) and how to operate the toaster itself.

Identifying the User

Perhaps the most important consideration when designing a class is identifying the audience, or users, of
the class.

The Implementation

The implementation details are hidden from the user. One goal regarding the implementation
should be kept in mind: A change to the implementation should not require a change to the
user’s code. This might seem a bit confusing, but this goal is at the heart of the design issue.

Good Interfaces

If the interface is designed properly, a change to the implementation should not require a change to the
user's code.

Remember that the interface includes the syntax to call a method and return a value. If this
interface does not change, the user does not care whether the implementation is changed. As
long as the programmer can use the same syntax and retrieve the same value, that’s all that
matters.

We see this all the time when using a cell phone. To make a call, the interface is simple—we
either dial a number or select an entry in the contact list. Yet, if the provider updates the

software, it doesn’t change the way you make a call. The interface stays the same regardless of
how the implementation changes. However, I can think of one situation when the provider did
change the interface—when my area code changed. Fundamental interface changes, like an area
code change, do require the users to change behavior. Businesses try to keep these types of
changes to a minimum, for some customers will not like the change or perhaps not put up with
the hassle.

Recall that in the toaster example, although the interface is always the electric outlet, the
implementation could change from a coal power plant to a nuclear power plant without affecting
the toaster. One very important caveat should be made here: The coal or nuclear plant must also
conform to the interface specification. If the coal plant produces AC power but the nuclear plant
produces DC power, a problem exists. The bottom line is that both the user and the
implementation must conform to the interface specification.

An Interface/Implementation Example

Let’s create a simple (if not very functional) database reader class. We’ll write some Java code
that will retrieve records from the database. As we’ve discussed, knowing your end users is
always the most important issue when doing any kind of design. You should do some analysis of
the situation and conduct interviews with end users, and then list the requirements for the
project. The following are some requirements we might want to use for the database reader:

• We must be able to open a connection to the database.

• We must be able to close the connection to the database.

• We must be able to position the cursor on the first record in the database.

• We must be able to position the cursor on the last record in the database.

• We must be able to find the number of records in the database.

• We must be able to determine whether there are more records in the database (that
is, if we are at the end).

• We must be able to position the cursor at a specific record by supplying the key.

• We must be able to retrieve a record by supplying a key.

• We must be able to get the next record, based on the position of the cursor.

With these requirements in mind, we can make an initial attempt to design the database reader
class by creating possible interfaces for these end users.

In this case, the database reader class is intended for programmers who require use of a
database. Thus, the interface is essentially the application-programming interface (API) that the
programmer will use. These methods are, in effect, wrappers that enclose the functionality
provided by the database system. Why would we do this? We explore this question in much
greater detail later in the chapter; the short answer is that we might need to customize some
database functionality. For example, we might need to process the objects so that we can write
them to a relational database. Writing this middleware is not trivial as far as design and coding
go, but it is a real-life example of wrapping functionality. More important, we may want to
change the database engine itself without having to change the code.

Figure 2.2 shows a class diagram representing a possible interface to the DataBaseReaderclass.

Figure 2.2 A Unified Modeling Language class diagram for

the DataBaseReader class.

Note that the methods in this class are all public (remember that there are plus signs next to the
names of methods that are public interfaces). Also note that only the interface is represented;
the implementation is not shown. Take a minute to determine whether this class diagram
generally satisfies the requirements outlined earlier for the project. If you find out later that the
diagram does not meet all the requirements, that’s okay; remember that OO design is an
iterative process, so you do not have to get it exactly right the first time.

Public Interface

Remember, an application programmer can access it, and thus, it is considered part of the class interface.
Do not confuse the term interface with the keyword interface used in Java and .NET—which is
discussed in later chapters.

For each of the requirements we listed, we need a corresponding method that provides the
functionality we want. Now you need to ask a few questions:

• To effectively use this class, do you, as a programmer, need to know anything else
about it?

• Do you need to know how the internal database code opens the database?

• Do you need to know how the internal database code physically positions itself over a
specific record?

• Do you need to know how the internal database code determines whether any more
records are left?

On all counts the answer is a resounding no! You don’t need to know any of this information. All
you care about is that you get the proper return values and that the operations are performed
correctly. In fact, the application programmer will most likely be at least one more abstract level
away from the implementation. The application will use your classes to open the database,
which in turn will invoke the proper database API.

Minimal Interface

Although perhaps extreme, one way to determine the minimalist interface is to initially provide the user
no public interfaces. Of course, the class will be useless; however, this forces the user to come back to you
and say, “Hey, I need this functionality.” Then you can negotiate. Thus, you add interfaces only when it is
requested. Never assume that the user needs something.

Creating wrappers might seem like overkill, but there are many advantages to writing them. To
illustrate, there are many middleware products on the market today. Consider the problem of
mapping objects to a relational database. OO databases have never caught on; however,
theoretically they may be perfect for OO applications. However, one small problem exists: Most
companies have years of data in legacy relational database systems. How can a company
embrace OO technologies and stay on the cutting edge while retaining its data in a relational
database?

First, you can convert all your legacy, relational data to a brand-new OO database. However,
anyone who has suffered the acute (and chronic) pain of any data conversion knows that this is
to be avoided at all costs. Although these conversions can take large amounts of time and effort,
all too often they never work properly.

Second, you can use a middleware product to seamlessly map the objects in your application
code to a relational model. This is a much better solution since relational databases are so
prevalent. Some might argue that OO databases are much more efficient for object persistence
than relational databases. In fact, many development systems seamlessly provide this service.

Object Persistence

Object persistence refers to the concept of saving the state of an object so that it can be restored and used
at a later time. An object that does not persist basically dies when it goes out of scope. For example, the
state of an object can be saved in a database.

However, in the current business environment, relational-to-object mapping is a great solution.
Many companies have integrated these technologies. It is common for a company to have a
website front-end interface with data on a mainframe.

If you create a totally OO system, an OO database might be a viable (and better performing)
option; however, OO databases have not experienced anywhere near the growth that OO
languages have.

Standalone Application

Even when creating a new OO application from scratch, it might not be easy to avoid legacy data. Even a
newly created OO application is most likely not a standalone application and might need to exchange
information stored in relational databases (or any other data storage device, for that matter).

Let’s return to the database example. Figure 2.2 shows the public interface to the class, and
nothing else. When this class is complete, it will probably contain more methods, and it will
certainly contain attributes. However, as a programmer using this class, you do not need to
know anything about these private methods and attributes. You certainly don’t need to know
what the code looks like within the public methods. You simply need to know how to interact
with the interfaces.

What would the code for this public interface look like (assume that we start with a Oracle
database example)? Let’s look at the open() method:

Click here to view code image
public void open(String Name){

 /* Some application-specific processing */

 /* call the Oracle API to open the database */

 /* Some more application-specific processing */

};

In this case, you, wearing your programmer’s hat, realize that the open method
requires String as a parameter. Name, which represents a database file, is passed in, but it’s not
important to explain how Name is mapped to a specific database for this example. That’s all we
need to know. Now comes the fun stuff—what really makes interfaces so great!

Just to annoy our users, let’s change the database implementation. Last night we translated all
the data from an Oracle database to an SQLAnywhere database (we endured the acute and
chronic pain). It took us hours—but we did it.

Now the code looks like this:

Click here to view code image
public void open(String Name){

 /* Some application-specific processing

 /* call the SQLAnywhere API to open the database */

 /* Some more application-specific processing */

};

To our great chagrin, this morning not one user complained. This is because even though the
implementation changed, the interface did not! As far as the user is concerned, the calls are still
the same. The code change for the implementation might have required quite a bit of work (and
the module with the one-line code change would have to be rebuilt), but not one line of
application code that uses this DataBaseReader class needed to change.

Code Recompilation

Dynamically loaded classes are loaded at runtime—not statically linked into an executable file. When
using dynamically loaded classes, like Java and .NET do, no user classes would have to be recompiled.
However, in statically linked languages such as C++, a link is required to bring in the new class.

By separating the user interface from the implementation, we can save a lot of headaches down
the road. In Figure 2.3, the database implementations are transparent to the end users, who see
only the interface.

Figure 2.3 The interface.

USING ABSTRACT THINKING WHEN DESIGNING INTERFACES

One of the main advantages of OO programming is that classes can be reused. In general,
reusable classes tend to have interfaces that are more abstract than concrete. Concrete
interfaces tend to be very specific, whereas abstract interfaces are more general. However,
simply stating that a highly abstract interface is more useful than a highly concrete interface,
although often true, is not always the case.

It is possible to write a very useful, concrete class that is not at all reusable. This happens all the
time, and nothing is wrong with it in some situations. However, we are now in the design
business and want to take advantage of what OO offers us. So our goal is to design abstract,
highly reusable classes—and to do this we will design highly abstract user interfaces. To
illustrate the difference between an abstract and a concrete interface, let’s create a taxi object. It
is much more useful to have an interface such as “drive me to the airport” than to have separate
interfaces such as “turn right,” “turn left,” “start,” “stop,” and so on, because as illustrated
in Figure 2.4, all the user wants to do is get to the airport.

Figure 2.4 An

abstract interface.

When you emerge from your hotel, throw your bags into the back seat of the taxi, and get in, the
cabbie will turn to you and ask, “Where do you want to go?” You reply, “Please take me to the
airport.” (This assumes, of course, that there is only one major airport in the city. In Chicago you
would have to say, “Please take me to Midway Airport” or “Please take me to O’Hare.”) You
might not even know how to get to the airport yourself, and even if you did, you wouldn’t want
to have to tell the cabbie when to turn and which direction to turn, as illustrated in Figure 2.5.
How the cabbie implements the actual drive is of no concern to you, the passenger. (However,
the fare might become an issue at some point, if the cabbie cheats and takes you the long way to
the airport.)

Figure 2.5 A not-

so-abstract interface.

Now, where does the connection between abstract and reuse come in? Ask yourself which of
these two scenarios is more reusable, the abstract or the not-so-abstract? To put it more simply,
which phrase is more reusable: “Take me to the airport,” or “Turn right, then right, then left,
then left, then left”? Obviously, the first phrase is more reusable. You can use it in any city,
whenever you get into a taxi and want to go to the airport. The second phrase will work only in a
specific case. Thus, the abstract interface “Take me to the airport” is generally the way to go for a
good, reusable OO design whose implementation would be different in Chicago, New York, or
Cleveland.

PROVIDING THE ABSOLUTE MINIMAL USER INTERFACE POSSIBLE

When designing a class, the general rule is to always provide the user with as little knowledge of
the inner workings of the class as possible. To accomplish this, follow these simple rules:

• Give the users only what they absolutely need. In effect, this means the class has as
few interfaces as possible. When you start designing a class, start with a minimal interface.
The design of a class is iterative, so you will soon discover that the minimal set of
interfaces might not suffice. This is fine.

• It is better to have to add interfaces because users really need it than to give the users
more interfaces than they need. At times it is highly problematic for the user to have
access to certain interfaces. For example, you don’t want an interface that provides salary
information to all users—only the ones who need to know.

• For the moment, let’s use a hardware example to illustrate our software example.
Imagine handing a user a PC box without a monitor or a keyboard. Obviously, the PC
would be of little use. You have just provided the user with the minimal set of interfaces to

the PC. However, this minimal set is insufficient, and it immediately becomes necessary to
add interfaces.

• Public interfaces define what the users can access. If you initially hide the entire class
from the user by making the interfaces private, when programmers start using the class,
you will be forced to make certain methods public—these methods thus become the
public interface.

• It is vital to design classes from a user’s perspective and not from an information
systems viewpoint. Too often designers of classes (not to mention any other kind of
software) design the class to make it fit into a specific technological model. Even if the
designer takes a user’s perspective, it is still probably a technician user’s perspective, and
the class is designed with an eye on getting it to work from a technology standpoint and
not from ease of use for the user.

• Make sure when you are designing a class that you go over the requirements and the
design with the people who will actually use it—not just developers (this includes all
levels of testing). The class will most likely evolve and need to be updated when a
prototype of the system is built.

Determining the Users

Let’s look again at the taxi example. We have already decided that the users are the ones who
will actually use the system. This said, the obvious question is, who are the users?

The first impulse is to say the customers. This is only about half right. Although the customers
are certainly users, the cabbie must be able to successfully provide the service to the customers.
In other words, providing an interface that would, no doubt, please the customer, such as “Take
me to the airport for free,” is not going to go over well with the cabbie. Thus, in reality, to build a
realistic and usable interface, both the customer and the cabbie must be considered users.

In short, any object that sends a message to the taxi object is considered a user (and yes, the
users are objects, too). Figure 2.6 shows how the cabbie provides a service.

Figure

2.6 Providing services.

Looking Ahead

The cabbie is most likely an object as well.

Object Behavior

Identifying the users is only a part of the exercise. After the users are identified, you must
determine the behaviors of the objects. From the viewpoint of all the users, begin identifying the

purpose of each object and what it must do to perform properly. Note that many of the initial
choices will not survive the final cut of the public interface. These choices are identified by
gathering requirements using various methods such as UML Use Cases.

Environmental Constraints

In their book Object-Oriented Design in Java, Gilbert and McCarty point out that the
environment often imposes limitations on what an object can do. In fact, environmental
constraints are almost always a factor. Computer hardware might limit software functionality.
For example, a system might not be connected to a network, or a company might use a specific
type of printer. In the taxi example, the cab cannot drive on a road if a bridge is out, even if it
provides a quicker way to the airport.

Identifying the Public Interfaces

With all the information gathered about the users, the object behaviors, and the environment,
you need to determine the public interfaces for each user object. So think about how you would
use the taxi object:

• Get into the taxi.

• Tell the cabbie where you want to go.

• Pay the cabbie.

• Give the cabbie a tip.

• Get out of the taxi.

What do you need to do to use the taxi object?

• Have a place to go.
• Hail a taxi.
• Pay the cabbie money.

Initially, you think about how the object is used and not how it is built. You might discover that
the object needs more interfaces, such as “Put luggage in the trunk” or “Enter into a mindless
conversation with the cabbie.” Figure 2.7 provides a class diagram that lists possible methods for
the Cabbie class.

Figure 2.7 The methods in a Cabbie class.

As is always the case, nailing down the final interface is an iterative process. For each interface,
you must determine whether the interface contributes to the operation of the object. If it does
not, perhaps it is not necessary. Many OO texts recommend that each interface model only one

behavior. This returns us to the question of how abstract we want to get with the design. If we
have an interface called enterTaxi(), we certainly do not want enterTaxi() to have logic in it to
pay the cabbie. If we do this, not only is the design somewhat illogical, but there is virtually no
way that a user of the class can tell what has to be done to pay the cabbie.

Identifying the Implementation

After the public interfaces are chosen, you need to identify the implementation. After the class is
designed and all the methods required to operate the class properly are in place, the specifics of
how to get the class to work are considered.

Technically, anything that is not a public interface can be considered the implementation. This
means that the user will never see any of the methods that are considered part of the
implementation, including the method’s signature (which includes the name of the method and
the parameter list), as well as the actual code inside the method.

It is possible to have a private method that is used internally by the class. Any private method is
considered part of the implementation given that the user will never see it and thus will not have
access to it. For example, a class may have a changePassword() method; however, the same class
may have a private method that encrypts the password. This method would be hidden from the
user and called only from inside the changePassword() method.

The implementation is totally hidden from the user. The code within public methods is a part of
the implementation because the user cannot see it. (The user should see only the calling
structure of an interface—not the code inside it.)

This means that, theoretically, anything that is considered the implementation might change
without affecting how the user interfaces with the class. This assumes, of course, that the
implementation is providing the answers the user expects.

Whereas the interface represents how the user sees the object, the implementation is really the
nuts and bolts of the object. The implementation contains the code that represents that state of
an object.

CONCLUSION

In this chapter, we have explored three areas that can get you started on the path to thinking in
an OO way. Remember that there is no firm list of issues pertaining to the OO thought process.
Doing things in an OO way is more of an art than a science. Try to think of your own ways to
describe OO thinking.

In Chapter 3, “More Object-Oriented Concepts,” we discuss the object life cycle: it is born, it
lives, and it dies. While it is alive, it might transition through many states. For example,
a DataBaseReader object is in one state if the database is open and another state if the database
is closed. How this is represented depends on the design of the class.

REFERENCES

Fowler, Martin. 2003. UML Distilled, Third Edition. Boston, MA: Addison-Wesley Professional.

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley, CA: The
Waite Group Press (Pearson Education).

Meyers, Scott. 2005. Effective C++, Third Edition. Boston, MA: Addison-Wesley Professional.

3. More Object-Oriented Concepts
Chapter 1, “Introduction to Object-Oriented Concepts,” and Chapter 2, “How to Think in Terms
of Objects,” cover the basics of object-oriented (OO) concepts. Before we embark on our journey
to learn some of the finer design issues relating to building an OO system, we need to cover a
few more advanced OO concepts, such as constructors, operator overloading, and multiple
inheritance. We also will consider error-handling techniques and how scope applies to object-
oriented design.

Some of these concepts might not be vital to understanding an OO design at a higher level, but
they are necessary to anyone involved in the design and implementation of an OO system.

CONSTRUCTORS

Constructors may be a new concept for structured programmers. Although constructors are not
normally used in non-OO languages such as COBOL, C, and Basic, the struct, which is part of
C/C++, does include constructors. In the first two chapters we alluded to these special methods
that are used to construct objects. In some OO languages, such as Java and C#, constructors are
methods that share the same name as the class. Visual Basic .NET uses the designation New and
Swift uses the init keyword. As usual, we will focus on the concepts of constructors and not cover
the specific syntax of all the languages. Let’s take a look at some Java code that implements a
constructor.

For example, a constructor for the Cabbie class we covered in Chapter 2 would look like this:
public Cabbie(){

 /* code to construct the object */

}

The compiler will recognize that the method name is identical to the class name and consider
the method a constructor.

Caution

Note that in this Java code (as with C# and C++), a constructor does not have a return value. If you
provide a return value, the compiler will not treat the method as a constructor.

For example, if you include the following code in the class, the compiler will not consider this a
constructor because it has a return value—in this case an integer.

public int Cabbie(){

 /* code to construct the object */

}

This syntax requirement can cause problems because this code will compile but will not behave
as expected.

When Is a Constructor Called?

When a new object is created, one of the first things that happens is that the constructor is
called. Check out the following code:

Cabbie myCabbie = new Cabbie();

The new keyword creates a new instance of the Cabbie class, thus allocating the required
memory. Then the constructor itself is called, passing the arguments in the parameter list. The
constructor provides the developer the opportunity to attend to the appropriate initialization.
Thus, the code new Cabbie() will instantiate a Cabbie object and call the Cabbiemethod, which is
the constructor.

What’s Inside a Constructor?
Perhaps the most important function of a constructor is to initialize the memory allocated when
the new keyword is encountered. In short, code included inside a constructor should set the
newly created object to its initial, stable, safe state.
For example, if you have a counter object with an attribute called count, you need to set count to
zero in the constructor:
count = 0;

Initializing Attributes

In structured programming, a routine named housekeeping (or initialization) is often used for
initialization purposes. Initializing attributes is a common function performed within a constructor.
Regardless, don't rely on the system defaults.

The Default Constructor

If you write a class and do not include a constructor, the class will still compile, and you can still
use it. If the class provides no explicit constructor, a default constructor will be provided. It is
important to understand that at least one constructor always exists, regardless of whether you
write a constructor yourself. If you do not provide a constructor, the system will provide a
default constructor for you.

Besides the creation of the object itself, the only action that a default constructor takes is to call
the constructor of its superclass. In many cases, the superclass will be part of the language
framework, like the Object class in Java. For example, if a constructor is not provided for
the Cabbie class, the following default constructor is inserted:
public Cabbie(){

 super();

}

If you were to decompile the bytecode produced by the compiler, you would see this code. The
compiler actually inserts it.

In this case, if Cabbie does not explicitly inherit from another class, the Object class will be the
parent class. Perhaps the default constructor might be sufficient in some cases; however, in
most cases some sort of memory initialization should be performed. Regardless of the situation,
it is good programming practice to always include at least one constructor in a class. If there are
attributes in the class, it is always good practice to initialize them. Moreover, initializing
variables is always a good practice when writing code, object-oriented or not.

Providing a Constructor

The general rule is that you should always provide a constructor, even if you do not plan to do anything
inside it. You can provide a constructor with nothing in it and then add to it later. Although there is
technically nothing wrong with using the default constructor provided by the compiler, for
documentation and maintenance purposes, it is always nice to know exactly what your code looks like.

It is not surprising that maintenance becomes an issue here. If you depend on the default
constructor and then subsequent maintenance adds another constructor, the default constructor

is no longer created. This may actually break code that was assuming the presence of a default
constructor.

Always remember that the default constructor is added only if you don’t include any
constructors. As soon as you include just one, the default constructor is not provided.

Using Multiple Constructors
In many cases, an object can be constructed in more than one way. To accommodate this
situation, you need to provide more than one constructor. For example, let’s consider
the Count class presented here:
public class Count {

 int count;

 public Count(){

 count = 0;

 }

}

On the one hand, we want to initialize the attribute count to count to zero: We can easily
accomplish this by having a constructor initialize count to zero as follows:
public Count(){

 count = 0;

}

On the other hand, we might want to pass an initialization parameter that allows count to be set
to various numbers:
public Count (int number){

 count = number;

}

This is called overloading a method (overloading pertains to all methods, not just constructors).
Most OO languages provide functionality for overloading a method.

Overloading Methods

Overloading allows a programmer to use the same method name over and over, as long as the
signature of the method is different each time. The signature consists of the method name and a
parameter list (see Figure 3.1).

Figure 3.1 The components of a signature.

Thus, the following methods all have different signatures:

public void getCab();

// different parameter list

public void getCab (String cabbieName);

// different parameter list

public void getCab (int numberOfPassengers);

Signatures

Depending on the language, the signature may or may not include the return type. In Java and C#, the
return type is not part of the signature. For example, the following methods would conflict even though
the return types are different:

public void getCab (String cabbieName);

public int getCab (String cabbieName);

The best way to understand signatures is to write some code and run it through the compiler.

By using different signatures, you can construct objects differently depending on the constructor
used. This functionality is very helpful when you don’t always know ahead of time how much
information you have available. For example, when creating a shopping cart, customers may
already be logged in to their account (and you will have all of their information). On the other
hand, a totally new customer may be placing items in the cart with no account information
available at all. In each case the constructor would initialize differently.

Using UML to Model Classes

Let’s return to the database reader example we used earlier in Chapter 2. Consider that we have
two ways we can construct a database reader:

• Pass the name of the database and position the cursor at the beginning of the
database.

• Pass the name of the database and the position within the database where we want
the cursor to position itself.

Figure 3.2 shows a class diagram for the DataBaseReader class. Note that the diagram lists two
constructors for the class. Although the diagram shows the two constructors, without the
parameter list, there is no way to know which constructor is which. To distinguish the
constructors, you can look at the corresponding code in the DataBaseReader class listed next.

Figure 3.2 The DataBaseReader class diagram.

No Return Type

Notice that in this class diagram the constructors do not have a return type. All other methods besides
constructors must have return types.

Here is a code segment of the class that shows its constructors and the attributes that the
constructors initialize (see Figure 3.3):

Figure 3.3 Creating a new

object.

Click here to view code image
public class DataBaseReader {

 String dbName;

 int startPosition;

 // initialize just the name

 public DataBaseReader (String name){

 dbName = name;

 startPosition = 0;

 };

 // initialize the name and the position

 public DataBaseReader (String name, int pos){

 dbName = name;

 startPosition = pos;

 };

 .. // rest of class

}

Note how startPosition is initialized in both cases. If the constructor is not passed the
information via the parameter list, it is initialized to a default value, such as 0.

How the Superclass Is Constructed
When using inheritance, you must know how the parent class is constructed. Remember that
when you use inheritance, you are inheriting everything about the parent. Thus, you must
become intimately aware of all the parent’s data and behavior. The inheritance of an attribute is
fairly obvious; however, how a constructor is inherited is not as obvious. After the newkeyword is
encountered and the object is allocated, the following steps occur (see Figure 3.4):

1. Inside the constructor, the constructor of the class’s superclass is called. If there is no
explicit call to the superclass constructor, the default is called automatically; however, you
can see the code in the bytecodes.

2. Each class attribute of the object is initialized. These are the attributes that are part of the
class definition (instance variables), not the attributes inside the constructor or any other
method (local variables). In the DataBaseReader code presented earlier, the
integer startPosition is an instance variable of the class.

3. The rest of the code in the constructor executes.

Figure 3.4 Constructing an object.

The Design of Constructors

As we have already seen, when designing a class, it is good practice to initialize all the attributes.
In some languages, the compiler provides some sort of initialization. As always, don’t count on
the compiler to initialize attributes! In Java, you cannot use an attribute until it is initialized. If
the attribute is first set in the code, make sure that you initialize the attribute to some valid
condition—for example, set an integer to zero.

Constructors are used to ensure that the application is in a stable state (I like to call it a “safe”
state). For example, initializing an attribute to zero, when it is intended for use as a denominator
in a division operation, might lead to an unstable application. You must take into consideration
that a division by zero is an illegal operation. Initializing to zero is not always the best policy.

During the design, it is good practice to identify a stable state for all attributes and then initialize
them to this stable state in the constructor.

ERROR HANDLING

It is extremely rare for a class to be written perfectly the first time. In most, if not all, situations,
things will go wrong. Any developer who does not plan for problems is inviting disaster.

Assuming that your code has the capability to detect and trap an error condition, you can handle
the error in several ways: In Chapter 11 of their book Java Primer Plus, Tyma, Torok, and
Downing (ISBN: 9781571690623) state that there are three basic solutions to handling problems
that are detected in a program: fix it, ignore the problem by squelching it, or exit the runtime in
some graceful manner. In Chapter 4 of their book Object-Oriented Design in Java (ISBN:
9781571691347), Gilbert and McCarty expand on this theme by adding the choice of throwing an
exception:

• Ignore the problem—not a good idea!

• Check for potential problems and abort the program when you find a problem.

• Check for potential problems, catch the mistake, and attempt to fix the problem.

• Throw an exception. (Often this is the preferred way to handle the situation.)

These strategies are discussed in the following sections.

Ignoring the Problem

Simply ignoring a potential problem is a recipe for disaster. And if you are going to ignore the
problem, why bother detecting it in the first place? It is obvious that you should not ignore any
known problem. The primary directive for all applications is that the application should never
crash. If you do not handle your errors, the application will eventually terminate ungracefully or
continue in a mode that can be considered an unstable state—possibly with corrupted data. In
the latter case, you might not even know you are getting incorrect results, and that can be much
worse than a program crash.

Checking for Problems and Aborting the Application

If you choose to check for potential problems and abort the application when a problem is
detected, the application can display a message indicating that a problem exists. In this case the
application gracefully exits, and the user is left staring at the computer screen, shaking her head
and wondering what just happened. Although this is a far superior option to ignoring the
problem, it is by no means optimal. However, this does allow the system to clean up things and
put itself in a more stable state, such as closing files and forcing a system restart.

Checking for Problems and Attempting to Recover

Checking for potential problems, catching the mistake, and attempting to recover is a far
superior solution than simply checking for problems and aborting. In this case, the problem is
detected by the code, and the application attempts to fix itself. This works well in certain
situations. For example, consider the following code:

if (a == 0)

 a=1;

c = b/a;

It is obvious that if the conditional statement is not included in the code, and a zero makes its
way to the divide statement, you will get a system exception because you cannot divide by zero.
By catching the exception and setting the variable a to 1, at least the system will not crash.

However, setting a to 1 might not be a proper solution because the result would be incorrect.
The better solution would be to prompt the user to reenter the proper input value.

A Mix of Error-Handling Techniques

Despite the fact that this type of error handling is not necessarily object-oriented in nature, I believe that
it has a valid place in OO design. Throwing an exception (discussed inthe next section) can be expensive
in terms of overhead. Thus, although exceptions may be a valid design choice, you will still want to
consider other error-handling techniques (even tried-and-true structured techniques), depending on
your design and performance needs.

Although the error checking techniques mentioned previously are preferable to doing nothing,
they still have a few problems. It is not always easy to determine where a problem first appears.
And it might take a while for the problem to be detected. In any event, it is beyond the scope of
this book to explain error handling in great detail. However, it is important to design error
handling into the class right from the start, and often the operating system itself can alert you to
problems that it detects.

Throwing an Exception
Most OO languages provide a feature called exceptions. In the most basic sense, exceptions are
unexpected events that occur within a system. Exceptions provide a way to detect problems and
then handle them. In Java, C#, C++, Swift, and Visual Basic, exceptions are handled by the
keywords catch and throw. This might sound like a baseball game, but the key concept here is
that a specific block of code is written to handle a specific exception. This solves the problem of
trying to figure out where the problem started and unwinding the code to the proper point.
Here is the structure for a Java try/catch block:
try {

 // possible nasty code

} catch(Exception e) {

 // code to handle the exception

}

If an exception is thrown within the try block, the catch block will handle it. When an exception
is thrown while the block is executing, the following occurs:

1. The execution of the try block is terminated.
2. The catch clauses are checked to determine whether an appropriate catch block for the

offending exception was included. (There might be more than one catch clause
per tryblock.)

3. If none of the catch clauses handles the offending exception, it is passed to the next higher-
level try block. (If the exception is not caught in the code, the system ultimately catches it,
and the results are unpredictable—that is, an application crash.)

4. If a catch clause is matched (the first match encountered), the statements in the catchclause
are executed.

5. Execution then resumes with the statement following the try block.

Suffice it to say that exceptions are an important advantage for OO programming languages.
Here is an example of how an exception is caught in Java:

Click here to view code image
try {

 // possible nasty code

 count = 0;

 count = 5/count;

} catch(ArithmeticException e) {

 // code to handle the exception

 System.out.println(e.getMessage());

 count = 1;

}

System.out.println("The exception is handled.");

Exception Granularity

You can catch exceptions at various levels of granularity. You can catch all exceptions or check for
specific exceptions, such as arithmetic exceptions. If your code does not catch an exception, the Java
runtime will—and it won't be happy about it!

In this example, the division by zero (because count is equal to 0) within the try block will cause
an arithmetic exception. If the exception was generated (thrown) outside a try block, the
program would most likely have been terminated (crashed). However, because the exception
was thrown within a try block, the catch block is checked to see whether the specific exception
(in this case, an arithmetic exception) was planned for. Because the catchblock contains a check
for the arithmetic exception, the code within the catch block is executed, thus setting count to 1.
After the catch block executes, the try/catch block is exited, and the message The exception is
handled. appears on the Java console. The logical flow of this process is illustrated in Figure 3.5.

Figure

3.5 Catching an exception.

If you had not put ArithmeticException in the catch block, the program would likely have
crashed. You can catch all exceptions by using the following code:
try {

 // possible nasty code

} catch(Exception e) {

 // code to handle the exception

}

The Exception parameter in the catch block is used to catch any exception that might be
generated within the scope of a try block.

Bulletproof Code

It's a good idea to use a combination of the methods described here to make your program as bulletproof
to your user as possible.

THE IMPORTANCE OF SCOPE

Multiple objects can be instantiated from a single class. Each of these objects has a unique
identity and state. This is an important point. Each object is constructed separately and is
allocated its own separate memory. However, some attributes and methods may, if properly
declared, be shared by all the objects instantiated from the same class, thus sharing the memory
allocated for these class attributes and methods.

A Shared Method

A constructor is a good example of a method that is shared by all instances of aclass.

Methods represent the behaviors of an object; the state of the object is represented by attributes.
There are three types of attributes:

• Local attributes

• Object attributes

• Class attributes

Local Attributes

Local attributes are owned by a specific method. Consider the following code:

public class Number {

 public method1() {

 int count;

 }

 public method2() {

 }

}

The method method1 contains a local variable called count. This integer is accessible only
inside method1. The method method2 has no idea that the integer count even exists.
At this point, we introduce a very important concept: scope. Attributes (and methods) exist
within a particular scope. In this case, the integer count exists within the scope of method1. In
Java, C#, C++, and Swift, scope is delineated by curly braces ({}). In the Number class, there are
several possible scopes—just start matching the curly braces.
The class itself has its own scope. Each instance of the class (that is, each object) has its own
scope. Both method1 and method2 have their own scopes as well. Because count lives
within method1’s curly braces, when method1 is invoked, a copy of count is created.
When method1 terminates, the copy of count is removed.

For some more fun, look at this code:

public class Number {

 public method1() {

 int count;

 }

 public method2() {

 int count;

 }

}

This example has two copies of an integer count in this class. Remember
that method1 and method2 each has its own scope. Thus, the compiler can tell which copy
of count to access simply by recognizing which method it is in. You can think of it in these terms:
method1.count;

method2.count;

As far as the compiler is concerned, the two attributes are easily differentiated, even though they
have the same name. It is almost like two people having the same last name, but based on the
context of their first names, you know that they are two separate individuals.

Object Attributes

In many design situations, an attribute must be shared by several methods within the same
object. In Figure 3.6, for example, three objects have been constructed from a single class.
Consider the following code:

Click here to view code image
public class Number {

 int count; // available to both method1 and method2

 public method1() {

 count = 1;

 }

 public method2() {

 count = 2;

 }

}

Figure 3.6 Object attributes.

Note here that the class attribute count is declared outside the scope of
both method1 and method2. However, it is within the scope of the class. Thus, count is available
to both method1 and method2. (Basically, all methods in the class have access to this attribute.)
Notice that the code for both methods is setting count to a specific value. There is only one copy
of count for the entire object, so both assignments operate on the same copy in memory.
However, this copy of count is not shared between different objects.
To illustrate, let’s create three copies of the Number class:
Number number1 = new Number();

Number number2 = new Number();

Number number3 = new Number();

Each of these objects—number1, number2, and number3—is constructed separately and is allocated
its own resources. There are three separate instances of the integer count.
When number1 changes its attribute count, this in no way affects the copy of count in
object number2 or object number3. In this case, integer count is an object attribute.

You can play some interesting games with scope. Consider the following code:

Click here to view code image
public class Number {

 int count;

 public method1() {

 int count;

 }

 public method2() {

 int count;

 }

}

In this case, three totally separate memory locations have the name of count for each object. The
object owns one copy, and method1() and method2() each have their own copy.
To access the object variable from within one of the methods, say method1(), you can use a
pointer called this in the C-based languages:
public method1() {

 int count;

 this.count = 1;

}

Notice that some code looks a bit curious:

this.count = 1;

The selection of the word this as a keyword is perhaps unfortunate. However, we must live with
it. The use of the this keyword directs the compiler to access the object variable countand not
the local variables within the method bodies.

Note

The keyword this is a reference to the current object.

Class Attributes

As mentioned earlier, it is possible for two or more objects of the same class to share attributes.
In Java, C#, C++, and Swift, you do this by making the attribute static:

public class Number {

 static int count;

 public method1() {

 }

}

By declaring count as static, this attribute is allocated a single piece of memory for all objects
instantiated from the class. Thus, all objects of the class use the same memory location
for count. Essentially, each class has a single copy, which is shared by all objects of that class
(see Figure 3.7). This is about as close to global data as we get in OO design.

Figure 3.7 Class attributes.

There are many valid uses for class attributes; however, you must be aware of potential
synchronization problems. Let’s instantiate two Count objects:
Count Count1 = new Count();

Count Count2 = new Count();

For the sake of argument, let’s say that the object Count1 is going merrily about its way and is
using count as a means of keeping track of the pixels on a computer screen. This is not a
problem until the object Count2 decides to use attribute count to keep track of sheep. The instant
that Count2 records its first sheep, the data that Count1 was saving is lost. In practice, there
might not be a lot of uses for static methods. Make sure you are confident in their use before
incorporating them in designs.

OPERATOR OVERLOADING

Some OO languages enable you to overload an operator. C++ is an example of one such
language. Operator overloading enables you to change the meaning of an operator. For example,
when most people see a plus sign, they assume it represents addition. If you see the equation

X = 5 + 6;

you expect that X would contain the value 11. And in this case, you would be correct.

However, at times a plus sign could represent something else. For example, in the following
code:

String firstName = "Joe", lastName = "Smith";

String Name = firstName + " " + lastName;

You would expect that Name would contain Joe Smith. The plus sign here has been overloaded to
perform string concatenation.

String Concatenation

String concatenation occurs when two separate strings are combined to create a new, single string.

In the context of strings, the plus sign does not mean addition of integers or floats but
concatenation of strings.

What about matrix addition? You could have code like this:

Matrix a, b, c;

c = a + b;

Thus, the plus sign now performs matrix addition, not addition of integers or floats.

Overloading is a powerful mechanism. However, it can be downright confusing for people who
read and maintain code. In fact, developers can confuse themselves. To take this to an extreme,
it would be possible to change the operation of addition to perform subtraction. Why not?
Operator overloading allows you to change the meaning of an operator. Thus, if the plus sign
were changed to perform subtraction, the following code would result in an X value of —1.
x = 5 + 6;

OO languages such as Java and .NET do not allow operator overloading.

Although these languages do not allow the option of overloading operators, the languages
themselves do overload the plus sign for string concatenation, but that’s about it. The designers
of Java must have decided that operator overloading was more of a problem than it was worth.
If you must use operator overloading in C++, take care by documenting and commenting
properly so the people who will use the class are not confused.

MULTIPLE INHERITANCE

We cover inheritance in much more detail in Chapter 7, “Mastering Inheritance and
Composition.” However, this is a good place to begin discussing multiple inheritance, which is
one of the more powerful and challenging aspects of class design.

As the name implies, multiple inheritance allows a class to inherit from more than one class. In
practice, this seems like a great idea. Objects are supposed to model the real world, are they not?
And many real-world examples of multiple inheritance exist. Parents are a good example of
multiple inheritance. Each child has two parents—that’s just the way it is. So it makes sense that
you can design classes by using multiple inheritance. In some OO languages, such as C++, you
can.

However, this situation falls into a category similar to operator overloading. Multiple
inheritance is a very powerful technique, and in fact, some problems are quite difficult to solve
without it. Multiple inheritance can even solve some problems quite elegantly. However,
multiple inheritance can significantly increase the complexity of a system, both for the
programmer and the compiler writers.

The designers of Java, .NET, and Swift decided that the increased complexity of allowing
multiple inheritance far outweighed its advantages, so they simply did not implement it. In
some ways, Java, .NET, and Swift compensate for this; however, the bottom line is that Java,
.NET, and Swift do not allow conventional multiple inheritance.

The modern concept of inheritance is that you can only inherit attributes from a single parent
(single inheritance). Even though you can use multiple interfaces or protocols, this is not truly
multiple inheritance.

Behavioral and Implementation Inheritance

Interfaces are a mechanism for behavioral inheritance, whereas abstract classes are used for
implementation inheritance. The bottom line is that interface language constructs provide behavioral
interfaces but no implementation, whereas abstract classes may provide both interfaces and
implementation. This topic is covered in great detail in Chapter 8, “Frameworks and Reuse: Designing
with Interfaces and Abstract Classes.”

OBJECT OPERATIONS

Some of the most basic operations in programming become more complicated when you’re
dealing with complex data structures and objects. For example, when you want to copy or
compare primitive data types, the process is quite straightforward. However, copying and
comparing objects is not quite as simple. In his book Effective C++, Scott Meyers devotes an
entire section to copying and assigning objects.

Classes and References

The problem with complex data structures and objects is that they might contain references. Simply
making a copy of the reference does not copy the data structures or the object that it references. In the
same vein, when comparing objects, simply comparing a pointer to another pointer only compares the
references—not what they point to.

The problems arise when comparisons and copies are performed on objects. Specifically, the
question boils down to whether you follow the pointers. Regardless, there should be a way to
copy an object. Again, this is not as simple as it might seem. Because objects can contain
references, these reference trees must be followed to do a valid copy (if you truly want to do a
deep copy).

Deep Versus Shallow Copies

A deep copy occurs when all the references are followed and new copies are created for all referenced
objects. Many levels might be involved in a deep copy. For objects with references to many objects, which
in turn might have references to even more objects, the copy itself can create significant overhead. A
shallow copy would simply copy the reference and not follow the levels. Gilbert and McCarty have a good
discussion about what shallow and deep hierarchies are in Object-Oriented Design in Java in a section
called “Prefer a Tree to a Forest.”

To illustrate, in Figure 3.8, if you do a simple copy of the object (called a bitwise copy), only the
references are copied—not any of the actual objects. Thus, both objects (the original and the
copy) will reference (point to) the same objects. To perform a complete copy, in which all
reference objects are copied, you must write code to create all the subobjects.

Figure 3.8 Following object references.

This problem also manifests itself when comparing objects. As with the copy function, this is not
as simple as it might seem. Because objects contain references, these reference trees must be
followed to do a valid comparison of objects. In most cases, languages provide a default
mechanism to compare objects. As is usually the case, do not count on the default mechanism.
When designing a class, you should consider providing a comparison function in your class that
you know will behave as you want it to.

CONCLUSION

This chapter covered a number of advanced OO concepts that, although perhaps not vital to a
general understanding of OO concepts, are quite necessary in higher-level OO tasks, such as
designing a class. In Chapter 4, “The Anatomy of a Class,” we start looking specifically at how to
design and build a class.

REFERENCES

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley, CA: The
Waite Group Press.

Meyers, Scott. 2005. Effective C++, Third Edition. Boston, MA: Addison-Wesley Professional.

Tyma, Paul, Gabriel Torok, and Troy Downing. 1996. Java Primer Plus. Berkeley, CA: The
Waite Group.

4. The Anatomy of a Class
In previous chapters we have covered the fundamental object-oriented (OO) concepts and
determined the difference between the interface and the implementation. No matter how well
you think out the problem of what should be part of the interface and what should be part of the
implementation, the bottom line always comes down to how useful the class is and how it
interacts with other classes. A class should never be designed in a vacuum, for as might be said,
no class is an island. When objects are instantiated, they almost always interact with other
objects. An object can also be part of another object or be part of an inheritance hierarchy.

This chapter examines a simple class and then takes it apart piece by piece along with guidelines
that you should consider when designing classes. We will continue using the cabbie example
presented in Chapter 2, “How to Think in Terms of Objects.”

Each of the following sections covers a particular aspect of a class. Although not all components
are necessary in every class, it is important to understand how a class is designed and
constructed.

note

This example class is meant for illustration purposes only. Some of the methods are not fleshed out
(meaning that there is no implementation) and simply present the interface—primarily to emphasize that
the interface is the focus of the initial design.

THE NAME OF THE CLASS

The name of the class is important for several reasons. The obvious reason is to identify the class
itself. Beyond simple identification, the name must be descriptive. The choice of a name is
important because it provides information about what the class does and how it interacts within
larger systems.

The name is also important when considering language constraints. For example, in Java, the
public class name must be the same as the filename. If these names do not match, the
application won’t compile.

Figure 4.1 shows the class that will be examined. Plain and simple, the name of the class in our
example, Cabbie, is the name located after the keyword class:
public class Cabbie {

}

Figure 4.1 Our sample class.

Using Java Syntax

Remember that the convention for this book is to use Java syntax. The syntax will be similar but,
perhaps, somewhat different in other languages.

The class Cabbie name is used whenever this class is instantiated.

COMMENTS

Regardless of the syntax of the comments used, they are vital to understanding the function of a
class. In Java and other languages, two kinds of comments are common.

The Extra Java and C# Comment Style

In Java and C#, there are three types of comments. In Java, the third comment type (/** */) relates to a
form of documentation that Java provides. We do not cover this type of comment in this book. In C#, the
syntax to create documentation comments is ///, much like the /** */ Javadoc documentation
comments.

The first comment is the old C-style comment, which uses/* (slash-asterisk) to open the
comment and */ (asterisk-slash) to close the comment. This type of comment can span more
than one line, and it’s important not to forget to use the pair of open and close comment
symbols for each comment. If you miss the closing comment (*/), some of your code might be
tagged as a comment and ignored by the compiler. Here is an example of this type of comment
used with the Cabbie class:

Click here to view code image
/*

 This class defines a cabbie and assigns a cab

*/

The second type of comment is the // (slash-slash), which renders everything after it, to the end
of the line, a comment. This type of comment spans only one line, so you don’t need to
remember to use a close comment symbol, but you do need to remember to confine the
comment to just one line and not include any live code after the comment. Here is an example of
this type of comment used with the Cabbie class:
// Name of the cabbie

ATTRIBUTES
Attributes represent the state of the object because they store the information about the object.
For our example, the Cabbie class has attributes that store the name of the company, the name
of the cabbie, and the cab assigned to the cabbie. For example, the first attribute stores the name
of the company:

Click here to view code image
private static String companyName = "Blue Cab Company";

Note here the two keywords private and static. The keyword private signifies that a method
or variable can be accessed only within the declaring object.

Hiding as Much Data as Possible

All the attributes in this example are private. This is in keeping with the design principle of keeping the
interface design as minimal as possible. The only way to access these attributes is through the method
interfaces provided (which we explore later in this chapter).

The static keyword signifies that there will be only one copy of this attribute for all the objects
instantiated by this class. Basically, this is a class attribute. (See Chapter 3, “More Object-
Oriented Concepts,” for further discussion on class attributes.) Thus, even if 500 objects are
instantiated from the Cabbie class, only one copy will be in memory of the companyName attribute
(see Figure 4.2).

Figure 4.2 Object memory

allocation.

The second attribute, name, is a string that stores the name of the cabbie:
private String name;

This attribute is also private so that other objects cannot access it directly. They must use the
interface methods.

The myCab attribute is a reference to another object. The class, called Cab, holds information
about the cab, such as its serial number and maintenance records:
private Cab myCab;

Passing a Reference

It is likely that the Cab object was created by another object. Thus, the object reference would be passed
to the Cabbie object. However, for the sake of this example, the Cab is created within the Cabbie object.
As a result, we are not really interested in the internals of the Cab object.

Note that at this point, only a reference to a Cab object is created; there is no memory allocated
by this definition.

CONSTRUCTORS
This Cabbie class contains two constructors. We know they are constructors because they have
the same name as the class: Cabbie. The first constructor is the default constructor:

public Cabbie() {

 name = null;

 myCab = null;

}

Technically, this is not a default constructor provided by the system. Recall that the compiler
will provide an empty default constructor if you do not code any constructor for a class. By
definition, the reason it is called a default constructor here is because it is a constructor with no
arguments, which, in effect, overrides the compiler’s default constructor.

If you provide a constructor with arguments, the system will not provide a default constructor.
Although this can seem complicated, the rule is that the compiler’s default constructor is
included only if you provide no constructors in your code.

No Constructor

Coding no constructor and allowing the default constructor to be in play can cause maintenance
headaches down the road. If the code relies on a default constructor, and another constructor is added
later, the default constructor will not be included by the system.

In this constructor, the attributes name and myCab are set to null:
name = null;

myCab = null;

The Nothingness of Null
In many programming languages, the value null represents a value of nothing. This might seem like an
esoteric concept, but setting an attribute to nothing is a useful programming tech-nique. Checking a
variable for null can identify whether a value has been properly initialized. For example, you might want
to declare an attribute that will later require user input. Thus, you can initialize the attribute to null
before the user is given the opportunity to enter the data. By setting the attribute to null (which is a
valid condition), you can check whether an attribute has been properly set. Note that in some languages
this is not allowed with the string type. In .NET for example, it is required to use name
= string.empty;.

As we know, it is always a good coding practice to initialize attributes in the constructors. In the
same vein, it’s a good programming practice to then test the value of an attribute to see whether
it is null. This can save you a lot of headaches later if the attribute or object was not set
properly. For example, if you use the myCab reference before a real object is assigned to it, you
will most likely have a problem. If you set the myCab reference to null in the constructor, you can
later check to see whether myCab is still null when you attempt to use it. An exception might be
generated if you treat an uninitialized reference as if it were properly initialized.
Consider another example: If you have an Employee class that includes a spouse attribute
(perhaps for insurance purposes), you’d better make provisions for the situation when an
employee is not married. By initially setting the attribute to null, you can then check for this
status.
The second constructor provides a way for the user of the class to initialize
the Name and myCab attributes:

Click here to view code image
public Cabbie(String iName, String serialNumber) {

 name = iName;

 myCab = new Cab(serialNumber);

}

In this case, the user would provide two strings in the parameter list of the constructor to
properly initialize attributes. Notice that the myCab object is instantiated in this constructor:
myCab = new Cab(serialNumber);

As a result of executing this line of code, the storage for a Cab object is allocated. Figure
4.3illustrates how a new instance of a Cab object is referenced by the attribute myCab. Using two
constructors in this example demonstrates a common use of method overloading. Notice that
the constructors are all defined as public. This makes sense because in this case, the
constructors are obvious members of the class interface. If the constructors were private, other
objects couldn’t access them—thus, other objects could not instantiate a Cab object.

Figure 4.3 The Cabbie object

referencing a cab object.

Multiple Constructors

It's worth noting that it is sometimes considered a less than ideal practice to use more than one
constructor nowadays. With the prevalence of Inversion of Control (IoC) containers and the like, it's
frowned upon, and even unsupported, for a number of frameworks without special configuration.

ACCESSORS
In most, if not all, examples in this book, the attributes are defined as private so that any other
objects cannot access the attributes directly. It would be ridiculous to create an object in
isolation that does not interact with other objects—for we want to share appropriate
information. That said, isn’t it sometimes necessary to inspect and, perhaps, change another
class’s attribute? The answer is, of course, yes. There are many times when an object needs to
access another object’s attributes; however, it does not need to do it directly.
A class should be very protective of its attributes. For example, you do not want object A to have
the capability to inspect or change the attributes of object B without object B having control.
There are several reasons for this; the most important reasons boil down to data integrity and
efficient debugging.
Assume that a bug exists in the Cab class. You have tracked the problem to the Nameattribute.
Somehow it is getting overwritten, and garbage is turning up in some name queries.
If Name were public and any class could change it, you would have to go searching through all
the possible code, trying to find places that reference and change Name. However, if you let only
a Cabbie object change Name, you’d have to look only in a method of the Cabbie class. This access
is provided by a type of method called an accessor. Sometimes accessors are referred to as

getters and setters, and sometimes they’re simply called get() and set(). By convention, in this
book we name the methods with the set and get prefixes, as in the following:
// Set the Name of the Cabbie

public void setName(String iName) {

 name = iName;

}

// Get the Name of the Cabbie

public String getName() {

 return name;

}

In this code snippet, a Supervisor object must ask the Cabbie object to return its name
(see Figure 4.4). The important point here is that the Supervisor object can’t retrieve the
information on its own; it must ask the Cabbie object for the information. This concept is
important at many levels. For example, you might have a setAge() method that checks to see
whether the age entered was 0 or below. If the age is less than 0, the setAge() method can
refuse to set this obviously incorrect value. In general, the setters are used to ensure a level of
data integrity.

Figure 4.4 Asking for information.

This is also an issue of security. You may have sensitive data, such as passwords or payroll
information, that you want to control access to. Thus, accessing data via getters and setters
provides the capability to use mechanisms like password checks and other validation
techniques. This greatly increases the integrity of the data.

Objects

Actually, there isn't a physical copy of each nonstatic method for each object. Each object would point to
the same physical code. However, from a conceptual level, you can think of objects as being wholly
independent and having their own attributes and methods.

The following code fragment illustrates how to define a static method, and Figure 4.5 shows how
more than one object points to the same code.

Figure

4.5 Method memory allocation.

Static Attributes

If an attribute is static, and the class provides a setter for that attribute, any object that invokes the setter
will change the single copy. Thus, the value for the attribute will change for all objects.

Click here to view code image
// Get the Name of the Cabbie

public static String getCompanyName() {

 return companyName;

}

Notice that the getCompanyName method is declared as static, as a class method; class methods
are described in more detail in Chapter 3. Remember that the attribute companyName is also
declared as static. A method, like an attribute, can be declared static to indicate that there is
only one copy of the method for the entire class.

PUBLIC INTERFACE METHODS
Both the constructors and the accessor methods are declared as public and are part of the public
interface. They are singled out because of their specific importance to the construction of the
class. However, much of the real work is provided in other methods. As mentioned in Chapter 2,
the public interface methods tend to be very abstract, and the implementation tends to be more
concrete. For this class, we provide a method called giveDestinationthat is the public interface
for the user to describe where she wants to go:
public void giveDestination(){

}

What is inside this method is not important at this time. The main point is that this is a public
method, and it is part of the public interface to the class.

PRIVATE IMPLEMENTATION METHODS
Although all the methods discussed so far in this chapter are defined as public, not all the
methods in a class are part of the public interface. It is common for methods in a class to be
hidden from other classes. These methods are declared as private:
private void turnRight(){

}

private void turnLeft() {

}

These private methods are meant to be part of the implementation and not the public interface.
You might ask who invokes these methods, if no other class can. The answer is simple: You
might have already surmised that these methods are called internally from the class itself. For
example, these methods could be called from within the method giveDestination:
public void giveDestination(){

.. some code

 turnRight();

 turnLeft();

.. some more code

}

As another example, you may have an internal method that provides encryption that you will
use only from within the class itself. In short, this encryption method can’t be called from
outside the instantiated object itself.

The point here is that private methods are strictly part of the implementation and are not
accessible by other classes.

CONCLUSION

In this chapter we have gotten inside a class and described the fundamental concepts necessary
for understanding how a class is built. Although this chapter takes a practical approach to
discussing classes, Chapter 5, “Class Design Guidelines,” covers the class from a general design
perspective.

REFERENCES

Fowler, Martin. 2003. UML Distilled, Third Edition. Boston, MA: Addison-Wesley Professional.

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley, CA: The
Waite Group Press.

Tyma, Paul, Gabriel Torok, and Troy Downing. 1996. Java Primer Plus. Berkeley, CA: The
Waite Group.

5. Class Design Guidelines
As we have already discussed, OO programming supports the idea of creating classes that are
complete packages, encapsulating the data and behavior of a single entity. So, a class should
represent a logical component, such as a taxicab.

This chapter presents several suggestions for designing classes. Obviously, no list such as this
can be considered complete. You will undoubtedly add many guidelines to your personal list and
incorporate useful guidelines from other developers.

MODELING REAL-WORLD SYSTEMS

One of the primary goals of object-oriented (OO) programming is to model real-world systems
in ways similar to the ways in which people actually think. Designing classes is the object-
oriented way to create these models. Rather than using a structured, or top-down, approach,
where data and behavior are logically separate entities, the OO approach encapsulates the data
and behavior into objects that interact with each other. We no longer think of a problem as a
sequence of events or routines operating on separate data files. The elegance of this mindset is
that classes literally model real-world objects and how these objects interact with other real-
world objects.

These interactions occur in a way similar to the interactions between real-world objects, such as
people. Thus, when creating classes, you should design them in a way that represents the true
behavior of the object. Let’s use the cabbie example from previous chapters. The Cabclass and
the Cabbie class model a real-world entity. As illustrated in Figure 5.1, the Cab and
the Cabbie objects encapsulate their data and behavior, and they interact through each other’s
public interfaces.

Figure 5.1 A cabbie and a cab are

real-world objects.

When OO programming was first becoming popular, it was difficult for many structured
programmers to make the transition. One primary mistake structured programmers made was
to create a class that had behavior but no class data, in effect creating a set of functions or
subroutines in the structured model. This was not desirable because it didn’t take advantage of
the power of encapsulation.

This is only partially true now. Currently, much development is done with anemic domain
models, a.k.a. data transfer objects (DTOs) and view models that have just enough data to
populate a view or just the right amount of data that is needed by a consumer. Much more focus
has been placed on behaviors and operating on the data, and that is handled via interfaces.
Encapsulating the behaviors into single-responsibility interfaces and coding to the interfaces
keeps code flexible and modular and far easier to maintain.

Note

One of my favorite books pertaining to class design guidelines and suggestions remains Effective C++:
50 Specific Ways to Improve Your Programs and Designs, by Scott Meyers. It offers important
information about program design in a very concise manner.

One of the reasons why Effective C++ interests me so much is that, because C++ is backward
compatible with C, you can write structured code in C++ without using OO design principles. As
I mentioned earlier, during interviews, some people claim that they are OO programmers simply
because they program in C++. This indicates a total misunderstanding of what OO design is all
about. Thus, you may have to pay more attention to the OO design issues in languages such as
C++ as opposed to Java, Swift, or .NET.

IDENTIFYING THE PUBLIC INTERFACES

It should be clear by now that perhaps the most important issue when designing a class is to
keep the public interface to a minimum. The entire purpose of building a class is to provide
something useful and concise. In their book Object-Oriented Design in Java, Gilbert and
McCarty state that “the interface of a well-designed object describes the services that the client
wants accomplished.” If a class does not provide a useful service to a user, it should not have
been built in the first place.

The Minimum Public Interface

Providing the minimum public interface makes the class as concise as possible. The goal is to
provide the user with the exact interface to do the job right. If the public interface is incomplete
(that is, there is missing behavior), the user will not be able to do the complete job. If the public
interface is not properly restricted (that is, the user has access to behavior that is unnecessary or
even dangerous), problems can result in the need for debugging, and even trouble with system
integrity and security can surface.

Creating a class is a business proposition, and as with all steps in the design process, it is very
important that the users are involved with the design right from the start and throughout the
testing phase. In this way, the utility of the class, as well as the proper interfaces, will be assured.

Extending the Interface

Even if the public interface of a class is insufficient for a certain application, object technology easily
allows the capability to extend and adapt this interface. In short, if properly designed, a new class can
utilize an existing class and create a new class with an extended interface.

This is the point where, if you're adding behaviors, the developers should not be using inheritance,

To illustrate, consider the cabbie example again. If other objects in the system need to get the
name of a cabbie, the Cabbie class must provide a public interface to return its name; this is
the getName() method. Thus, if a Supervisor object needs a name from a Cabbie object, it must
invoke the getName() method from the Cabbie object. In effect, the supervisor is asking the
cabbie for its name (see Figure 5.2).

Figure 5.2 The public interface specifies how the objects

interact.

Users of your code need to know nothing about its internal workings. All they need to know is
how to instantiate and use the object. In short, provide users a way to get there but hide the
details.

Hiding the Implementation

The need for hiding the implementation has already been covered in great detail. Whereas
identifying the public interface is a design issue that revolves around the users of the class, the
implementation should not involve the users at all. The implementation must provide the
services that the user needs, but how these services are actually performed should not be made
apparent to the user. A class is most useful if the implementation can change without affecting
the users. Basically, a change to the implementation should not necessitate a change in the
user’s application code. Again, the best way to enable change of behaviors is via the use of
interfaces and composition.

Customer Versus User

Sometimes I use the term customer rather than user when referring to the people who will actually be
using the software. Users of the system may, in fact, be customers. In the same vein, users who are part
of your organization can be called internal customers. This may seem like a trivial point, but I think it is
important to think of all end users as actual customers—and you must satisfy their requirements.

In the cabbie example, the Cabbie class might contain behavior pertaining to how, or where, he
eats lunch. However, the cabbie’s supervisor does not need to know what the cabbie has for
lunch. Thus, this behavior is part of the implementation of the Cabbie object and should not be
available to other objects in this system (see Figure 5.3). Gilbert and McCarty state that the
prime directive of encapsulation is that “all fields shall be private.” In this way, none of the fields
in a class are accessible from other objects.

Figure 5.3 Objects don’t need to know some

implementation details.

DESIGNING ROBUST CONSTRUCTORS (AND PERHAPS DESTRUCTORS)

When designing a class, one of the most important design issues involves how the class will be
constructed. Constructors are discussed in Chapter 3, “More Object-Oriented Concepts.” Revisit
this discussion if you need a refresher on guidelines for designing constructors.

First and foremost, a constructor should put an object into an initial, safe state. This includes
issues such as attribute initialization and memory management. You also need to make sure the
object is constructed properly in the default condition. It is normally a good idea to provide a
constructor to handle this default situation.

In languages that include destructors, it is of vital importance that the destructors include
proper clean-up functions. In most cases, this clean-up pertains to releasing system memory
that the object acquired at some point. Java and .NET reclaim memory automatically via a
garbage collection mechanism. In languages such as C++, the developer must include code in
the destructor to properly free up the memory that the object acquired during its existence. If
this function is ignored, a memory leak will result.

Constructor Injection

This is a good point at which to introduce the concept of constructor injection, where service classes are
injected on object creation (via a constructor) instead of within the class (using the new keyword). For
example, the cabbie can get his license object, his radio information object (frequency, call sign, etc.),
and the key that starts his cab passes into the object via a constructor.

Memory Leaks

When an object fails to properly release the memory that it acquired during an object's life cycle, the
memory is lost to the entire operating system as long as the application that created the object is
executing. For example, suppose multiple objects of the same class are created and then destroyed,
perhaps in some sort of loop. If these objects fail to release their memory when they go out of scope, this
memory leak slowly depletes the available pool of system memory. At some point, it is possible that
enough memory will be consumed that the system will have no available memory left to allocate. This
means that any application executing in the system would be unable to acquire any memory. This could
put the application in an unsafe state and even lock up the system.

DESIGNING ERROR HANDLING INTO A CLASS

As with the design of constructors, designing how a class handles errors is of vital importance.
Error handling is discussed in detail in Chapter 3.

It is virtually certain that every system will encounter unforeseen problems. Thus, it is not a
good idea to ignore potential errors. The developer of a good class (or any code, for that matter)
anticipates potential errors and includes code to handle these conditions when they are
encountered.

The general rule is that the application should never crash. When an error is encountered, the
system should either fix itself and continue, or at minimum, exit gracefully without losing any
data that’s important to the user.

Documenting a Class and Using Comments

The topic of comments and documentation comes up in most programming books and articles,
in every code review, and in every discussion you have about good design. Unfortunately,
comments and good documentation are often not taken seriously, or even worse, they are
ignored.

Most developers know that they should thoroughly document their code, but they don’t usually
want to take the time to do it. However, a good design is practically impossible without good
documentation practices. At the class level, the scope might be small enough that a developer
can get away with shoddy documentation. However, when the class gets passed to someone else
to extend and/or maintain, or it becomes part of a larger system (which is what should happen),
a lack of proper documentation and comments can undermine the entire system.

Many people have said all this before. One of the most crucial aspects of a good design, whether
it’s a design for a class or something else, is to carefully document the process. Implementations
such as Java and .NET provide special comment syntax to facilitate the documentation process.
Check out Chapter 4, “The Anatomy of a Class,” for the appropriate syntax.

Too Much Documentation

Be aware that over-commenting can be a problem as well. Too much documentation and/or commenting
can become background noise and may actually defeat the purpose of the documentation. Just like in
good class design, make the documentation and comments straightforward and to the point. Well-
written code is, in itself, the best documentation.

Building Objects with the Intent to Cooperate

We can safely say that almost no class lives in isolation. In most cases, there is little reason to
build a class if it is not going to interact with other classes, unless the class will be used only
once. This is a fact in the life of a class. A class will service other classes; it will request the
services of other classes, or both. In later chapters we discuss various ways that classes interact
with each other.

In the cabbie example, the cabbie and the supervisor are not standalone entities; they interact
with each other at various levels (see Figure 5.4).

Figure 5.4 Objects should request information.

When designing a class, make sure you are aware of how other objects will interact with it.

DESIGNING WITH REUSE IN MIND
Objects can be reused in different systems, and code should be written with reuse in mind. For
example, when a Cabbie class is developed and tested, it can be used anywhere you need a
cabbie. To make a class usable in various systems, the class must be designed with reuse in
mind. This is where much of the thought is required in the design process. Attempting to predict
all the possible scenarios in which a Cabbie object must operate is not a trivial task—in fact, it is
virtually impossible.

DESIGNING WITH EXTENSIBILITY IN MIND
Adding new features to a class might be as simple as extending an existing class, adding a few
new methods, and modifying the behavior of others. It is not necessary to rewrite everything.
This is where inheritance comes into play. If you have just written a Person class, you must
consider the fact that you might later want to write an Employee class or a Customer class. Thus,
having Employee inherit from Person might be the best strategy; in this case, the Person class is
said to be extensible. You do not want to design Person so that it contains behavior that prevents
it from being extended by classes such as Employee or Customer(assuming that in your design
you really intend for other classes to extend Person). For example, you would not want to code
functionality into an Employee class that is specific to supervisory functions. If you did, and then
a class that does not require supervisory functionality inherited from Employee, you would have
a problem.
This point touches on the abstraction guideline discussed earlier. Person should contain only the
data and behaviors that are specific to a person. Other classes can then subclass it and inherit
appropriate data and behaviors.

As we will cover in the SOLID discussion in Chapter 11, “Avoiding Dependencies and Highly
Coupled Classes,” and Chapter 12, “The SOLID Principles of Object-Oriented Design,” classes
should be open for extension but closed for modification. By using interfaces first and coding to
them, you can use all sorts of patterns like Decorator to extend things without touching the code
that’s been tested and deployed live, for example.

What Attributes and Methods Can Be Static?

Static methods promote strong coupling to classes. You cannot abstract a static method. You cannot
mock a static method or static class. You cannot provide a static interface. The only time it is reasonable
to use static classes (within application development—framework development is a bit different) is if
you're working with some sort of helper class or extension method that does not produce side effects. For
example, a static class to add numbers is fine. A static class that interacts with a database or a web
service is not.

Making Names Descriptive

Earlier we discussed the use of proper documentation and comments. Following a naming
convention for your classes, attributes, and methods is a similar subject. There are many naming
conventions, and the convention you choose is not as important as choosing one and sticking to
it. However, when you choose a convention, make sure that when you create classes, attributes,
and method names, you not only follow the convention but also make the names descriptive.
When someone reads the name, he should be able to tell from the name what the object
represents. These naming conventions are often dictated by the coding standards at various
organizations.

Good Naming

Make sure that a naming convention makes sense. Often, people go overboard and create con-ventions
that might make sense to them but are totally incomprehensible to others. Take care when forcing others
to conform to a convention. Make sure that the conventions are sensible and that everyone involved
understands the intent behind them. Make variables descriptive of their use, not encoded based on their
type.

Making names descriptive is a good development practice that transcends the various
development paradigms.

Abstracting Out Nonportable Code

If you are designing a system that must use nonportable (native) code (that is, the code will run
only on a specific hardware platform), you should abstract this code out of the class. By
abstracting out, we mean isolating the nonportable code in its own class or at least its own
method (a method that can be overridden). For example, if you are writing code to access a
serial port of particular hardware, you should create a wrapper class to deal with it. Your class
should then send a message to the wrapper class to get the information or services it needs. Do
not put the system-dependent code into your primary class (see Figure 5.5).

Figure 5.5 A serial port

wrapper.

For example, consider the situation when a programmer is interfacing directly with hardware.
In these cases, the object code of the various platforms will most likely be quite different, and
thus code must be written for each platform. However, if the functionality is placed in a wrapper
class, then a user of the class can interface directly with the wrapper and not have to worry
about the various low-level code. The wrapper class will deal with the differences in these
platforms and decide which code to invoke.

Providing a Way to Copy and Compare Objects

Chapter 3 discussed the issue of copying and comparing objects. It is important to understand
how objects are copied and compared. You might not want, or expect, a simple bitwise copy or
compare operation. You must make sure that your class behaves as expected, and this means
you have to spend some time designing how objects are copied and compared.

Keeping the Scope as Small as Possible

Keeping the scope as small as possible goes hand-in-hand with abstraction and hiding the
implementation. The idea is to localize attributes and behaviors as much as possible. In this
way, maintaining, testing, and extending a class are much easier. Using interfaces is a great way
to enforce this.

Scope and Global Data

Minimizing the scope of global variables is a good programming style and is not specific to OO
programming. Global variables are allowed in structured development, yet they can get dicey. In fact,
there is no global data in OO development. Static attributes and methods are shared among objects of the
same class; however, they are not available to objects not of the class. You could also share data via a file
or database.

For example, if you have a method that requires a temporary attribute, keep it local. Consider
the following code:

Click here to view code image
public class Math {

 int temp=0;

 public int swap (int a, int b) {

 temp = a;

 a=b;

 b=temp;

 return temp;

 }

}

What is wrong with this class? The problem is that the attribute temp is needed only within the
scope of the swap() method. There is no reason for it to be at the class level. Thus, you should
move temp within the scope of the swap() method:

Click here to view code image
public class Math {

 public int swap (int a, int b) {

 int temp=0;

 temp = a;

 a=b;

 b=temp;

 return temp;

 }

}

This is what is meant by keeping the scope as small as possible].

DESIGNING WITH MAINTAINABILITY IN MIND

Designing useful and concise classes promotes a high level of maintainability. Just as you design
a class with extensibility in mind, you should also design with future maintenance in mind.

The process of designing classes forces you to organize your code into many (ideally)
manageable pieces. Separate pieces of code tend to be more maintainable than larger pieces of
code (at least that’s the idea). One of the best ways to promote maintainability is to reduce
interdependent code—that is, changes in one class have no impact or minimal impact on other
classes.

Highly Coupled Classes

Classes that are highly dependent on one another are considered highly coupled. Thus, if a change made
to one class forces a change to another class, these two classes are considered highly coupled. Classes
that have no such dependencies have a very low degree of coupling. For more information on this topic,
refer to The Object Primer, by Scott Ambler.

If the classes are designed properly in the first place, any changes to the system should be made
only to the implementation of an object. Changes to the public interface should be avoided at all
costs. Any changes to the public interface will cause ripple effects throughout all the systems
that use the interface.

For example, if a change were made to the getName() method of the Cabbie class, every single
place in all systems that use this interface must be changed and recompiled. Finding all these
method calls is a daunting task, and the likelihood of missing one is pretty high.

To promote a high level of maintainability, keep the coupling level of your classes as low as
possible.

Using Iteration in the Development Process

As in most design and programming functions, using an iterative process is recommended. This
dovetails well with the concept of providing minimal interfaces. Basically, this means don’t write
all the code at once! Create the code in small increments and then build and test it at each step.
A good testing plan quickly uncovers any areas where insufficient interfaces are provided. In this
way, the process can iterate until the class has the appropriate interfaces. This testing process is
not simply confined to coding. Testing the design with walkthroughs and other design review
techniques is very helpful. Testers’ lives are more pleasant when iterative processes are used,
because they are involved in the process early and are not simply handed a system that is
thrown over the wall at the end of the development process.

Testing the Interface

The minimal implementations of the interface are often called stubs. (Gilbert and McCarty have
a good discussion on stubs in Object-Oriented Design in Java.) By using stubs, you can test the
interfaces without writing any real code. In the following example, rather than connecting to an
actual database, stubs are used to verify that the interfaces are working properly (from the user’s
perspective—remember that interfaces are meant for the user). Thus, the implementation is not
necessary at this point. In fact, it might cost valuable time and energy to complete the
implementation yet because the design of the interface will affect the implementation, and the
interface is not yet complete.

In Figure 5.6, note that when a user class sends a message to the DataBaseReader class, the
information returned to the user class is provided by code stubs and not by the actual database.
(In fact, the database most likely does not exist yet.) When the interface is complete and the
implementation is under development, the database can then be connected and the stubs
disconnected.

Figure 5.6 Using

stubs.

Here is a code example that uses an internal array to simulate a working database (albeit a
simple one):

Click here to view code image
public class DataBaseReader {

 private String db[] = { "Record1","Record2","Record3","Record4","Record5"};

 private booleanDBOpen = false;

 private int pos;

 public void open(String Name){

 DBOpen = true;

 }

 public void close(){

 DBOpen = false;

 }

 public void goToFirst(){

 pos = 0;

 }

 public void goToLast(){

 pos = 4;

 }

 public int howManyRecords(){

 int numOfRecords = 5;

 return numOfRecords;

 }

 public String getRecord(int key){

 /* DB Specific Implementation */

 return db[key];

 }

 public String getNextRecord(){

 /* DB Specific Implementation */

 return db[pos++];

 }

}

Notice how the methods simulate the database calls. The strings within the array represent the
records that will be written to the database. When the database is successfully integrated into
the system, it will be substituted for the array.

Keeping the Stubs Around

When you are done with the stubs, don't delete them. Keep them in the code for possible use later—just
make sure the users can't see them and the other team members know that they are there. In fact, in a
well-designed program, your test stubs should be integrated into the design and kept in the program for
later use. In short, design the testing right into the class! Perhaps even better, create stubs with mock
data and coded to interfaces, and then you can swap them out with the actual implementation when the
time comes.

As you find problems with the interface design, make changes and repeat the process until you
are satisfied with the result.

USING OBJECT PERSISTENCE

Object persistence is another issue that must be addressed in many OO systems. Persistenceis
the concept of maintaining the state of an object. When you run a program, if you don’t save the
object in some manner, the object dies, never to be recovered. These transient objects might
work in some applications, but in most business systems, the state of the object must be saved
for later use.

Object Persistence

Although the topic of object persistence and the topics in the next section might not be consid-ered true
design guidelines, I believe that they must be addressed when designing classes. I introduce them here to
stress that they must be addressed early on when designing classes.

In its simplest form, an object can persist by being serialized and written to a flat file. The state-
of-the-art technology is now XML-based. Although it is true that an object theoretically can
persist in memory as long as it is not destroyed, we will concentrate on storing persistent objects
on some sort of storage device. There are three primary storage devices to consider:

• Flat file system—You can store an object in a flat file by serializing the object. This is
definitely outdated. More often than not, objects are serialized to XML and/or JSON and
written to some sort of file system or data store or web endpoint. They can be put into a
database or written to disk, which is the most common practice nowadays.

• Relational database—Some sort of middleware is necessary to convert an object to
a relational model.

• NoSQL database—This may be a more efficient way to make objects persistent, but
most companies have all their data in legacy systems and at this point in time are unlikely
to convert their relational databases to OO databases. This is the most common form of a
flexible structure database. MongoDB or Cosmos DB are two of the bigger names in this
space.

Serializing and Marshaling Objects

We have already discussed the problem of using objects in environments that were originally
designed for structured programming. The middleware example, where we wrote objects to a
relational database, is one good example. We also touched on the problem of writing an object to
a flat file or sending it over a network.

To send an object over a wire (for example, to a file, over a network), the system must
deconstruct the object (flatten it out), send it over the wire, and then reconstruct it on the other
end of the wire. This process is called serializing an object. The act of sending the object across a
wire is called marshaling an object. A serialized object, in theory, can be written to a flat file and
retrieved later, in the same state in which it was written.

The major issue here is that the serialization and deserialization must use the same
specifications. It is sort of like an encryption algorithm. If one object encrypts a string, the object
that wants to decrypt it must use the same encryption algorithm. Java provides an interface
called Serializable that provides this translation.

This is another reason why data is separated from behaviors nowadays. It’s far simpler to create
an interface for a data contract and push that out to a web service than it is to make sure people
have the same code on both sides.

CONCLUSION

This chapter presents many guidelines that can help you in designing classes. This is by no
means a complete list of guidelines. You will undoubtedly come across additional guidelines as
you go about your travels in OO design.

This chapter deals with design issues as they pertain to individual classes. However, we have
already seen that a class does not live in isolation. Classes must be designed to interact with
other classes. A group of classes that interact with each other is part of a system. Ultimately,
these systems provide value to end users. Chapter 6, “Designing with Objects,” covers the topic
of designing complete systems.

REFERENCES

Ambler, Scott. 2004. The Object Primer, Third Edition. Cambridge, United Kingdom:
Cambridge University Press.

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley, CA: The
Waite Group Press.

Jaworski, Jamie. 1997. Java 1.1 Developers Guide. Indianapolis, IN: Sams Publishing.

Jaworski, Jamie. 1999. Java 2 Platform Unleashed. Indianapolis, IN: Sams Publishing.

Meyers, Scott. 2005. Effective C++, Third Edition. Boston, MA: Addison-Wesley Professional.

Tyma, Paul, Gabriel Torok, and Troy Downing. 1996. Java Primer Plus. Berkeley, CA: The
Waite Group.

6. Designing with Objects
When you use a software product, you expect it to behave as advertised. Unfortunately, not all
products live up to expectations. The problem is that when many products are produced, the
majority of time and effort go into the engineering phase and not into the design phase.

Object-oriented (OO) design has been touted as a robust and flexible software development
approach. The truth is that you can create both good and bad OO designs just as easily as you
can create both good and bad non-OO designs. Don’t be lulled into a false sense of security just
because you are using a state-of-the-art design methodology. You must pay attention to the
overall design and invest the proper amount of time and effort to create the best possible
product.

In Chapter 5, “Class Design Guidelines,” we concentrated on designing good classes. This
chapter focuses on designing good systems. A system can be defined as classes that interact with
each other. Proper design practices have evolved throughout the history of software
development, and there is no reason you should not take advantage of the blood, sweat, and
tears of your software predecessors, whether they used OO technologies or not.

Taking advantage of previous efforts is not limited to design practices; you can even incorporate
existing legacy code in your object-oriented designs. In many cases, you can take code, which
may have been working well for years, and literally wrap it in your objects. The wrapping is
discussed later in the chapter.

DESIGN GUIDELINES

One fallacy is that there is one true (best) design methodology. This is certainly not the case.
There is no right or wrong way to create a design. Many design methodologies are available
today, and they all have their proponents. However, the primary issue is not which design
method to use, but whether to use a method at all. This can be expanded beyond design to
encompass the entire software development process. Some organizations do not follow a
standard software development process, or they have one and don’t adhere to it. The most
important factor in creating a good design is to find a process that you and your organization
feel comfortable with, stick to it, and keep refining it. It makes no sense to implement a design
process that no one will follow.

Most books that deal with object-oriented technologies offer very similar strategies for designing
systems. In fact, except for some of the object-oriented specific issues involved, much of the
strategy is applicable to non-OO systems as well.

Generally, a solid OO design process includes the following steps:

1. Doing the proper analysis
2. Developing a statement of work that describes the system
3. Gathering the requirements from this statement of work
4. Developing a prototype for the user interface
5. Identifying the classes
6. Determining the responsibilities of each class
7. Determining how the various classes interact with each other
8. Creating a high-level model that describes the system to be built

For object-oriented development, the high-level system model is of special interest. The system,
or object model, is made up of class diagrams and class interactions. This model should
represent the system faithfully and be easy to understand and modify. We also need a notation
for the model. This is where the Unified Modeling Language (UML) comes in. As you know,
UML is not a design process but a modeling tool. In this book, I only use class diagrams within
UML. I like to utilize class diagrams as a visual tool to assist with the design process as well as
with documentation—even if I don’t use the other available UML tools.

The Ongoing Design Process

Despite the best intentions and planning, in all but the most trivial cases, the design is an ongoing
process. Even after a product is in testing, design changes will pop up. It is up to the project manager to
draw the line that says when to stop changing a product and adding features. I like to call this Version 1.

It is important to understand that many design methodologies are available. One early
methodology, called the waterfall model, advocates strict boundaries between the various
phases. In this case, the design phase is completed before the implementation phase, which is
completed before the testing phase, and so on. In practice, the waterfall model has been found to
be unrealistic. Currently, other design models, such as rapid prototyping, Extreme
Programming, Agile, Scrum, and so on, promote a true iterative process. In these models, some
implementation is attempted prior to completing the design phase as a type of proof-of-concept.
Despite the recent aversion to the waterfall model, the goal behind the model is understandable.
Coming up with a complete and thorough design before starting to code is a sound practice. You
do not want to be in the release phase of the product and then decide to iterate through the
design phase again. Iterating across phase boundaries is unavoidable; however, you should keep
these iterations to a minimum (see Figure 6.1).

Figure 6.1 The waterfall method.

Simply put, the reasons to identify requirements early and keep design changes to a minimum
are as follows:

• The cost of a requirement/design change in the design phase is relatively small.

• The cost of a design change in the implementation phase is significantly higher.

• The cost of a design change after the deployment phase is astronomical when
compared to the first item.

Similarly, you would not want to start the construction of your dream house before the
architectural design was complete. If I said that the Golden Gate Bridge or the Empire State
Building was constructed without any consideration of design issues, you would consider the
statement absolutely crazy. Yet, you would most likely not find it crazy if I told you that the
software you were using might contain some design flaws, and in fact, might not have been
thoroughly tested.

In reality, it might be impossible to thoroughly test software, in the sense that absolutely nobugs
exist. However, in theory, that is always the goal. We should always attempt to weed out as
many bugs as possible. Bridges and software might not be directly comparable; however,
software must strive for the same level of engineering excellence as the “harder” engineering
disciplines such as bridge building. Poor-quality software can be lethal—it’s not just wrong
numbers on payroll checks. For example, inferior software in medical equipment can kill and
maim people. Yet, you may be willing to live with having to reboot your computer every now and
then. But the same cannot be said for a bridge failing.

Safety Versus Economics

Would you want to cross a bridge that has not been inspected and tested? Unfortunately, with many
software packages, users are left with the responsibility of doing much of the testing. This is very costly
for both the users and the software providers. Unfortunately, short-term economics often seem to be the
primary factor in making project decisions.

Because customers seem to be willing to pay a limited price and put up with software of poor
quality, some software providers find that it is cheaper in the long run to let the customers test
the product rather than do it themselves. In the short term this might be true, but in the long
run it costs far more than the software provider realizes. Ultimately, the software provider’s
reputation will be damaged.

Some computer software companies are willing to use the beta test phase to let the customers do
testing—testing that should, theoretically, have been done before the beta version ever reached
the customer. Many customers are willing to take the risk of using prerelease software because
they are anxious to get the functionality the product promises. Conversely, some customers
resist new releases like the plague. If it works, don’t fix it. Upgrading can be a nightmare!

After the software is released, problems that have not been caught and fixed prior to release
become much more expensive. To illustrate, consider the dilemma automobile companies face
when they are confronted with a recall. If a defect in the automobile is identified and fixed
before it is shipped (ideally before it is manufactured), it is much cheaper than if all delivered
automobiles have to be recalled and fixed one at a time. Not only is this scenario very expensive,
but it damages the reputation of the company. In an increasingly competitive market, high-
quality software, support services, and reputation are the competitive advantage (see Figure
6.2).

Figure 6.2 The

competitive advantage.

The following sections provide brief summaries of the items listed previously as being part of the
design process. Later in the chapter, we work through an example that explains in greater detail
each of these items.

Performing the Proper Analysis

A lot of variables are involved in building a design and producing a software product. The users
must work hand in hand with the developers at all stages. In the analysis phase, the users and
the developers must do the proper research and analysis to determine the statement of work, the
requirements of the project, and whether to actually do the project. The last point might seem a
bit surprising, but it is important. During the analysis phase, there must not be any hesitation to
terminate the project if a valid reason exists to do so. Too many times, pet project status or some
political inertia keeps a project going, regardless of the obvious warning signs that cry out for
project cancellation. Assuming that the project is viable, the primary focus of the analysis phase
is for everyone to learn the systems (both the old and the proposed new one) and determine the
system requirements.

Generic Software Principles

Most of these practices are not specific to OO. They apply to software development in general.

Developing a Statement of Work

The statement of work (SOW) is a document that describes the system. Although determining
the requirements is the ultimate goal of the analysis phase, at this point the requirements are
not yet in a final format. The SOW should give anyone who reads it a complete, high level
understanding of the system. Regardless of how it is written, the SOW must represent the
complete system and be clear about how the system will look and feel.

The SOW contains everything that must be known about the system. Many customers create
a request for proposal (RFP) for distribution, which is similar to the statement of work. A
customer creates an RFP that completely describes the system the customer wants built and
releases it to multiple vendors. The vendors then use this document, along with whatever

analysis they need to do, to determine whether they should bid on the project, and if so, what
price to charge.

Gathering the Requirements

The requirements document describes what the users want the system to do. Even though the
level of detail of the requirements document does not need to be of a highly technical nature, the
requirements must be specific enough to represent the true nature of the user’s needs for the
end product. The requirements document must be of sufficient detail for the user to make
educated judgments about the completeness of the system. It must also be of specific detail for a
design group to use the document to proceed with the design phase.

Whereas the SOW is a document written in paragraph (even narrative) form, the requirements
are usually represented as a summary statement or presented as bulleted items. Each individual
bulleted item represents one specific requirement of the system. The requirements are distilled
from the statement of work. This process is shown later in the chapter.

In many ways, these requirements are the most important part of the system. The SOW might
contain irrelevant material; however, the requirements are the final representation of the
system that must be implemented. All future documents in the software development process
will be based on the requirements.

Developing a System Prototype

One of the best ways to make sure users and developers understand the system is to create
a prototype. A prototype can be just about anything; however, most people consider the
prototype to be a simulated user interface. By creating actual screens and screen flows, it is
easier for people to get an idea of what they will be working with and what the system will feel
like. In any event, a prototype will almost certainly not contain all the functionality of the final
system.

Most prototypes are created with an integrated development environment (IDE). However, in
some basic cases, drawing the screens on a whiteboard or even on paper might be all that is
needed. Remember that you are not necessarily creating business logic (the logic/code behind
the interface that actually does the work) when you build the prototype, although it is possible to
do so. The look and feel of the user interface is a major concern at this point. Having a good
prototype can help immensely when identifying classes.

Identifying the Classes

After the requirements are documented, the process of identifying classes can begin. From the
requirements, one straightforward way of identifying classes is to highlight all the nouns. These
tend to represent objects, such as people, places, and things. Don’t be too fussy about getting all
the classes right the first time. You might end up eliminating classes, adding classes, and
changing classes at various stages throughout the design. It is important to get something down
first. Take advantage of the fact that the design is an iterative process. As in other forms of
brainstorming, get something down initially, with the understanding that the final result might
look nothing like the initial pass.

Determining the Responsibilities of Each Class
You need to determine the responsibilities of each class you have identified. This includes the
data that the class must store and what operations the class must perform. For example,
an Employee object would be responsible for calculating payroll and transferring the money to

the appropriate account. It might also be responsible for storing the various payroll rates and
the account numbers of various banks.

Determining How the Classes Collaborate with Each Other

Most classes do not exist in isolation. Although a class must fulfill certain responsibilities, many
times it will have to interact with another class to get something it wants. This is where the
messages between classes apply. One class can send a message to another class when it needs
information from that class, or if it wants the other class to do something for it.

Creating a Class Model to Describe the System

When all the classes are determined and the class responsibilities and collaborations are listed, a
class model that represents the complete system can be constructed. The class model shows how
the various classes interact within the system.

In this book, we are using UML to model the system. Several tools on the market use UML and
provide a good environment for creating and maintaining UML class models. As we develop the
example in the next section, we will see how the class diagrams fit into the big picture and how
modeling large systems would be virtually impossible without some sort of good modeling
notation and modeling tool.

Prototyping the User Interface in Code

During the design process, we must create a prototype of our user interface. This prototype will
provide invaluable information to help navigate through the iterations of the design process. As
Gilbert and McCarty in Object-Oriented Design in Java aptly point out, “to a system user, the
user interface is the system.” There are several ways to create a user interface prototype. You can
sketch the user interface by drawing it on paper or a whiteboard. You also can use a special
prototyping tool, or even a language environment like Visual Basic, which is often used for rapid
prototyping. Or you can use the IDE from your favorite development tool to create the
prototype. However, at this point they are basically facades; the business logic is not necessarily
in place.

However you develop the user interface prototype, make sure that the users have the final say on
the look and feel.

OBJECT WRAPPERS

Several times in the previous chapters I have indicated that one of my primary goals in this book
is to dispel the fallacy that object-oriented programming is a separate paradigm from structured
programming, and is even at odds with it. In fact, as I have already mentioned, I am often asked
the following question: “Are you an object-oriented programmer or a structured programmer?”
The answer is always the same—I am both!

In my mind, there is no way to write a program without using structures. Thus, when you write a
program that uses an object-oriented programming language and are using sound object-
oriented design techniques, you are also using structured programming techniques. There is no
way around this.

For example, when you create a new object that contains attributes and methods, those methods
will include structured code. In fact, I might even say that these methods will
contain mostly structured code. This approach fits in well with the container concept that we

have encountered in earlier chapters. In fact, when I get to the point where I am coding at the
method level, my coding thought process hasn’t changed much since when I was programming
in structured languages, such as Cobol, C, and the like. This is not to say that it is exactly the
same, because I obviously have had to adjust to some object-oriented constructs; however, the
fundamental approach to coding at the method level is virtually the same as programming has
always been.

Now I’ll return to the question “Are you an object-oriented programmer or a structured
programmer?” I often like to say that programming is programming. By this I contend that
being a good programmer means understanding the basics of programming logic and having a
passion for coding. Often you will see ads for a programmer with a specific skill set—let’s say a
specific language like Java.

Although I totally understand that an organization may well need an experienced Java
programmer in a pinch, over the long run I would prefer to focus on hiring a programmer who
has a wide range of programming experience and who can learn and adjust quickly when new
technologies emerge. Some of my colleagues do not always agree with this; however, I believe
that when hiring, I look more at what a potential employee can learn than what they already
know. The passion part is critical because it ensures that an employee will always be exploring
new technologies and development methodologies.

Structured Code

Although the basics of programming logic may be debated, as I have stressed, the fundamental
object-oriented constructs are encapsulation, inheritance, polymorphism, and composition. In
most textbooks that I have seen, the basic constructs of structured programming
are sequence, conditions, and iterations.

The sequence part is a given, because it seems logical to start at the top and proceed in a logical
manner to the bottom. For me, the meat of structured programming resides in the conditions
and iterations, which I call if-statements and loops, respectively.

Take a look at the following Java code that starts at 0 and loops 10 times, printing out the value
if it equals 5:

Click here to view code image
class MainApplication {

 public static void main(String args[]) {

 int x = 0;

 while (x <= 10) {

 if (x==5) System.out.println("x = " + x);

 x++;

 }

 }

}

Now while this code is written in an object-oriented language, the code that resides inside the
main method is structured code. All three basics of structured programming are
present: sequence, conditions, and iterations.

The sequence part is easy to identify because the first line executed is

int x = 0;

When that line completes, the next line is executed:

while (x <= 10) {

And so on. In short, this is tried and true top-down programming: start at the first line, execute
it, and then go on to the next.

There is also a condition present in this code as part of the if-statement:

if (x==5)

Finally, there is a loop to complete the structured trio.

while (x <= 10) {

}

Actually, the while loop also contains a condition:

(x <= 10)

You can pretty much code anything with just these three constructs. In fact, the concept of the
wrapper is basically the same for structured programming as it is for object-oriented
programming. In structured design you wrap the code in functions (such as the main method in
this example), and in object-oriented design you wrap the code in objects and methods.

Wrapping Structured Code

Although defining attributes is considered coding (for example, creating an integer), the
behavior of an object resides in the methods. And these methods are where the bulk of the code
logic is found.

Consider Figure 6.3. As you can see, an object contains methods, and these methods contain
code, which can be anything from variable declarations to conditions to loops.

Figure 6.3 Wrapping structured code.

Let’s consider a simple example in which we are wrapping the functionality for addition. Here
we create a method named add, which accepts two integer parameters and returns their sum.
class SomeMath {

 public int add(int a, int b) {

 return a + b;

 }

}

As you can see, the structured code used to perform the addition (a + b) is wrapped inside
the add method. Although this is a trivial example, that is all there is to wrapping structured
code. Thus, when the user wants to use this method, all that is needed is the signature of the
method as seen next:

Click here to view code image
public class TestMath {

 public static void main(String[] args) {

 int x = 0;

 SomeMath math = new SomeMath();

 x = math.add(1,2);

 System.out.println("x = " + x);

 }

}

Finally, we can add some more functionality that is a bit more interesting and complicated.
Suppose that we wanted to include a method to calculate the Fibonacci value of a number. We
can then add a method like this:
public static int fib(int n) {

 if (n < 2) {

 return n;

 } else {

 return fib(n–1)+fib(n–2);

 }

}

The whole point here is to show that we have an object-oriented method that contains (wraps)
structured code, because the fib method contains conditions, recursion, and so on. And as
mentioned in the introduction, it is possible to incorporate existing legacy code in wrappers as
well.

Wrapping Nonportable Code

One other use of object wrappers is for the hiding of nonportable (or native) code. The concept
is essentially the same; however, in this case the point is to take code that can be executed on
only one platform (or a few platforms) and encapsulate it in a method providing a simple
interface for the programmers using the code.

Consider the task of making the computer make a noise—in this case, a beep. On a Windows
platform we can execute a beep with the following code:

System.out.println("\007");

Rather than making the programmer memorize the code (or look it up), you can provide a class
called Sound that contains a method called beep as shown next:
class Sound {

 public void beep() {

 System.out.println("\007");

 }

}

Now, rather than having to know the code for making the sound, the programmer can use the
class and call the beep method:

Click here to view code image
public class TestBeep {

 public static void main(String[] args) {

 Sound mySound = new Sound();

 mySound.beep();

 }

}

Not only is this simpler for the programmer to use, but you can extend the functionality of the
class to include other sounds. Perhaps more importantly, when the code is used on a non-
Windows platform, the interface for the user remains the same. In short, the team that builds
the code for the Sound class will have to deal with the change in platform. For the programmers
who utilize the class in their applications, the change will be seamless because they will still call
the beep method.

Wrapping Existing Classes

Although the need to wrap legacy structured code, or even nonportable code, into a new (object-
oriented) class may seem reasonable, the need to wrap existing classes might not seem so
obvious. However, there are also many reasons to create wrappers for existing (object-oriented)
classes.

Software developers often utilize code written by someone else. Perhaps the code was purchased
from a vendor or even written internally within the same organization. In many of these cases,
the code cannot be changed. Perhaps the individual who wrote the code is no longer with the
organization, or the vendor cannot perform maintenance updates, and so on. This is where the
true power of wrappers emerges.

The idea is to take an existing class and alter its implementation or interface by wrapping it
inside a new class—just like we did for the structured code and nonportable code. The difference
in this case is that, rather than putting an object-oriented face to the code, we are altering its
implementation or interface.

Why would we want to do this? Well, the answer lies with both the implementation and the
interface.

Consider the database example that we used in Chapter 2, “How to Think in Terms of Objects.”
Our goal was to provide the same interface for the developers regardless of which database they
were using. In fact, if we need to support another database, our goal would remain the same—to
make the transition to the new database transparent to the user (see Figure 2.3 as shown
in Chapter 2).

Also, remember our earlier discussion about creating middleware to provide an interface
between objects and relational databases. As developers, we want to use objects. Thus, we want
functionality that will allow us to persist objects to a database. What we don’t want to have to do
is write SQL code for every single object transaction performed to a relational database. This is
where we can consider middleware to be a wrapper, and many object-relational mapping
products are available.

Conceptually, for me, the ultimate example of the interface and implementation paradigm is the
discussion that we had regarding the power plant example in Chapter 2 and shown in Figure 2.1.
In this case we can swap out (wrap) both: We can alter the interface by changing the outlet, and
we can alter the implementation by changing the power generation facility.

The use of wrappers in software development is fairly extensive, not only from a developer’s
perspective but also from a vendor’s. Wrappers are an important tool when developing software
systems.

In this chapter, we have focused on various design considerations, including writing new code as
well as utilizing previously written code, whether in house or from vendors. In some cases,
wrappers are even design paradigms unto themselves. Design patterns, for example, utilize
wrappers in various cases. As we will see later, the Decorator pattern focuses on wrapping the
implementation, whereas the Adaptor pattern focuses on altering the interface. The discussion
of design patterns is explored in more detail in Chapter 10, “Design Patterns.”

CONCLUSION

This chapter covers the design process for complete systems. It is important to note that object-
oriented and structured code are not mutually exclusive. In fact, you can’t create objects without
using structured code. Thus, while building object-oriented systems, you are also using
structured techniques in the design.

Object wrappers are used to encapsulate many types of functionality, which can range from
traditional structured (legacy) and object-oriented (classes) code to nonportable (native) code.
The primary purpose of object wrappers is to provide consistent interfaces for the programmers
who are using the code.

In the next several chapters, we explore in more detail the relationships between
classes. Chapter 7, “Mastering Inheritance and Composition,” covers the concepts of inheritance
and composition and how they relate to each other.

REFERENCES

Ambler, Scott. 2004. The Object Primer, Third Edition. Cambridge, United Kingdom:
Cambridge University Press.

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley, CA: The
Waite Group Press.

Jaworski, Jamie. 1999. Java 2 Platform Unleashed. Indianapolis, IN: Sams Publishing.

Jaworski, Jamie. 1997. Java 1.1 Developers Guide. Indianapolis, IN: Sams Publishing.

McConnell, Steve. 2004. Code Complete: A Practical Handbook of Software Construction,
Second Edition. Redmond, WA: Microsoft Press.

Weisfeld, Matt, and John Ciccozzi. September, 1999. “Software by Committee,” Project
Management Journal v5, number 1: 30–36.

Wirfs-Brock, R., B. Wilkerson, and L. Weiner. 1990. Designing Object-Oriented Software.
Upper Saddle River, NJ: Prentice-Hall.

7. Mastering Inheritance and Composition
Inheritance and composition play major roles in the design of object-oriented (OO) systems. In
fact, many of the most difficult and interesting design decisions come down to deciding between
inheritance and composition.

These decisions have become much more interesting over the years as object-oriented design
practices have evolved. Perhaps one of the most interesting debates revolves around inheritance.
Although inheritance is one of the fundamental constructs of object-oriented development (a
language must support inheritance to be considered object-oriented), some developers are even
turning away from inheritance by implementing designs solely with composition.

It is common to use interface inheritance rather than direct inheritance for behaviors
(implementing versus inheriting). Inheritance tends to be used often for data/models whereas
implementation tends to be used for behaviors.

Regardless, both inheritance and composition are mechanisms for reuse. Inheritance, as its
name implies, involves inheriting attributes and behaviors from other classes, where there is a
true parent/child relationship. The child (or subclass) inherits directly from the parent (or
superclass).

Composition, also as its name implies, involves building objects by using other objects. In this
chapter we explore the obvious and subtle differences between inheritance and composition.
Primarily, we will consider the appropriate times to use one or the other.

REUSING OBJECTS

Perhaps the primary reason why inheritance and composition exist is object reuse. In short, you
can build classes (which ultimately become objects) by utilizing other classes via inheritance and
composition, which in effect are the only ways to reuse previously built classes.

Inheritance represents the is-a relationship that was introduced in Chapter 1, “Introduction to
Object-Oriented Concepts.” For example, a dog is a mammal.

Composition involves using other classes to build more complex classes—a sort of assembly. No
parent/child relationship exists in this case. Basically, complex objects are composed of other
objects. Composition represents a has-a relationship. For example, a car has an engine. Both the
engine and the car are separate, potentially standalone objects. However, the car is a complex
object that contains (has an) engine object. In fact, a child object might itself be composed of
other objects; for example, the engine might include cylinders. In this case an engine has
a cylinder, actually several.

When OO technologies first entered the mainstream, inheritance was often the first example
used in how to design an OO system. That you could design a class once and then inherit
functionality from it was considered one of the foremost advantages to using OO technologies.
Reuse was the name of the game, and inheritance was the ultimate expression of reuse.

However, over time the luster of inheritance has dulled a bit. In fact, in some discussions, the
use of inheritance itself is questioned. In their book Java Design, Peter Coad and Mark Mayfield
have a complete chapter titled “Design with Composition Rather Than Inheritance.” Many early
object-based platforms did not even support true inheritance. As Visual Basic evolved into
Visual Basic .NET, early object-based implementations did not include strict inheritance

capabilities. Platforms such as the MS COM model were based on interface inheritance.
Interface inheritance is covered in great detail in Chapter 8, “Frameworks and Reuse: Designing
with Interfaces and Abstract Classes.”

Today, the use of inheritance is still a major topic of debate. Abstract classes, which are a form of
inheritance, are not directly supported in some languages, such as Objective-C and Swift.
Interfaces are used even though they don’t provide all the functionality that abstract classes do.

The good news is that the discussions about whether to use inheritance or composition are a
natural progression toward some seasoned middle ground. As in all philosophical debates, there
are passionate arguments on both sides. Fortunately, as is normally the case, these heated
discussions have led to a more sensible understanding of how to utilize the technologies.

We will see later in this chapter why some people believe that inheritance should be avoided,
and composition should be the design method of choice. The argument is fairly complex and
subtle. In actuality, both inheritance and composition are valid class design techniques, and
they each have a proper place in the OO developer’s toolkit. And, at least, you need to
understand both to make the proper design choice—not to mention maintenance of legacy code.

The fact that inheritance is often misused and overused is more a result of a lack of
understanding of what inheritance is all about than a fundamental flaw in using inheritance as a
design strategy.

The bottom line is that inheritance and composition are both important techniques in building
OO systems. Designers and developers need to take the time to understand the strengths and
weaknesses of both and to use each in the proper contexts.

INHERITANCE

Inheritance was defined in Chapter 1 as a system in which child classes inherit attributes and
behaviors from a parent class. However, there is more to inheritance, and in this chapter we
explore inheritance in greater detail.

Chapter 1 states that you can determine an inheritance relationship by following a simple rule: If
you can say that Class B is a Class A, then this relationship is a good candidate for inheritance.

Is-a

One of the primary rules of OO design is that public inheritance is represented by an is-a relationship. In
the case of interfaces you might add “behaves like” (implements). The data (attributes) that are inherited
are the “is,” the interfaces describing encapsulated behaviors are “acts like,” and composition is “has a.”
The lines get pretty blurry, however.

Let’s revisit the mammal example used in Chapter 1. Let’s consider a Dog class. A dog has several
behaviors that make it distinctly a dog, as opposed to a cat. For this example, let’s specify two: A
dog barks and a dog pants. So we can create a Dog class that has these two behaviors, along with
two attributes (see Figure 7.1).

Figure 7.1 A class diagram for the Dog class.

Now let’s say that you want to create a GoldenRetriever class. You could create a brand-new
class that contains the same behaviors that the Dog class has. However, we could make the
following, and quite reasonable, conclusion: A Golden Retriever is-a dog. Because of this
relationship, we can inherit the attributes and behaviors from Dog and use it in our
new GoldenRetriever class (see Figure 7.2).

Figure 7.2 The GoldenRetriever class inherits from the Dog class.

The GoldenRetriever class now contains its own behaviors as well as all the more general
behaviors of a dog. This provides us with some significant benefits. First, when we wrote
the GoldenRetriever class, we did not have to reinvent part of the wheel by rewriting
the bark and pant methods. Not only does this save some design and coding time, but it saves
testing and maintenance time as well. The bark and pant methods are written only once and,
assuming that they were properly tested when the Dog class was written, they do not need to be
heavily tested again; but it does need to be retested because there are new interfaces, and so on.
Now let’s take full advantage of our inheritance structure and create a second class under
the Dog class: a class called LhasaApso. Whereas retrievers were bred for retrieving, Lhasa Apsos
were bred for use as guard dogs. These dogs are not attack dogs; they have acute senses, and
when they sense something unusual, they start barking. So we can create our LhasaApso class
and inherit from the Dog class just as we did with the GoldenRetrieverclass (see Figure 7.3).

Figure 7.3 The LhasaApso class inherits from

the Dog class.

Testing New Code

In our example with the GoldenRetriever class, the bark and pant methods should be writ-ten, tested,
and debugged when the Dog class is written. Theoretically, this code is now robust and ready to reuse in
other situations. However, the fact that you do not need to rewrite the codedoes not mean it should not
be tested. However unlikely, there might be some specific characteristic of a retriever that somehow
breaks the code. The bottom line is that you should always test new code. Each new inheritance
relationship creates a new context for using inher-ited methods. A complete testing strategy should take
into account each of these contexts.

Another primary advantage of inheritance is that the code for bark() and pant() is in a single
place. Let’s say there is a need to change the code in the bark() method. When you change it in
the Dog class, you do not need to change it in the LhasaApso class and the GoldenRetriever class.
Do you see a problem here? At this level the inheritance model appears to work very well.
However, can you be certain that all dogs have the behavior contained in the Dog class?
In his book Effective C++, Scott Meyers gives a great example of a dilemma with design using
inheritance. Consider a class for a bird. One of the most recognizable characteristics of a bird is,
of course, that it can fly. So we create a class called Bird with a fly method. You should
immediately understand the problem. What do we do with a penguin, or an ostrich? They are
birds, yet they can’t fly. You could override the behavior locally, but the method would still be
called fly. And it would not make sense to have a method called fly for a bird that does not fly
but only waddles, runs, or swims. This is an example of the Liskov Substitution Principle of
SOLID, which we discuss in Chapter 12, “The SOLID Principles of Object-Oriented Design.”
This leads to some potentially significant problems. For example, if a penguin has a flymethod,
the penguin might understandably decide to test it out. However, if the fly method was in fact
overridden and the behavior to fly did not exist, the penguin would be in for a major surprise
when the fly method is invoked after jumping over a cliff. Imagine the penguin’s chagrin when
the call to the fly method results in waddling instead of flight (or even a no-op, which means no
operation, where nothing happens at all). In this situation, waddling doesn’t cut it. Just imagine
if code such as this ever found its way into a spacecraft’s guidance system.
In our dog example, we have designed the class so that all dogs have the ability to bark.
However, some dogs do not bark. The Basenji breed is a barkless dog. Although these dogs do
not bark, they do yodel. So should we reevaluate our design? What would this design look

like? Figure 7.4 is an example that shows a more correct way to model the hierarchy of
the Dog class.

Figure

7.4 The Dog class hierarchy.

Generalization and Specialization
Consider the object model of the Dog class hierarchy. We started with a single class, called Dog,
and we factored out some of the commonality between various breeds of dogs. This concept,
sometimes called generalization-specialization, is yet another important consideration when
using inheritance. The idea is that as you make your way down the inheritance tree, things get
more specific. The most general case is at the top of the tree. In our Dog inheritance tree, the
class Dog is at the top and is the most general category. The various breeds—
the GoldenRetriever, LhasaApso, and Basenji classes—are the most specific. The idea of
inheritance is to go from the general to the specific by factoring out commonality.
In the Dog inheritance model, we started factoring out common behavior by understanding that
although a retriever has some different behavior from that of a LhasaApso, the breeds do share
some common behaviors—for example, they both pant and bark. Then we realized that all dogs
do not bark—some yodel. Thus, we had to factor out the barking behavior into a
separate BarkingDog class. The yodeling behavior went into a YodelingDog class. However, we
realized that both barking dogs and barkless dogs still shared some common behavior—all dogs
pant. Thus, we kept the Dog class and had the BarkingDog and the YodelingDog classes inherit
from Dog. Now Basenji can inherit from YodelingDog, and LhasaApso and GoldenRetriever can
inherit from BarkingDog.
We could have decided not to create two distinct classes for BarkingDog and YodelingDog. In this
case we could implement all barking and yodeling as part of each individual breed’s class—since
each dog would sound differently. This is just one example of some of the design decisions that
have to be made. Perhaps the best solution is to implement the barking and yodeling as
interfaces, which we discuss in Chapter 8.

A design pattern, which is covered in Chapter 10, “Design Patterns,” might be a good option in
this case. A developer might not typically create these variations of Dog; they would either use
a Dog (which implements IDog) or use a decorator to add behaviors to a Dog object.

Design Decisions

In theory, factoring out as much commonality as possible is great. However, as in all design
issues, sometimes it really is too much of a good thing. Although factoring out as much
commonality as possible might represent real life as closely as possible, it might not represent
your model as closely as possible. The more you factor out, the more complex your system gets.
So you have a conundrum: Do you want to live with a more accurate model or a system with less
complexity? You must make this choice based on your situation, for there are no hard guidelines
to make the decision.

What Computers Are Not Good At

Obviously, a computer model can only approximate real-world situations. Computers are good at
number crunching but are not as good at more abstract operations.

For example, breaking up the Dog class into BarkingDog and the YodelingDog models real life
better than assuming that all dogs bark, but it does add a bit of complexity.

Model Complexity

At this level of our example, adding two more classes does not make things so complex that it makes the
model untenable. However, in larger systems, when these kinds of decisions are made over and over, the
complexity quickly adds up. In larger systems, keeping things as simple as possible is usually the best
practice.

There will be instances in your design when the advantage of a more accurate model does not
warrant the additional complexity. Let’s assume that you are a dog breeder and that you
contract out for a system that tracks all your dogs. The system model that includes barking dogs
and yodeling dogs works fine. However, suppose that you do not breed any yodeling dogs—
never have and never will. Perhaps you do not need to include the complexity of differentiating
between yodeling dogs and barking dogs. This will make your system less complex, and it will
provide the functionality that you need.

Deciding whether to design for less complexity or more functionality is a balancing act. The
primary goal is always to build a system that is flexible without adding so much complexity that
the system collapses under its own weight. What happens if you need to add yodeling at a later
point in the project?

Current and future costs are also a major factor in these decisions. Although it might seem
appropriate to make a system more complete and flexible, this added functionality might barely
add any benefit—the return on investment might not be there. For example, would you extend
the design of your Dog system to include other canines, such as hyenas and foxes (see Figure
7.5)?

Figure 7.5 An expanded canine model.

Although this design might be prudent if you were a zookeeper, the extension of the Canineclass
is probably not necessary if you are breeding and selling domesticated dogs.

So as you can see, there are always trade-offs when creating a design.

Making Design Decisions with the Future in Mind

You might at this point say, “Never say never.” Although you might not breed yodeling dogs now,
sometime in the future you might want to do so. If you do not design for the possibility of yodeling dogs
now, it will be much more expensive to change the system later to include them. This is yet another of the
many design decisions that you have to make. You could possibly override the bark() method to make it
yodel; however, this is not intuitive, and some people will expect a method called bark() to actually bark.

COMPOSITION

It is natural to think of objects as containing other objects. A television set contains a tuner and
video display. A computer contains video cards, keyboards, and drives. The computer can be
considered an object unto itself, and a flash drive is also considered a valid object. You could
open up the computer and remove the hard drive and hold it in your hand. In fact, you could
take the hard drive to another computer and install it. The fact that it is a standalone object is
reinforced because it works in multiple computers.

The classic example of object composition is the automobile. Many books, training classes, and
articles seem to use the automobile as the classic example of object composition. Besides the
original interchangeable manufacture of the rifle, most people think of the automobile assembly
line created by Henry Ford as the quintessential example of interchangeable parts. Thus, it
seems natural that the automobile has become a primary reference point for designing OO
software systems.

Most people would think it natural for a car to contain an engine. However, a car contains many
objects besides an engine, including wheels, a steering wheel, and a stereo. Whenever a
particular object is composed of other objects, and those objects are included as object fields, the
new object is known as a compound, an aggregate, or a composite object (see Figure 7.6).

Figure 7.6 An example of

composition.

Aggregation, Association, and Composition

From my perspective, there are only two ways to reuse classes—with inheritance or with composition.
In Chapter 9, “Building Objects and Object-Oriented Design,” we discuss composition in more detail—
specifically, aggregation and association. In this book, I consider aggregation and association to be types
of composition, although there are varied opinions on this.

Representing Composition with UML

To model the fact that the car object contains a steering wheel object, UML uses the notation
shown in Figure 7.7.

Figure 7.7 Representing composition in UML.

Aggregation, Association, and UML

In this book, aggregations are represented in UML by lines with a diamond, such as an engine as part of a
car. Associations are represented by just the line (no diamond), such as a standalone keyboard servicing
a separate computer box.

Note that the line connecting the Car class to the SteeringWheel class has a diamond shape on
the Car side of the line. This signifies that a Car contains (has-a) SteeringWheel.

Let’s expand this example. Suppose that none of the objects in this design use inheritance in any
way. All the object relationships are strictly composition, and there are multiple levels of
composition. Of course, this is a simplistic example, and there are many, many more object and
object relationships in designing a car. However, this design is meant to be a simple illustration
of what composition is all about.

Let’s say that a car is composed of an engine, a stereo system, and a door.

How Many Doors and Stereos?

Note that a car normally has more than one door. Some have two, and some have four. You might even
consider a hatchback a fifth door. In the same vein, it is not necessarily true that all cars have a stereo
system. A car could have no stereo system or it could have one. I have even seen a car with two separate
stereo systems. These situations are discussed in detail in Chapter 9. For the sake of this example, just
pretend that a car has only a single door (perhaps it's a special racing car) and a single stereo system.

That a car is made up of an engine, a stereo system, and a door is easy to understand because
most people think of cars in this way. However, it is important to keep in mind when
designing software systems, just like automobiles, that objects are made up of other objects. In
fact, the number of nodes and branches that can be included in this tree structure of classes is
virtually unlimited.

Figure 7.8 shows the object model for the car, with the engine, stereo system, and door included.

Figure

7.8 The Car class hierarchy.

Note that all three objects that make up a car are themselves composed of other objects. The
engine contains pistons and spark plugs. The stereo contains a radio and a CD player. The door
contains a handle. Also note that there is yet another level. The radio contains a tuner. We could
have also added the fact that a handle contains a lock; the CD player contains a fast forward
button, and so on. Additionally, we could have gone one level beyond the tuner and created an
object for a dial. The level and complexity of the object model is up to the designer.

Model Complexity

As with the inheritance problem of the barking and yodeling dogs, using too much composition can also
lead to more complexity. A fine line exists between creating an object model that contains enough
granularity to be sufficiently expressive and a model that is so granular that it is difficult to understand
and maintain.

WHY ENCAPSULATION IS FUNDAMENTAL TO OO

Encapsulation is the fundamental concept of OO. Whenever the interface/implementation
paradigm is covered, we are talking about encapsulation. The basic question is what in a class
should be exposed and what should not be exposed. This encapsulation pertains equally to data

and behavior. When talking about a class, the primary design decision revolves around
encapsulating both the data and the behavior into a well-written class.

Stephen Gilbert and Bill McCarty define encapsulation as “the process of packaging your
program, dividing each of its classes into two distinct parts: the interface and the
implementation.” This is the message that has been presented over and over in this book.

But what does encapsulation have to do with inheritance, and how does it apply with regard to
this chapter? This has to do with an OO paradox. Encapsulation is so fundamental to OO that it
is one of OO design’s cardinal rules. Inheritance is also considered one of the three primary OO
concepts. However, in one way, inheritance actually breaks encapsulation! How can this be? Is it
possible that two of the three primary concepts of OO are incompatible with each other? Let’s
explore this possibility.

How Inheritance Weakens Encapsulation

As already stated, encapsulation is the process of packaging classes into the public interface and
the private implementation. In essence, a class hides everything that is not necessary for other
classes to know about.

Peter Coad and Mark Mayfield make a case that when using inheritance, encapsulation is
inherently weakened within a class hierarchy. They talk about a specific risk: Inheritance
connotes strong encapsulation with other classes but weak encapsulation between a superclass
and its subclasses.

The problem is that if you inherit an implementation from a superclass and then change that
implementation, the change from the superclass ripples through the class hierarchy. This
rippling effect potentially affects all the subclasses. At first, this might not seem like a major
problem; however, as we have seen, a rippling effect such as this can cause unanticipated
problems. For example, testing can become a nightmare. In Chapter 6, “Designing with
Objects,” we talked about how encapsulation makes testing systems easier. In theory, if you
create a class called Cabbie (see Figure 7.9) with the appropriate public interfaces, any change to
the implementation of Cabbie should be transparent to all other classes. However, in any design
a change to a superclass is certainly not transparent to a subclass. Do you see the conundrum?

Figure 7.9 A UML diagram of the Cabbie class.

If the other classes were directly dependent on the implementation of the Cabbie class, testing
would become more difficult, if not untenable. By using a different design approach, by
abstracting out the behaviors and inheriting only attributes, these issues noted above go away.

If you then create a subclass of Cabbie called PartTimeCabbie, and PartTimeCabbieinherits the
implementation from Cabbie, changing the implementation of Cabbie directly affects
the PartTimeCabbie class.
For example, consider the UML diagram in Figure 7.10. PartTimeCabbie is a subclass of Cabbie.
Thus, PartTimeCabbie inherits the public implementation of Cabbie, including the
method giveDirections(). If the method giveDirections()is changed in Cabbie, it will have a
direct impact on PartTimeCabbie and any other classes that might later be subclasses of Cabbie.
In this subtle way, changes to the implementation of Cabbie are not necessarily encapsulated
within the Cabbie class.

Figure 7.10 A UML diagram of the Cabbie/PartTimeCabbie classes.

To reduce the risk posed by this dilemma, it is important that you stick to the strict is-a
condition when using inheritance. If the subclass were truly a specialization of the superclass,
changes to the parent would likely affect the child in ways that are natural and expected. To
illustrate, if a Circle class inherits implementation from a Shape class, and a change to the
implementation of Shape breaks Circle, then Circle was not truly a Shape to begin with.

How can inheritance be used improperly? Consider a situation in which you want to create a
window for the purposes of a graphical user interface (GUI). One impulse might be to create a
window by making it a subclass of a rectangle class:

public class Rectangle {

}

public class Window extends Rectangle {

}

In reality a GUI window is much, much more than a rectangle. It is not a specialized version of a
rectangle, as is a square. A true window might contain a rectangle (in fact, many rectangles);

however, it is not a true rectangle. In this approach, a Window class should not inherit
from Rectangle, but it should contain Rectangle classes.
public class Window {

 Rectangle menubar;

 Rectangle statusbar;

 Rectangle mainview;

}

A Detailed Example of Polymorphism

Many people consider polymorphism a cornerstone of OO design. Designing a class for the
purpose of creating totally independent objects is what OO is all about. In a well-designed
system, an object should be able to answer all the important questions about it. As a rule, an
object should be responsible for itself. This independence is one of the primary mechanisms of
code reuse.

As stated in Chapter 1, polymorphism literally means many shapes. When a message is sent to
an object, the object must have a method defined to respond to that message. In an inheritance
hierarchy, all subclasses inherit the interfaces from their superclass. However, because each
subclass is a separate entity, each might require a separate response to the same message.

To review the example in Chapter 1, consider a class called Shape. This class has a behavior
called Draw. However, when you tell somebody to draw a shape, the first question is likely to be,
“What shape?” Simply telling a person to draw a shape is too abstract (in fact, the Drawmethod
in Shape contains no implementation). You must specify which shape you mean. To do this, you
provide the actual implementation in Circle and other subclasses. Even though Shape has
a Draw method, Circle overrides this method and provides its own Drawmethod. Overriding
basically means replacing an implementation of a parent with your own.

Object Responsibility
Let’s revisit the Shape example from Chapter 1 (see Figure 7.11).

Figure 7.11 The Shape class hierarchy.

Polymorphism is one of the most elegant uses of inheritance. Remember that a Shape cannot be
instantiated. It is an abstract class because it has an abstract method, getArea(). Chapter
8 explains abstract classes in great detail.

However, Rectangle and Circle can be instantiated because they are concrete classes.
Although Rectangle and Circle are both shapes, they have some differences. As shapes, their
area can be calculated. Yet the formula to calculate the area is different for each. Thus, the area
formulas cannot be placed in the Shape class.
This is where polymorphism comes in. The premise of polymorphism is that you can send
messages to various objects, and they will respond according to their object’s type. For example,
if you send the message getArea() to a Circle class, you will invoke a different calculation than
if you send the same getArea() message to a Rectangle class. This is because
both Circle and Rectangle are responsible for themselves. If you ask Circle to return its area, it
knows how to do this. If you want a circle to draw itself, it can do this as well. A Shape object
could not do this even if it could be instantiated because it does not have enough information
about itself. Notice that in the UML diagram (Figure 7.11), the getArea() method in
the Shape class is italicized. This designates that the method is abstract.
As a very simple example, imagine that there are four classes: the abstract class Shape, and
concrete classes Circle, Rectangle, and Star. Here is the code:

Click here to view code image
public abstract class Shape{

 public abstract void draw();

}

public class Circle extends Shape{

 public void draw() {

 System.out.println("I am drawing a Circle");

 }

}

public class Rectangle extends Shape{

 public void draw() {

 System.out.println("I am drawing a Rectangle");

 }

}

public class Star extends Shape{

 public void draw() {

 System.out.println("I am drawing a Star");

 }

}

Notice that only one method exists for each class: draw(). Here is the important point regarding
polymorphism and an object being responsible for itself: The concrete classes themselves have
responsibility for the drawing function. The Shape class does not provide the code for drawing;
the Circle, Rectangle, and Star classes do this for themselves. Here is some code to prove it:

Click here to view code image
public class TestShape {

 public static void main(String args[]) {

 Circle circle = new Circle();

 Rectangle rectangle = new Rectangle();

 Star star = new Star();

 circle.draw();

 rectangle.draw();

 star.draw();

 }

}

The test application TestShape creates three classes: Circle, Rectangle, and Star. To draw these
classes, TestShape asks the individual classes to draw themselves:
circle.draw();

rectangle.draw();

star.draw();

When you execute TestShape, you get the following results:
C:\>java TestShape

I am drawing a Circle

I am drawing a Rectangle

I am drawing a Star

This is polymorphism at work. What would happen if you wanted to create a new shape, such
as Triangle? Simply write the class, compile it, test it, and use it. The base class Shapedoes not
have to change—nor does any other code:

Click here to view code image
public class Triangle extends Shape{

 public void draw() {

 System.out.println("I am drawing a Triangle");

 }

}

A message can now be sent to Triangle. And even though Shape does not know how to draw a
triangle, the Triangle class does:

Click here to view code image
public class TestShape {

 public static void main(String args[]) {

 Circle circle = new Circle();

 Rectangle rectangle = new Rectangle();

 Star star = new Star();

 Triangle triangle = new Triangle ();

 circle.draw();

 rectangle.draw();

 star.draw();

 triangle.draw();

 }

}

C:\>java TestShape

I am drawing a Circle

I am drawing a Rectangle

I am drawing a Star

I am drawing a Triangle

To see the real power of polymorphism, you can pass the shape to a method that has absolutely
no idea what shape is coming. Take a look at the following code, which includes the specific
shapes as parameters:

Click here to view code image
public class TestShape {

 public static void main(String args[]) {

 Circle circle = new Circle();

 Rectangle rectangle = new Rectangle();

 Star star = new Star();

 drawMe(circle);

 drawMe(rectangle);

 drawMe(star);

 }

 static void drawMe(Shape s) {

 s.draw();

 }

}

In this case, the Shape object can be passed to the method drawMe(), and the drawMe()method
can handle any valid Shape—even one you add later. You can run this version of TestShape just
like the previous one.

Abstract Classes, Virtual Methods, and Protocols

Abstract classes, as they are defined in Java, can be directly implemented in .NET and C++ as
well. Not surprisingly, the C# .NET code looks similar to the Java code, as shown in the
following:

Click here to view code image
public abstract class Shape{

 public abstract void draw();

}

The Visual Basic .NET code is written like this:

Public MustInherit Class Shape

 Public MustOverride Function draw()

End Class

The same functionality can be provided in C++ using virtual methods with the following code:

class Shape

{

 public:

 virtual void draw() = 0;

}

As mentioned in previous chapters, Objective-C and Swift do not fully implement the
functionality of abstract classes.

For example, consider the following Java interface code for the Shape class we have seen many
times:
public abstract class Shape{

 public abstract void draw();

}

The corresponding Objective-C (Swift) protocol is shown in the following code. Note that in both
the Java code and the Objective-C code, there is no implementation for the draw() method.
@protocol Shape

@required

- (void) draw;

@end // Shape

At this point, the functionality for the abstract class and the protocol are pretty much equivalent;
however, here is where the Java-type interface and protocols diverge. Consider the following
Java code:

public abstract class Shape{

 public abstract void draw();

 public void print() {

 System.out.println("I am printing");

 };

}

In the preceding Java code, the print () method provides code that can be inherited by a
subclass. Although this is also the case with C# .NET, VB .NET, and C++,the same cannot be
said for an Objective-C protocol, which would look like this:
@protocol Shape

@required

- (void) draw;

- (void) print;

@end // Shape

In this protocol, the print() method signature is provided, and thus must be implemented by a
subclass; however, no code can be included. In short, subclasses cannot directly inherit any code
from a protocol. Thus, the protocol cannot be used in the same way as an abstract class, and this
has implications when designing an object model.

CONCLUSION

This chapter gives a basic overview of what inheritance and composition are and how they are
different. Many well-respected OO designers have stated that composition should be used
whenever possible, and inheritance should be used only when necessary.

However, this is a bit simplistic. I believe that the idea that composition should be used
whenever possible hides the real issue, which might be that composition is more appropriate in
more cases than inheritance—not that it should be used whenever possible. The fact that
composition might be more appropriate in most cases does not mean that inheritance is evil.
Use both composition and inheritance, but only in their proper contexts.

In earlier chapters, the concepts of abstract classes and Java interfaces arose several times.
In Chapter 8, we explore the concept of development contracts and how abstract classes and
Java interfaces are used to satisfy these contracts.

REFERENCES

Booch, Grady and Robert A. Maksimchuk and Michael W. Engel and Bobbi J. Young, Jim
Conallen, and Kelli A. Houston. 2007. Object-Oriented Analysis and Design with Applications,
Third Edition. Boston, MA: Addison-Wesley.

Coad, Peter, and Mark Mayfield. 1997. Java Design. Upper Saddle River, NJ: Prentice Hall.

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley CA: The
Waite Group Press.

Meyers, Scott. 2005. Effective C++, Third Edition. Boston, MA: Addison-Wesley Professional.

8. Frameworks and Reuse: Designing with Interfaces

and Abstract Classes
Chapter 7, “Mastering Inheritance and Composition,” explains how inheritance and composition
play major roles in the design of object-oriented (OO) systems. This chapter expands upon the
concepts of interfaces, protocols, and abstract classes.

Interfaces, protocols, and abstract classes are powerful mechanisms for code reuse, providing
the foundation for a concept I call contracts. This chapter covers the topics of code reuse,
frameworks, contracts, interfaces, protocols, and abstract classes (for the remainder of the
chapter, unless otherwise indicated, I use the term interface to include the concept of protocols).
At the end of the chapter, we’ll work through an example of how all these concepts can be
applied to a real-world situation.

CODE: TO REUSE OR NOT TO REUSE?

Programmers have been dealing with the issue of code reuse ever since writing their first line of
code. Many software development paradigms stress code reuse as a major part of the process.
Since the dawn of computer software, the concept of reusing code has been reinvented several
times. The OO paradigm is no different. One of the major advantages touted by OO proponents
is that if you write code properly the first time, you can reuse it to your heart’s content.

This is true only to a certain degree. As with all design approaches, the utility and the reusability
of code depend on how well it was designed and implemented. OO design does not hold the
patent on code reuse. There is nothing stopping anyone from writing very robust and reusable
code in a non-OO language. Certainly, countless numbers of routines and functions, written in
structured languages such as COBOL, C, and traditional VB, are of high quality and are quite
reusable.

Thus, it is clear that following the OO paradigm is not the only way to develop reusable code.
However, the OO approach does provide several mechanisms for facilitating the development of
reusable code. One way to create reusable code is to create frameworks. In this chapter, we focus
on using interfaces and abstract classes to create frameworks and encourage reusable code.

WHAT IS A FRAMEWORK?

Hand in hand with the concept of code reuse is the concept of standardization, which is
sometimes called plug and play. The idea of a framework revolves around these plug-and-play
and reuse principles. One classic example of a framework is a desktop application. Let’s take an
office suite application as an example. The document editor that I am currently using has a
ribbon that includes multiple tab options. These options are similar to those in the presentation
package and the spreadsheet software that I also have open. In fact, the first two menu items
(Home, Insert) are the same in all three programs. Not only are the menu options similar, but
many of the options look remarkably alike as well (New, Open, Save, and so on). Below the
ribbon is the document area—whether it be for a document, a presentation, or a spreadsheet.
The common framework makes it easier to learn various applications within the office suite. It
also makes a developer’s life easier by allowing maximum code reuse, not to mention that we
can reuse portions of the design as well.

The fact that all these menu bars have a similar look and feel is obviously not an accident. In
fact, when you develop in most integrated development environments, on a certain platform like
Microsoft Windows or Linux, for example, you get certain things without having to create them
yourself. When you create a window in a Windows environment, you get elements like the main
title bar and the file Close button in the top-right corner. Actions are standardized as well—when
you double-click the main title bar, the screen always minimizes/maximizes. When you click the
Close button in the top-right corner, the application always terminates. This is all part of the
framework. Figure 8.1 is a screenshot of a word processor. Note the menu bars, toolbars, and
other elements that are part of the framework.

Figure 8.1 A word processing framework.

A word processing framework generally includes operations such as creating documents,
opening documents, saving documents, cutting text, copying text, pasting text, searching
through documents, and so on. To use this framework, a developer must use a predetermined
interface to create an application. This predetermined interface conforms to the standard
framework, which has two obvious advantages. First, as we have already seen, the look and feel
are consistent, and the end users do not have to learn a new framework. Second, a developer can
take advantage of code that has already been written and tested (and this testing issue is a huge
advantage). Why write code to create a brand new Open dialog when one already exists and has
been thoroughly tested? In a business setting, when time is critical, people do not want to have
to learn new things unless it is absolutely necessary.

Code Reuse Revisited

In Chapter 7, we talked about code reuse as it pertains to inheritance—basically one class inheriting from
another class. This chapter is about frameworks and reusing whole or partial systems.

The obvious question is this: If you need a dialog box, how do you use the dialog box provided
by the framework? The answer is simple: Follow the rules that the framework provides. And
where might you find these rules? The rules for the framework are found in the documentation.
The person or persons who wrote the class, classes, or class libraries should have provided

documentation on how to use the public interfaces of the class, classes, or class libraries (at least
we hope). In many cases, this takes the form of the application-programming interface (API).

For example, to create a menu bar in Java, you would bring up the API documentation for
the JMenuBar class and take a look at the public interfaces it presents. Figure 8.2 shows a part of
the Java API. By using these APIs, you can create a valid Java application and conform to
required standards. If you follow these standards, your application will be set to run in Java-
enabled browsers.

Figure 8.2 API documentation.

WHAT IS A CONTRACT?

In the context of this chapter, we will consider a contract to be any mechanism that requires a
developer to comply with the specifications of an API. Often, an API is referred to as a
framework. The online dictionary, Merriam-Webster (https://www.merriam-webster.com),
defines a contract as a “binding agreement between two or more persons or parties, especially:
one legally enforceable.”

This is exactly what happens when a developer uses an API—with the project manager, business
owner, or industry standard providing the enforcement. When using contracts, the developer is
required to comply with the rules defined in the framework. This includes issues such as method
names, number of parameters, and so on (signatures, and the like). In short, standards are
created to facilitate good development practices.

The Term Contract

The term contract is widely used in many aspects of business, including software development. Do not
confuse the concept presented here with other possible software design concepts called contracts.

Enforcement is vital because it is always possible for a developer to break a contract. Without
enforcement, a rogue developer could decide to reinvent the wheel and write her own code
rather than use the specification provided by the framework. There is little benefit to a standard
if people routinely disregard or circumvent it. In Java and the .NET languages, the two ways to
implement contracts are to use abstract classes and interfaces.

Abstract Classes
One way a contract is implemented is via an abstract class. An abstract class is a class that
contains one or more methods that do not have any implementation provided. Suppose that you
have an abstract class called Shape. It is abstract because you cannot instantiate it. If you ask
someone to draw a shape, the first thing the person will most likely ask you is, “What kind of
shape?” Thus, the concept of a shape is abstract. However, if someone asks you to draw a circle,
this does not pose quite the same problem, because a circle is a concrete concept. You know
what a circle looks like. You also know how to draw other shapes, such as rectangles.

How does this apply to a contract? Let’s assume that we want to create an application to draw
shapes. Our goal is to draw every kind of shape represented in our current design, as well as
ones that might be added later. There are two conditions we must adhere to.

First, we want all shapes to use the same syntax to draw themselves. For example, we want every
shape implemented in our system to contain a method called draw(). Thus, seasoned developers
implicitly know that to draw a shape, you invoke the draw() method, regardless of what the
shape happens to be. Theoretically, this reduces the amount of time spent fumbling through
manuals, and it cuts down on syntax errors.
Second, remember that it is important that every class be responsible for its own actions. Thus,
even though a class is required to provide a method called draw(), that class must provide
its own implementation of the code. For example, the classes Circle and Rectangle both have
a draw() method; however, the Circle class obviously has code to draw a circle, and as expected,
the Rectangle class has code to draw a rectangle. When we ultimately create classes
called Circle and Rectangle, which are subclasses of Shape, these classes must implement their
own version of draw() (see Figure 8.3).

Figure 8.3 An abstract class

hierarchy.

Abstract Methods

In the UML diagrams, note that the abstract methods are italicized.

In this way, we have a Shape framework that is truly polymorphic. The draw() method can be
invoked for every single shape in the system, and invoking each shape produces a different
result. Invoking the draw() method on a Circle object draws a circle, and invoking
the draw() method on a Rectangle object draws a rectangle. In essence, sending a message to an
object evokes a different response, depending on the object. This is the essence of
polymorphism.
circle.draw(); // draws a circle

rectangle.draw(); // draws a rectangle

Let’s look at some code to illustrate how Rectangle and Circle conform to the Shapecontract.
Here is the code for the Shape class:
public abstract class Shape {

 public abstract void draw(); // no implementation

}

Note that the class does not provide any implementation for draw(); basically there is no code,
and this is what makes the method abstract (providing any code would make the method
concrete). There are two reasons why there is no implementation. First, Shape does not know
what to draw, so we could not implement the draw() method even if we wanted to.

Structured Analogy

This is an interesting issue. If we did want the Shape class to contain the code for all possible shapes,
present and future, conditional statements, such as a Java switch statement, would be required. This
would be very messy and difficult to maintain. This is one example of where the strength of an object-
oriented design comes into play.

Second, we want the subclasses to provide the implementation. Let’s look at
the Circle and Rectangle classes:

Click here to view code image
public class Circle extends Shape {

 public void Draw() {System.out.println ("Draw a Circle")};

}

public class Rectangle extends Shape {

 public void Draw() {System.out.println ("Draw a Rectangle")};

}

Note that both Circle and Rectangle extend (that is, inherit from) Shape. Also notice that they
provide the actual implementation (in this case, the implementation is trivial). Here is where the
contract comes in. If Circle inherits from Shape and fails to provide
a draw()method, Circle won’t even compile. Thus, Circle would fail to satisfy the contract
with Shape. A project manager can require that programmers creating shapes for the application
must inherit from Shape. By doing this, all shapes in the application will have a draw()method
that performs in an expected manner.

Circle

If Circle does indeed fail to implement a draw() method, Circle will be considered abstract itself.
Thus, yet another subclass must inherit from Circleand implement a draw() method. This subclass
would then become the concrete implementation of both Shape and Circle.

Although the concept of abstract classes revolves around abstract methods, nothing is
stopping Shape from providing some implementation. Remember that the definition for an
abstract class is that it contains one or more abstract methods—this implies that an abstract
class can also provide concrete methods. For example,
although Circle and Rectangleimplement the draw() method differently, they share the same
mechanism for setting the color of the shape. So, the Shape class can have a color attribute and a
method to set the color. This setColor() method is a concrete implementation and would be
inherited by both Circle and Rectangle. The only methods that a subclass must implement are
the ones that the superclass declares as abstract. These abstract methods are the contract.

Caution

Be aware that in the cases of Shape, Circle, and Rectangle, we are dealing with a strict inheritance
relationship, as opposed to an interface, which we discuss in the next section. Circle is-a Shape,
and Rectangle is-a Shape.

Some languages, such as C++, use only abstract classes to implement contracts; however, Java
and .NET have another mechanism that implements a contract called an interface. In other
cases, such as Objective-C and Swift, abstract classes are not provided by the language. Thus, to
implement a contract in Objective-C or Swift, you need to use protocols.

Interfaces

Before defining an interface, it is interesting to note that C++ does not have a construct called an
interface. When using C++, you can essentially create an interface by using a syntax subset of an
abstract class. For example, the following C++ code is an abstract class. However, because the
only method in the class is a virtual method, there is no implementation. As a result, this
abstract class provides the same functionality as an interface.

class Shape

{

 public:

 virtual void draw() = 0;

}

Interface Terminology

This is another one of those times when software terminology gets confusing—very confusing. Be aware
that you can use the term interface in several ways, so be sure to use each in the proper context.

First, the graphical user interface (GUI) is widely used when referring to the visual interface that a user
interacts with—often on a monitor.

Second, the interface to a class is basically the signatures of its methods.

Third, in Objective-C and Swift, you break up the code into physically separate modules called the
interface and implementation.

Fourth, an interface and a protocol are basically a contract between a parent class and a child class.Can
you think of any others?

The obvious question is this: If an abstract class can provide the same functionality as an
interface, why do Java and .NET bother to provide this construct called an interface? And why
does Objective-C and Swift provide the protocol?

For one thing, C++ supports multiple inheritance, whereas Java, Objective-C, Swift, and .NET
do not. Although Java, Objective-C, Swift, and .NET classes can inherit from only one parent

class, they can implement many interfaces. Using more than one abstract class constitutes
multiple inheritance; thus, Java and .NET cannot go this route. In short, when using an
interface, you do not have to concern yourself with a formal inheritance structure—you can
theoretically add an interface to any class if the design makes sense. However, an abstract class
requires you to inherit from that abstract class and, by extension, all of its potential parents.

Circle

Because of these considerations, interfaces are often thought to be a workaround for the lack of multiple
inheritance. This is not technically true. Interfaces are a separate design technique, and although they
can be used to design applications that could be done with multiple inheri-tance, they do not replace or
circumvent multiple inheritance.

As with abstract classes, interfaces are a powerful way to enforce contracts for a framework.
Before we get into any conceptual definitions, it’s helpful to see an actual interface UML
diagram and the corresponding code. Consider an interface called Nameable, as shown in Figure
8.4.

Figure 8.4 A UML diagram of a Java interface.

Note that Nameable is identified in the UML diagram as an interface, which distinguishes it from
a regular class (abstract or not). Also note that the interface contains two
methods, getName() and setName(). Here is the corresponding code:
public interface Nameable {

 String getName();

 void setName (String aName);

}

For comparison purposes, here is the code for the corresponding Objective-C protocol:

@protocol Nameable

@required

- (char *) getName;

- (void) setName: (char *) n;

@end // Nameable

In the code, notice that Nameable is not declared as a class but as an interface. Because of this,
both methods, getName() and setName(), are considered abstract and no implementation is
provided. An interface, unlike an abstract class, can provide noimplementation at all. As a
result, any class that implements an interface must provide the implementation for all methods.
For example, in Java, a class inherits from an abstract class, whereas a class implements an
interface.

Implementation Versus Definition Inheritance

Sometimes inheritance is referred to as implementation inheritance, and interfaces are called definition
inheritance.

Tying It All Together

If both abstract classes and interfaces provide abstract methods, what is the real difference
between the two? As we saw before, an abstract class can provides both abstract and concrete
methods, whereas an interface provides only abstract methods. Why is there such a difference?

Assume that we want to design a class that represents a dog, with the intent of adding more
mammals later. The logical move would be to create an abstract class called Mammal:

Click here to view code image
public abstract class Mammal {

 public void generateHeat() {System.out.println("Generate heat");}

 public abstract void makeNoise();

}

This class has a concrete method called generateHeat()and an abstract method
called makeNoise(). The method generateHeat()is concrete because all mammals generate heat.
The method makeNoise()is abstract because each mammal will make noise differently.
Let’s also create a class called Head that we will use in a composition relationship:

Click here to view code image
public class Head {

 String size;

 public String getSize() {

 return size;

 }

 public void setSize(String aSize) { size = aSize; }

}

Head has two methods: getSize() and setSize(). Although composition might not shed much
light on the difference between abstract classes and interfaces, using composition in this
example does illustrate how composition relates to abstract classes and interfaces in the overall
design of an object-oriented system. I feel that this is important because the example is more
complete. Remember that there are two ways to build object relationships: the is-arelationship,
represented by inheritance, and the has-a relationship, represented by composition. The
question is: Where does the interface fit in?
To answer this question and tie everything together, let’s create a class called Dog that is a
subclass of Mammal, implements Nameable, and has a Head object (see Figure 8.5).

Figure

8.5 A UML diagram of the sample code.

In a nutshell, Java and .NET build objects in three ways: inheritance, interfaces, and
composition. Note the dashed line in Figure 8.5 that represents the interface. This example
illustrates when you should use each of these constructs. When do you choose an abstract class?
When do you choose an interface? When do you choose composition? Let’s explore further.

You should be familiar with the following concepts:

• Dog is a Mammal, so the relationship is inheritance.
• Dog implements Nameable, so the relationship is an interface.
• Dog has a Head, so the relationship is composition.

The following code shows how you would incorporate an abstract class and an interface in the
same class:

Click here to view code image
public class Dog extends Mammal implements Nameable {

 String name;

 Head head;

 public void makeNoise(){System.out.println("Bark");}

 public void setName (String aName) {name = aName;}

 public String getName () {return (name);}

}

After looking at the UML diagram, you might come up with an obvious question: Even though
the dashed line from Dog to Nameable represents an interface, isn’t it still inheritance? At first
glance, the answer is not simple. Although interfaces may well be considered a special type of

inheritance, it is important to know what special means. Understanding
these special differences is key to understanding a solid object-oriented design.

Although inheritance is a strict is-a relationship, an interface is not quite. For example:

• A dog is a mammal.

• A reptile is not a mammal.

Thus, a Reptile class could not inherit from the Mammal class. However, an interface transcends
the various classes. For example:

• A dog is nameable.

• A lizard is nameable.

The key here is that classes in a strict inheritance relationship must be related. For example, in
this design, the Dog class is directly related to the Mammal class. A dog is a mammal. Dogs and
lizards are not related at the mammal level because you can’t say that a lizard is a mammal.
However, interfaces can be used for classes that are not related. You can name a dog just as well
as you can name a lizard. This is the key difference between using an abstract class and using an
interface.
The abstract class represents some sort of implementation. In fact, we saw that Mammalprovided
a concrete method called generateHeat(). Even though we do not know what kind of mammal
we have, we know that all mammals generate heat. However, an interface models only behavior.
An interface never provides any type of implementation, only behavior. The interface specifies
behavior that is the same across classes that conceivably have no connection. Not only are dogs
nameable, but so are cars, planets, and so on.
Some say that interfaces are a poor substitute for multiple inheritance. While it may be true that
interfaces were part of the same Java design that eliminated multiple inheritance (and were
adopted by many other languages), interfaces are used in different design situations than
inheritance, as the Nameable example illustrates.

The Compiler Proof

Can we prove or disprove that interfaces have a true is-a relationship? In the case of Java (and
this can also be done in C# or VB), we can let the compiler tell us. Consider the following code:

Dog D = new Dog();

Head H = D;

When this code is run through the compiler, the following error is produced:

Click here to view code image
Test.java:6: Incompatible type for Identifier. Can't convert Dog to Head. Head H = D;

Obviously, a dog is not a head. Not only do we know this, but the compiler agrees. However, as
expected, the following code works just fine:

Dog D = new Dog();

Mammal M = D;

This is a true inheritance relationship, and it is not surprising that the compiler parses this code
cleanly because a dog is a mammal.

Now we can perform the true test of the interface. Is an interface an actual is-a relationship? The
compiler thinks so:

Dog D = new Dog();

Nameable N = D;

This code works fine. So, we can safely say that a dog is a nameable entity. This is a simple but
effective proof that both inheritance and interfaces constitute an is-a relationship. The interface
relationship is more like a “behaves-like-a” when used properly. You might have data interfaces
that are “is-a,” but more often you are going to have the former.

Nameable Interface

An interface specifies certain behavior but not the implementation. By implementing
the Nameable interface, you are saying that you will provide nameable behavior by implementing
methods called getName() and setName(). How you implement these methods is up to you. All you have
to do is to provide the methods.

Making a Contract

The simple rule for defining a contract is to provide an unimplemented method, via either an
abstract class or an interface. Thus, when a subclass is designed with the intent of complying
with the contract, it must provide the implementation for the unimplemented methods in the
parent class or interface.

As stated earlier, one of the advantages of a contract is to standardize coding conventions. Let’s
explore this concept in greater detail by providing an example of what happens when coding
standards are not used. In this case, there are three classes: Planet, Car, and Dog. Each class
implements code to name the entity. However, because they are all implemented separately,
each class has different syntax to retrieve the name. Consider the following code for
the Planet class:

Click here to view code image
public class Planet {

 String planetName;

 public void getPlanetName() {return planetName;};

}

Likewise, the Car class might have code like this:

Click here to view code image
public class Car {

 String carName;

 public String getCarName() { return carName; };

}

And the Dog class might have code like this:
public class Dog {

 String dogName;

 public String getDogName() { return dogName; };

}

The obvious issue here is that anyone using these classes would have to look at the
documentation (what a horrible thought!) to figure out how to retrieve the name in each of these
cases. Even though looking at the documentation is not the worst fate in the world, it would be
nice if all the classes used in a project (or company) would use the same naming convention—it
would make life a bit easier. This is where the Nameable interface comes in.

The idea would be to make a contract for any type of class that needs to use a name. As users of
various classes move from one class to the other, they would not have to figure out the current
syntax for naming an object. The Planet class, the Car class, and the Dog class would all have the
same naming syntax.
To implement this lofty goal, we can create an interface (we can use the Nameable interface that
we used previously). The convention is that all classes must implement Nameable. In this way,
the users have to remember only a single interface for all classes when it comes to naming
conventions:

Click here to view code image
public interface Nameable {

 public String getName();

 public void setName(String aName);

}

The new classes, Planet, Car, and Dog, should look like this:
public class Planet implements Nameable {

 String planetName;

 public String getName() {return planetName;}

 public void setName(String myName) { planetName = myName; }

}

public class Car implements Nameable {

 String carName;

 public String getName() {return carName;}

 public void setName(String myName) { carName = myName;}

}

public class Dog implements Nameable {

 String dogName;

 public String getName() {return dogName;}

 public void setName(String myName) { dogName = myName;}

}

In this way, we have a standard interface, and we’ve used a contract to ensure that it is the case.
In fact, one of the major benefits of using a modern IDE is that, when implementing an
interface, the IDE will automatically stub out the required methods. This feature saves lots of
time and effort when using interfaces.

There is one little issue that you might have thought about. The idea of a contract is great as long
as everyone plays by the rules, but what if some shady individual doesn’t want to play by the
rules (the rogue programmer)? The bottom line is that there is nothing to stop people from
breaking the standard contract; however, in some cases, doing so will get them in deep trouble.

On one level, a project manager can insist that everyone use the contract, just like team
members must use the same variable naming conventions and configuration management
system. If a team member fails to abide by the rules, he could be reprimanded, or even fired.

Enforcing rules is one way to ensure that contracts are followed, but there are instances in which
breaking a contract will result in unusable code. Consider the Java interface Runnable. Old-style
Java applets implement the Runnable interface because it requires that any class
implementing Runnable must implement a run()method. This is important because the browser
that calls the applet will call the run() method within Runnable. If the run()method does not
exist, things will break.

System Plug-in Points
Basically, contracts are “plug-in points” into your code. Anyplace where you want to make parts
of a system abstract, you can use a contract. Instead of coupling to objects of specific classes, you
can connect to any object that implements the contract. You need to be aware of where contracts
are useful; however, you can overuse them. You want to identify common features such as
the Nameable interface, as discussed in this chapter. However, be aware that there is a trade-off
when using contracts. They might make code reuse more of a reality, but they make things
somewhat more complex.

AN E-BUSINESS EXAMPLE

It’s sometimes hard to convince a decision maker, who may have no development background,
of the monetary savings of code reuse. However, when reusing code, it is pretty easy to
understand the advantage to the bottom line. In this section, we’ll walk through a simple but
practical example of how to create a workable framework using inheritance, abstract classes,
interfaces, and composition.

An E-Business Problem

Perhaps the best way to understand the power of reuse is to present an example of how you
would reuse code. In this example, we’ll use inheritance (via interfaces and abstract classes) and
composition. Our goal is to create a framework that will make code reuse a reality, reduce
coding time, and reduce maintenance—all the typical software development wish-list items.

Let’s start our own Internet business. Let’s assume that we have a client, a small pizza shop
called Papa’s Pizza. Despite the fact that it is a small, family-owned business, Papa realizes that a
Web presence can help the business in many ways. Papa wants his customers to access his
website, find out what Papa’s Pizza is all about, and order pizzas right from the comfort of their
browsers.

At the site we develop, customers will be able to access the website, select the products they
want to order, and select a delivery option and time for delivery. They can eat their food at the
restaurant, pick up the order, or have the order delivered. For example, a customer decides at
3:00 that he wants to order a pizza dinner (with salads, breadsticks, and drinks), to be delivered
to his home at 6:00. Let’s say the customer is at work (on a break, of course). He gets on the
Web and selects the pizzas, including size, toppings, and crust; the salads, including dressings;
breadsticks; and drinks. He chooses the delivery option and requests that the food be delivered
to his home at 6:00. Then he pays for the order by credit card, gets a confirmation number, and
exits. Within a few minutes he gets an email confirmation as well. We will set up accounts so
that when people bring up the site, they will get a greeting reminding them of who they are,
what their favorite pizza is, and what new pizzas have been created this week.

When the software system is finally delivered, it is deemed a total success. For the next several
weeks, Papa’s customers happily order pizzas and other food and drinks over the Internet.
During this rollout period, Papa’s brother-in-law, who owns a donut shop called Dad’s Donuts,

pays Papa a visit. Papa shows Dad the system, and Dad falls in love with it. The next day, Dad
calls our company and asks us to develop a Web-based system for his donut shop. This is great,
and exactly what we had hoped for. Now, how can we leverage the code that we used for the
pizza shop in the system for the donut shop?

How many more small businesses, besides Papa’s Pizza and Dad’s Donuts, could take advantage
of our framework to get on the Web? If we can develop a good, solid framework, we will be able
to efficiently deliver Web-based systems at lower costs than we were able to do before. There
will also be an added advantage that the code will have been tested and implemented previously,
so debugging and maintenance should be greatly reduced.

The Non-Reuse Approach

For many reasons, the concept of code reuse has not been as successful as some software
developers would like. First, many times reuse is not even considered when developing a
system. Second, even when reuse is entered into the equation, the issues of schedule constraints,
limited resources, and budgetary concerns often short-circuit the best intentions.

In many instances, code ends up highly coupled to the specific application for which it was
written. This means that the code within the application is highly dependent on other code
within the same application.

A lot of code reuse is the result of using cut, copy, and paste operations. While one application is
open in a text editor, you copy code and then paste it into another application. Sometimes
certain functions or routines can be used without any change. As is unfortunately often the case,
even though most of the code may remain identical, a small bit of code must change to work in a
specific application.

For example, consider two separate applications, as represented by the UML diagram in Figure
8.6.

Figure

8.6 Applications on divergent paths.

In this example, the applications testDonutShop and testPizzaShop are totally independent
code modules. The code is kept separate, and there is no interaction between the modules.
However, these applications might use some common code. In fact, some code might have been
copied verbatim from one application to another. At some point, someone involved with the
project might decide to create a library of these shared pieces of code to use in these and other
applications. In many well-run and disciplined projects, this approach works well. Coding
standards, configuration management, change management, and so on are all very well run.
However, in many instances, this discipline breaks down.

Anyone who is familiar with the software development process knows that when bugs crop up
and time is of the essence, there is the temptation to put some fixes or additions into a system
that are specific to the application currently in distress. This might fix the problem for the
distressed application but could have unintended, possibly harmful, implications for other
applications. Thus, in situations like these, the initially shared code can diverge, and separate
code bases must be maintained.

For example, one day Papa’s website crashes. He calls us in a panic, and one of our developers is
able to track down the problem. The developer fixes the problem, knowing that the fix works but
is not quite sure why. The developer also does not know what other areas of the system the fix
might inadvertently affect. So the developer makes a copy of the code, strictly for use in the
Papa’s Pizza system. This is affectionately named Version 2.01papa. Because the developer does
not yet totally understand the problem and because Dad’s system is working fine, the code is not
migrated to the donut shop’s system.

Tracking Down a Bug

The fact that the bug turned up in the pizza system does not mean that it will also turn up in the donut
system. Even though the bug caused a crash in the pizza shop, the donut shop might never encounter it.
It may be that the fix to the pizza shop's code is more dangerous to the donut shop than the original bug.

The next week Dad calls in a panic, with a totally unrelated problem. A developer fixes it, again
not knowing how the fix will affect the rest of the system, makes a separate copy of the code, and
calls it Version 2.03dad. This scenario gets played out for all the sites we now have in operation.
There are now a dozen or more copies of the code, with various versions for the various sites.
This becomes a mess. We have multiple code paths and have crossed the point of no return. We
can never merge them again. (Perhaps we could, but from a business perspective, this would be
costly.)

Our goal is to avoid the mess of the previous example. Although many systems must deal with
legacy issues, fortunately for us, the pizza and donut applications are brand-new systems. Thus,
we can use a bit of foresight and design this system in a reusable manner. In this way, we will
not run into the maintenance nightmare just described. What we want to do is factor out as
much commonality as possible. In our design, we will focus on all the common business
functions that exist in a Web-based application. Instead of having multiple application classes
like testPizzaShop and testDonutShop, we can create a design that has a class called Shop that
all the applications will use.
Notice that testPizzaShop and testDonutShop have similar
interfaces, getInventory() and buyInventory(). We will factor out this commonality and
require that all applications that conform to our Shop framework
implement getInventory() and buyInventory() methods. This requirement to conform to a
standard is sometimes called a contract. By explicitly setting forth a contract of services, you
isolate the code from a single implementation. In Java, you can implement a contract by using
an interface or an abstract class. Let’s explore how this is accomplished.

An E-Business Solution
Now let’s show how to use a contract to factor out some of the commonality of these systems. In
this case, we will create an abstract class to factor out some of the implementation, and an
interface (our familiar Nameable) to factor out some behavior.

Our goal is to provide customized versions of our Web application with the following features:

• An interface, called Nameable, which is part of the contract.
• An abstract class, called Shop, which is also part of the contract.
• A class called CustList, which we use in composition.
• A new implementation of Shop for each customer we service.

The UML Object Model
The newly created Shop class is where the functionality is factored out. Notice in Figure 8.7that
the methods getInventory() and buyInventory() have been moved up the hierarchy tree
from DonutShop and PizzaShop to the abstract class Shop. Now, whenever we want to provide a
new, customized version of Shop, we plug in a new implementation of Shop (such as a grocery
shop). Shop is the contract that the implementations must abide by.

Click here to view code image
public abstract class Shop {

 CustList customerList;

 public void CalculateSaleTax() {

 System.out.println("Calculate Sales Tax");

 }

 public abstract String[] getInventory();

 public abstract void buyInventory(String item);

}

Figure 8.7 A UML diagram of the Shop model.

To show how composition fits into this picture, the Shop class has a customer list. Thus, the
class CustList is contained within Shop:

Click here to view code image
public class CustList {

 String name;

 public String findCust() {return name;}

 public void addCust(String Name){}

}

To illustrate the use of an interface in this example, an interface called Nameable is defined:

Click here to view code image
public interface Nameable {

 public abstract String getName();

 public abstract void setName(String name);

}

We could potentially have a large number of different implementations, but all the rest of the
code (the application) is the same. In this small example, the code savings might not look like a
lot. But in a large, real-world application, the code savings is significant. Let’s take a look at the
donut shop implementation:

Click here to view code image
public class DonutShop extends Shop implements Nameable {

 String companyName;

 String[] menuItems = {

 "Donuts",

 "Muffins",

 "Danish",

 "Coffee",

 "Tea"

 };

 public String[] getInventory() {

 return menuItems;

 }

 public void buyInventory(String item) {

 System.out.println("\nYou have just purchased " + item);

 }

 public String getName(){

 return companyName;

 }

 public void setName(String name){

 companyName = name;

 }

}

The pizza shop implementation looks very similar:

Click here to view code image
public class PizzaShop extends Shop implements Nameable {

 String companyName;

 String[] foodOfferings = {

 "Pizza",

 "Spaghetti",

 "Garden Salad",

 "Antipasto",

 "Calzone"

 }

 public String[] getInventory() {

 return foodOfferings;

 }

 public void buyInventory(String item) {

 System.out.println("\nYou have just purchased " + item);

 }

 public String getName(){

 return companyName;

 }

 public void setName(String name){

 companyName = name;

 }

}

Unlike the initial case, where a large number of customized applications exist, we now have only
a single primary class (Shop) and various customized classes (PizzaShop, DonutShop). There is no
coupling between the application and any of the customized classes. The only thing the
application is coupled to is the contract (Shop). The contract specifies that any implementation
of Shop must provide an implementation for two methods, getInventory() and buyInventory().
It also must provide an implementation for getName() and setName() that relates to the
interface Nameable that is implemented.
Although this solution solves the problem of highly coupled implementations, we still have the
problem of deciding which implementation to use. With the current strategy, we would still have
to have separate applications. In essence, you must provide one application for
each Shop implementation. Even though we are using the Shop contract, we still have the same
situation as before we used the contract:
DonutShop myShop= new DonutShop();

PizzaShop myShop = new PizzaShop ();

How do we get around this problem? We can create objects dynamically. In Java, we can use
code like this:

Click here to view code image
String className = args[0];

Shop myShop;

myShop = (Shop)Class.forName(className).newInstance();

In this case, you set className by passing a parameter to the code. (There are other ways to
set className, such as by using a system property.)
Let’s look at Shop using this approach. (Note that there is no exception handling and nothing
else besides object instantiation.)

Click here to view code image
class TestShop {

 public static void main (String args[]) {

 Shop shop = null;

 String className = args[0];

 System.out.println("Instantiate the class:" + className + "\n");

 try {

 // new pizzaShop();

 shop = (Shop)Class.forName(className).newInstance();

 } catch (Exception e) {

 e.printStackTrace();

 }

 String[] inventory = shop.getInventory();

 // list the inventory

 for (int i=0; i<inventory.length; i++) {

 System.out.println("Argument" + i + " = " + inventory[i]);

 }

 // buy an item

 shop.buyInventory(Inventory[1]);

 }

}

In this way, we can use the same application code for both PizzaShop and DonutShop. If we add
a GroceryShop application, we only have to provide the implementation and the appropriate
string to the main application. No application code needs to change.

CONCLUSION

When designing classes and object models, it is vitally important to understand how the objects
are related to each other. This chapter discusses the primary topics of building objects:
inheritance, interfaces, and composition. In this chapter, you have learned how to build reusable
code by designing with contracts.

In Chapter 9, “Building Objects and Object-Oriented Design,” we complete our OO journey and
explore how objects that might be totally unrelated can interact with each other.

REFERENCES

Booch, Grady and Robert A. Maksimchuk and Michael W. Engel and Bobbi J. Young and Jim
Conallen and Kelli A. Houston. 2007. Object-Oriented Analysis and Design with Applications,
Third Edition. Boston, MA: Addison-Wesley.

Coad, Peter, and Mark Mayfield. 1997. Java Design. Upper Saddle River, NJ: Prentice Hall.

Meyers, Scott. 2005. Effective C++, Third Edition. Boston, MA: Addison-Wesley Professional.

9. Building Objects and Object-Oriented Design
The previous two chapters cover the topics of inheritance and composition. In Chapter 7,
“Mastering Inheritance and Composition,” we learned that inheritance and composition
represent the primary ways to build objects. In Chapter 8, “Frameworks and Reuse: Designing
with Interfaces and Abstract Classes,” we learned that there are varying degrees of inheritance
and how inheritance, interfaces, abstract classes, and composition all fit together.

This chapter covers the issue of how objects are related to each other in an overall design. You
might say that this topic was already introduced, and you would be correct. Both inheritance
and composition represent ways in which objects interact. However, inheritance and
composition have one significant difference in the way objects are built. When inheritance is
used, the end result is, at least conceptually, a single class that incorporates all the behaviors
and attributes of the inheritance hierarchy. When composition is used, one or more classes are
used to build another class.

Although it is true that inheritance is a relationship between two classes, what is really
happening is that a parent is created that incorporates the attributes and methods of a child
class. Let’s revisit the example of the Person and Employee classes (see Figure 9.1).
Although there are indeed two separately designed classes here, the relationship is not simply
interaction—it is inheritance. Basically, an employee is a person. An Employeeobject does not
send a message to a Person object. An Employee object does need the services of a Person object.
This is because an Employee object is a Person object.

Figure 9.1 An inheritance relationship.

However, composition is a different situation. Composition represents interactions between
distinct objects. So, whereas Chapter 8 primarily covers the different flavors of inheritance, this
chapter delves into the various flavors of composition and how objects interact with each other.

COMPOSITION RELATIONSHIPS

We have already seen that composition represents a part of a whole. Although the inheritance
relationship is stated in terms of is-a, composition is stated in terms of has-a. We know
intuitively that a car “has-a” steering wheel (see Figure 9.2).

Figure 9.2 A

composition relationship.

Is-a and Has-a

Please forgive my grammar: For consistency, I will stick with “has a engine,” even though “has an engine”
is grammatically correct. I do this because I want to simply state the rules as “is-a” and “has-a.”

The reason to use composition is that it builds systems by combining less complex parts. This is
a common way for people to approach problems. Studies show that even the best of us can keep,
at most, seven chunks of data in our short-term memory at one time. Thus, we like to use
abstract concepts. Instead of saying that we have a large unit with a steering wheel, four tires, an
engine, and so on, we say that we have a car. This makes it easier for us to communicate and
keep things clear in our heads.

Composition also helps in other ways, such as making parts interchangeable. If all steering
wheels are the same, it does not matter which specific steering wheel is installed in a specific
car. In software development, interchangeable parts mean reuse.

In Chapters 7 and 8 of their book Object-Oriented Design in Java, Stephen Gilbert and Bill
McCarty present many examples of associations and composition in much more detail. I highly
recommend referencing this material for a more in-depth look into these subjects. Here we
address some of the more fundamental points of these concepts and explore some variations of
their examples.

BUILDING IN PHASES

Another major advantage in using composition is that systems and subsystems can be built
independently, and perhaps more importantly, tested and maintained independently.

There is no question that software systems are quite complex. To build quality software, you
must follow one overriding rule to be successful: Keep things as simple as possible. For large
software systems to work properly and be easily maintained, they must be broken into smaller,
more manageable parts. How do you accomplish this? In a 1962 article titled “The Architecture
of Complexity,” Nobel Prize winner Herbert Simon noted the following thoughts regarding
stable systems:

• “Stable complex systems usually take the form of a hierarchy, where each
system is built from simpler subsystems, and each subsystem is built from simpler
subsystems still.—You might already be familiar with this principle because it forms the
basis for functional decomposition, the method behind procedural software development.

In object-oriented design, you apply the same principles to composition—building
complex objects from simpler pieces.

• “Stable, complex systems are nearly decomposable.”—This means you can
identify the parts that make up the system and can tell the difference between interactions
between the parts and inside the parts. Stable systems have fewer links between their
parts than they have inside their parts. Thus, a modular stereo system, with simple links
between the speakers, turntable, and amplifier, is inherently more stable than an
integrated system, which isn’t easily decomposable.

• “Stable complex systems are almost always composed of only a few different
kinds of subsystems, arranged in different combinations.”—Those subsystems, in
turn, are generally composed of only a few different kinds of parts.

• “Stable systems that work have almost always evolved from simple systems
that worked.”—Rather than build a new system from scratch—reinventing the wheel—
the new system builds on the proven designs that went before it.

In our stereo example (see Figure 9.3), suppose the stereo system was totally integrated and was
not built from components (that is, the stereo system was one big black-box system). In this
case, what would happen if the CD player broke and became unusable? You would have to take
in the entire system for repair. Not only would this be more complicated and expensive, but you
would not have the use of any of the other components.

Figure

9.3 Building, testing, and verifying a complete system one step at a time.

This concept becomes very important to languages such as Java and those included in the .NET
framework. Because objects are dynamically loaded, decoupling the design is quite important.
For example, if you distribute a Java application and one of the class files needs to be re-created
(for bug fixes or maintenance), you would be required to redistribute only that particular class
file. If all code was in a single file, the entire application would need to be redistributed.

Suppose the system is broken into components rather than a single unit. In this case, if the CD
player broke, you could disconnect the CD player and take it in for repair. (Note that all the
components are connected by patch cords.) This would be less complicated and less expensive,
and it would take less time than having to deal with a single, integrated unit. As an added
benefit, you could still use the rest of the system. You could even buy another CD player because

it is a component. The repairperson could then plug your broken CD player into his repair
systems to test and fix it. All in all, the component approach works quite well. Composition is
one of the primary strategies that you, as a software designer, have in your arsenal to fight
software complexity.

One major advantage of using components is that you can use components that were built by
other developers within the organization, or even third-party vendors. However, using a
software component from another source requires a certain amount of trust. Third-party
components must come from a reliable source, and you must feel comfortable that the software
is properly tested, not to mention that it must perform the advertised functions properly. There
are still many who would rather build their own than trust components built by others.

TYPES OF COMPOSITION

Generally, there are two types of composition: association and aggregation. In both cases, these
relationships represent collaborations between the objects. The stereo example we just used to
explain one of the primary advantages of composition represents an association.

Is Composition a Form of Association?

Composition is another area in OO technologies where there is a question of which came first, the
chicken or the egg. Some texts say that composition is a form of association, and some say that an
association is a form of composition. In any event, in this book, we consider inheri-tance and
composition the two primary ways to build classes. Thus, in this book, association is considered a form of
composition.

All forms of composition include a has-a relationship. However, subtle differences exist between
associations and aggregations based on how you visualize the parts of the whole. In an
aggregation, you normally see only the whole, and in associations, you normally see the parts
that make up the whole.

Aggregations

Perhaps the most intuitive form of composition is aggregation. Aggregation means that a
complex object is composed of other objects. A TV set is a clean, neat package that you use for
entertainment. When you look at your HD TV, you see a single unit. Most of the time, you do not
stop to think about the fact that the HD TV contains some microchips, a screen, a tuner, and so
on. Sure, you see a switch to turn the set on and off, and you certainly see the picture screen.
However, this is not the way people normally think of HD TVs. When you go into an appliance
store, the salesperson does not say, “Let me show you this aggregation of microchips, a picture
screen, a tuner, and so on.” The salesperson says, “Let me show you this HD TV.”

Similarly, when you go to buy a car, you do not pick and choose all the individual components of
the car. You do not decide which spark plugs to buy or which door handles to buy. You go to buy
a car. Of course, you do choose some options, but for the most part, you choose the car as a
whole, a complex object made up of many other complex and simple objects (see Figure 9.4).

Figure 9.4 An

aggregation hierarchy for a car.

Associations

Whereas aggregations represent relationships where you normally see only the whole,
associations present both the whole and the parts. As stated in the stereo example, the various
components are presented separately and connect to the whole by use of patch cords (the cords
that connect the various components).

Consider a traditional desktop computer system as an example (see Figure 9.5); the whole is the
computer system. The components are the monitor, keyboard, mouse, and main box. Each is a
separate object, but together they represent the whole of the computer system. The main
computer is using the keyboard, the mouse, and the monitor to delegate some of the work. In
other words, the computer box needs the service of a mouse but does not have the capability to
provide this service by itself. Thus, the computer box requests the service from a separate mouse
via the specific port and cable connecting the mouse to the box.

Figure

9.5 Associations as a separate service.

Aggregation Versus Association

An aggregation is a complex object composed of other objects. An association is used when one object
wants another object to perform a service for it.

Using Associations and Aggregations Together

One thing you might have noticed in all the examples is that the dividing lines between what is
an association and what is an aggregation are often blurred. Suffice it to say that many of your
most interesting design decisions will come down to whether to use associations or
aggregations.

For example, the desktop computer system example used to describe associations also contains
some aggregation. Although the interaction between the computer box, the monitor, the
keyboard, and the mouse is association, the computer box itself represents aggregation. You see
only the computer box, but it is actually a complex system made up of other objects, including
chips, motherboards, video cards, and so on.

Consider that an Employee object might be composed of an Address object and a Spouseobject.
You might consider the Address object as an aggregation (basically a part of
the Employee object), and the Spouse object as an association. To illustrate, suppose both the
employee and the spouse are employees. If the employee is fired, the spouse is still in the system
but the association is broken.

Similarly, in the stereo example, the receiver has an association with the speakers as well as the
CD. Yet, the speakers and the CD are themselves aggregations of other objects, such as power
cords.

In the car example, although the engine, spark plugs, and doors represent composition, the
stereo also represents an association relationship. In reality, cars and desktop computers are a
mix of aggregations and associations.

No One Right Answer

As usual, there isn't a single, absolutely correct answer when it comes to making a design decision.
Design is not an exact science. Although we can make general rules to live by, these rules are not hard
and fast.

AVOIDING DEPENDENCIES

When using composition, it is desirable to avoid making objects highly dependent on one
another. One way to make objects very dependent on each other is to mix domains. In the best
of all worlds, an object in one domain should not be mixed with an object in another domain,
except under certain circumstances. We can return again to the stereo example to explain this
concept.

By keeping all the components in separate domains, the stereo system is easier to maintain. For
example, if the CD component breaks, you can send the CD player off to be repaired
individually. In this case, the CD player and the MP3 player have separate domains. This
provides flexibility, such as buying the CD player and the MP3 player from separate
manufacturers. So, if you decide you want to swap out the CD player with a brand from another
manufacturer, you can.

Sometimes there is a certain convenience in mixing domains. A good example of this, one that I
have been using for years, pertains to the existence of the old-style TV/VCR combinations.
Granted, it is convenient to have both in the same module. However, if the TV breaks, the VCR
is unusable—at least as part of the unit it was purchased in.

You need to determine what is more important in specific situations: whether you want
convenience or stability. There is no right answer. It all depends on the application and the
environment. In the case of the TV/VCR combination, we decided that the convenience of the
integrated unit far outweighed the risk of lower unit stability (see Figure 9.6). Revisit the stereo
system in
Figure 9.3 to reinforce what a non-integrated system looks like.

Figure 9.6 Convenience versus stability.

Interfaces solve this and managing dependencies is a major part of this. If interfaces are defined
in a shared library and implementations are defined in more concrete classes, you can afford to
mix domains by using the behavior contracts.

Mixing Domains

The convenience of mixing domains is a design decision. If the power of having a TV/VCR com-bination
outweighs the risk and potential downtime of the individual components, the mixing of domains may
well be the preferred design choice.

CARDINALITY

In their book Object-Oriented Design in Java, Gilbert and McCarty describe cardinality as the
number of objects that participate in an association and whether the participation is optional or
mandatory. To determine cardinality, Gilbert and McCarty ask the following questions:

• Which objects collaborate with which other objects?

• How many objects participate in each collaboration?

• Is the collaboration optional or mandatory?

For example, let’s consider the following example. We are creating an Employee class that
inherits from Person and has relationships with the following classes:

• Division
• JobDescription
• Spouse
• Child

What do these classes do? Are they optional? How many does an Employee need?
• Division

• This object contains the information relating to the division that the employee
works for.

• Each employee must work for a division, so the relationship is mandatory.

• The employee works for one, and only one, division.

• JobDescription

• This object contains a job description, most likely containing information such
as salary grade and salary range.

• Each employee must have a job description, so the relationship is mandatory.

• The employee can hold various jobs during the tenure at a company. Thus, an
employee can have many job descriptions. These descriptions can be kept as a
history if an employee changes jobs, or it is possible that an employee might hold
two different jobs at one time. For example, a supervisor might take on an
employee’s responsibilities if the employee quits and a replacement has not yet
been hired.

• Spouse
• In this simplistic example, the Spouse class contains only the anniversary date.

• An employee can be married or not married. Thus, a spouse is optional.

• An employee can have only one spouse.

• Child
• In this simple example, the Child class contains only the string FavoriteToy.

• An employee can have children or not have children.

• An employee can have no children or an infinite number of children (wow!).
You could make a design decision as to the upper limit of the number of children
that the system can handle.

To sum up, Table 9.1 represents the cardinality of the associations of the classes we just
considered.

Table 9.1 Cardinality of Class Associations

Optional/Association Cardinality Mandatory

Employee/Division 1 Mandatory

Employee/JobDescription 1 . . n Mandatory

Employee/Spouse 0 . . 1 Optional

Employee/Child 0 . . n Optional

Cardinality Notation

The notation of 0 . . 1 means that an employee can have either zero or one spouse. The notation of 0 . . n
means that an employee can have any number of children from zero to an unlimited number.
The n basically represents infinity.

Figure 9.7 shows the class diagram for this system. Note that in this class diagram, the
cardinality is indicated along the association lines. Refer to Table 9.1 to see whether the
association is mandatory.

Figure 9.7 Cardinality in a UML diagram.

Multiple Object Associations
How do we represent an association that might contain multiple objects (such as 0 to many
children) in code? Here is the code for the Employee class:

Click here to view code image
import java.util.Date;

public class Employee extends Person{

 private String CompanyID;

 private String Title;

 private Date StartDate;

 private Spouse spouse;

 private Child[] child;

 private Division division;

 private JobDescription[] jobDescriptions;

 public String getCompanyID() {return CompanyID;}

 public String getTitle() {return Title;}

 public Date getStartDate() {return StartDate;}

 public void setCompanyID(String CompanyID) {}

 public void setTitle(String Title) {}

 public void setStartDate(int StartDate) {}

}

Note that the classes that have a one-to-many relationship are represented by arrays in the code:

private Child[] child;

private JobDescription[] jobDescriptions;

Optional Associations
One of the most important issues when dealing with associations is to make sure that your
application is designed to check for optional associations. This means that your code must check
to see whether the association is null.
Suppose in the previous example that your code assumes that every employee has a spouse.
However, if one employee is not married, the code will have a problem (see Figure 9.8). If your
code does indeed expect a spouse to exist, it may well fail and leave the system in an unstable
state. The bottom line is that the code must check for a null condition, and must handle this as a
valid condition.

Figure 9.8 Checking all optional associations.

For example, if no spouse exists, the code must not attempt to invoke a spouse behavior. This
could lead to an application failure. Thus, the code must be able to process an Employeeobject
that has no spouse.

TYING IT ALL TOGETHER: AN EXAMPLE

Let’s work on a simple example that will tie the concepts of inheritance, interfaces, composition,
associations, and aggregations together into a single, short system diagram.

Consider the example used in Chapter 8, with one addition: We will add an Owner class that will
take the dog out for walks.
Recall that the Dog class inherits directly from the Mammal class. The solid arrow represents this
relationship between the Dog class and the Mammal class in Figure 9.9. The Nameableclass is an
interface that Dog implements, which is represented by the dashed arrow from the Dog class to
the Nameable interface.

Figure 9.9 A UML diagram for the Dog example.

In this chapter, we are mostly concerned with associations and aggregations. The relationship
between the Dog class and the Head class is considered aggregation because the head is actually
part of the dog. The cardinality on the line connecting the two class diagrams specifies that a dog
can have only a single head.
The relationship between the Dog class and the Owner class is association. The owner is clearly
not part of the dog, or vice versa, so we can safely eliminate aggregation. However, the dog does
require a service from the owner—the act of taking him on a walk. The cardinality on the line
connecting the Dog and Owner classes specifies that a dog can have one or more owners (for
example, a wife and husband can both be considered owners, with shared responsibility for
walking the dog).

These relationships—inheritance, interfaces, composition, associations, and aggregations—
represent the bulk of the design work you will encounter when designing OO systems.

Where Is the Head?

You might decide that it makes sense to attach the Head class to the Mammal class instead of the Dog
class, because all mammals supposedly have a head. For this model, I was using the Dog class as the focal
point of the example, so that is why I attached the Head to the Dog itself.

CONCLUSION

In this chapter, we have explored some of the finer points of composition and its two primary
types: aggregation and association. Whereas inheritance represents a new kind of already
existing object, composition represents the interactions between various objects.

The past three chapters have covered the basics of inheritance and composition. Using these
concepts and your skills in the software development process, you are on your way to designing
solid classes and object models. Chapter 10, “Design Patterns,” explores how to use UML class
diagrams to assist in the modeling of object models.

REFERENCES

Booch, Grady and Robert A. Maksimchuk and Michael W. Engel and Bobbi J. Young and Jim
Conallen and Kelli A. Houston. 2007. Object-Oriented Analysis and Design with Applications,
Third Edition. Boston, MA: Addison-Wesley.

Coad, Peter, and Mark Mayfield. 1997. Java Design. Upper Saddle River, NJ: Prentice Hall.

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley, CA: The
Waite Group Press.

Meyers, Scott. 2005. Effective C++, Third Edition. Boston, MA: Addison-Wesley Professional.

10. Design Patterns
One of the interesting things about software development is that when you create a software
system, you are actually modeling a real-world system. For example, in the Information
Technology industry, it is safe to say that IT is the business—or at least IT implements the
business. To write the business software systems, the developers must thoroughly understand
the business models. As a result, the developers often have the most intimate knowledge of a
company’s business processes.

We have seen this concept throughout this book as it relates to our educational discussions. For
example, when we discussed using inheritance to abstract out the behaviors and attributes of
mammals, the model was based on the true real-life model, not a contrived model that we
created for our own purposes.

Thus, when we create a mammal class, we can use it to build countless other classes, such as
dogs and cats and so on, because all mammals share certain behaviors and attributes. This
works when we study dogs, cats, squirrels, and other mammals because we can see patterns.
These patterns allow us to inspect an animal and make the determination that it is indeed a
mammal, or perhaps a reptile, which would have other patterns of behaviors and attributes.

Throughout history, humans have used patterns in many aspects of life, including engineering.
These patterns go hand-in-hand with the holy grail of software development: software reuse. In
this chapter, we consider design patterns, a relatively new area of software development (the
seminal book on design patterns was published in 1995).

Design patterns are perhaps one of the most influential developments that have come out of the
object-oriented movement in the past several years. Patterns lend themselves perfectly to the
concept of reusable software development. Because object-oriented development is all about
reuse, patterns and object-oriented development go hand-in-hand.

The basic concept of design patterns revolves around the principle of best practices. By best
practices, we mean that when good and efficient solutions are created, these solutions are
documented in a way that others can benefit from previous successes—as well as learn from the
failures.

One of the most important books on object-oriented software development is Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. This book was an important milestone for the software industry
and has become so entrenched in the computer science lexicon that the book’s authors have
become known as the Gang of Four. In writings on object-oriented topics, you will often see the
Gang of Four referred to as the GoF.

The intent of this chapter is to explain what design patterns are. (Explaining each design pattern
is far beyond the scope of this book and would take more than one volume.) To accomplish this,
we explore each of the three categories of design patterns (creational, structural, and behavioral)
as defined by the Gang of Four and provide a concrete example of one pattern in each category.

WHY DESIGN PATTERNS?

The concept of design patterns did not necessarily start with the need for reusable software. In
fact, the seminal work on design patterns is about constructing buildings and cities. As
Christopher Alexander noted in A Pattern Language: Towns, Buildings, Construction, “Each

pattern describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use the solution a
million times over, without ever doing it the same way twice.”

The Four Elements of a Pattern

The GoF describe a pattern as having four essential elements:

• The pattern name is a handle we can use to describe a design problem, its solutions, and
consequences in a word or two. Naming a pattern immediately increases our design
vocabulary. It lets us design at a higher level of abstraction. Having a vocabulary for patterns
lets us talk about them with our colleagues, in our documentation, and even to ourselves. It
makes it easier to think about designs and to communicate them and their trade-off to others.
Finding good names has been one of the hardest parts of developing our catalog.?

• The problem describes when to apply the pattern. It explains the problem and its content.
It might describe specific design problems, such as how to represent algorithms as objects. It
might describe class or object structures that are symptomatic of an inflexible design.
Sometimes the problem will include a list of conditions that must be met before it makes sense
to apply the pattern.

• The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution doesn't describe a particular concrete design
or implementation, because a pattern is like a template that can be applied in many situations.
Instead, the pattern provides an abstract description of a design problem, and how a general
arrangement of elements (classes and objects in our case) solves it.

• The consequences are the results and trade-offs of applying the pattern. Although con-
sequences are often unvoiced, when we describe design decisions, they are critical for
evaluating design alternatives and for understanding the costs and benefits of the applying
pattern. The consequences for software often concern space and time trade-offs. They might
address language and implementation issues as well. Because reuse is often a factor in object-
oriented design, the consequences of a pattern include its impact on a system's flexibility,
extensibility, or portability. Listing the consequences explicitly helps you understand and
evaluate them.

SMALLTALK’S MODEL/VIEW/CONTROLLER

For historical perspective, we need to consider the Model/View/Controller (MVC) introduced in
Smalltalk (and used in other object-oriented languages). MVC is often used to illustrate the
origins of design patterns. The Model/View/Controller paradigm was used to create user
interfaces in Smalltalk. Smalltalk was perhaps the first popular object-oriented language.

Smalltalk

Smalltalk is the result of several great ideas that emerged from Xerox PARC. These ideas included the
mouse and using a windowing environment, among others. Smalltalk is a wonderful language that
provided the foundation for all the object-oriented languages that followed. One of the complaints about
C++ is that it's not really object-oriented, whereas Smalltalk is. Although C++ had a larger following in
the early days of OO, Smalltalk has always had a very dedicated core group of supporters. Java is a
mostly OO language that embraced the C++ developer base.

Design Patterns defines the MVC components in the following manner:

The Model is the application object, the View is the screen presentation, and the Controller
defines the way the user interface reacts to user input.

The problem with previous paradigms is that the Model, View, and Controller used to be lumped
together in a single entity. For example, a single object would have included all three of the
components. With the MVC paradigm, these three components have separate and distinct
interfaces. So if you want to change the user interface of an application, you only have to change
the View. Figure 10.1 illustrates what the MVC design looks like.

Figure 10.1 Model/View/Controller paradigm.

Remember that much of what we have been learning about object-oriented development has to
do with interfaces versus implementation. As much as possible, we want to separate the
interface from the implementation. We also want to separate interface from interface as much as
possible. For example, we do not want to combine multiple interfaces that do not have anything
to do with one another (or the solution to the problem at hand). The MVC was one of the early
pioneers in this separation of interfaces. The MVC explicitly defines the interfaces between
specific components pertaining to a very common and basic programming problem—the
creation of user interfaces and their connection to the business logic and data behind them.

If you follow the MVC concept and separate the user interface, business logic, and data, your
system will be much more flexible and robust. For example, assume that the user interface is on
a client machine, the business logic is on an application server, and the data is located on a data
server. Developing your application in this way would allow you to change the way the GUI
looks without having an impact on the business logic or the data. Likewise, if your business logic
changes and you calculate a specific field differently, you can change the business logic without
having to change the GUI. And finally, if you want to swap databases and store your data
differently, you can change the way the data is stored on the data server without affecting either
the GUI or the business logic. This assumes, of course, that the interfaces between the three do
not change.

MVC Example

One example is that of a listbox used in a user interface. Consider a GUI that includes a list of phone
numbers. The listbox is the view, the phone list is the model, and the controller is the logic that binds the
listbox to the phone list.

MVC Drawbacks

Although the MVC is a great design, it can be somewhat complex in that a lot of attention must be paid to
the upfront design. This is a problem with object-oriented design in general—there is a fine line between
a good design and a cumbersome design. The question remains: How much complexity should you build
into the system with regard to a complete design?

TYPES OF DESIGN PATTERNS

Design Patterns features 23 patterns grouped into the three categories that follow. Most of the
examples are written in C++, with some written in Smalltalk. The time of the book’s publication
is indicative of the use of C++ and Smalltalk. The publication date of 1995 was right at the cusp
of the Internet revolution and the corresponding popularity of the Java programming language.
After the benefit of design patterns became apparent, many other books rushed in to fill the
newly created market.

In any event, the actual language used is irrelevant. Design Patterns is inherently a design book,
and the patterns can be implemented in any number of languages. The authors of the book
divided the patterns into three categories:

• Creational patterns create objects for you, rather than having you instantiate objects
directly. This gives your program more flexibility in deciding which objects need to be
created for a given case.

• Structural patterns help you compose groups of objects into larger structures, such as
complex user interfaces or accounting data.

• Behavioral patterns help you define the communication between objects in your
system and how the flow is controlled in a complex program.

The following sections discuss one example from each of these categories to provide a flavor of
design patterns. For a comprehensive list and description of individual design patterns, refer to
the books listed at the end of this chapter.

Creational Patterns

The creational patterns consist of the following categories:

• Abstract factory

• Builder

• Factory method

• Prototype

• Singleton

As stated earlier, the scope of this chapter is to describe what a design pattern is—not to
describe each and every pattern in the GoF book. Thus, we will cover a single pattern in each
category. With this in mind, let’s consider an example of a creational pattern and look at the
factory pattern.

The Factory Method Design Pattern
Creating, or instantiating, objects may well be one of the most fundamental concepts in object
oriented programming. It goes without saying that you can’t use an object unless that object
exists. When writing code, the most obvious way to instantiate an object is to use
the new keyword.
To illustrate, let’s revisit the Shape example used throughout this book. Here we have the
familiar parent class Shape, which is abstract, and the child class Circle, which is the concrete
implementation. We instantiate a Circle class in the usual way by employing the new keyword:
abstract class Shape {

}

class Circle extends Shape {

}

Circle circle = new Circle();

Although this code certainly works, there may be many other places in your code where you
need to instantiate a Circle, or any other Shape for that matter. In many cases, you will have
specific object creation parameters that need to be handled each time you create a Shape.
As a result, any time you change the way objects are created, the code must be changed in every
location where a Shape object is instantiated. The code is highly coupled because a change in one
location necessitates code changes in potentially many other locations. Another problem with
this approach is that it exposes the object creation logic to the programmers using the classes.

To remedy these situations, we can implement a factory method. In short, the factory method is
responsible for encapsulating all instantiation so that it is uniform across the implementation.
You use the factory to instantiate, and the factory is responsible for instantiating properly.

Factory Method Pattern

The fundamental intent of the factory method pattern is to create objects without having to
specify the exact class—in effect, using interfaces to create new types of objects.

To illustrate how to implement a factory pattern, let’s create a factory for the Shape class
example. The class diagram in Figure 10.2 helps visualize how the various classes in the example
interact.

Figure 10.2 Creating a factory for the Shape class.

In some ways, you can think of a factory as a wrapper. Consider the fact that there may be some
significant logic involved in instantiating an object and you don’t want the programmer (user) to
be concerned with this logic. It is almost like the concept of an accessor method (getters and
setters) when the retrieval of a value is inside some logic (like when a password is required).
Using a factory method is useful when you don’t know ahead of time which specific class you
might need. For example, you may know that a shape is required, but you don’t know the

specific shape (at least not yet). With this in mind, all possible classes must be in the same
hierarchy; that is, all the classes in this example must be a subclass of Shape. In fact, a factory is
used precisely because you don’t know what you need, allowing you to add some of the classes
later. If you knew what you needed, you could simply “inject” the instance via a constructor or a
setter method.

Basically, this is the definition of polymorphism.

We create an enum to contain the types of shapes. In this case, we will define CIRCLE, SQUARE,
and TRIANGLE.
enum ShapeType {

 CIRCLE, SQUARE, TRIANGLE

}

We define the Shape class as abstract with just a constructor and an abstract method
called generate().
abstract class Shape {

 private ShapeType sType = null;

 public Shape(ShapeType sType) {

 this.sType = sType;

 }

 // Generate the shape

 protected abstract void generate();

}

The child classes, CIRCLE, SQUARE, and TRIANGLE, extend the Shape class, identify themselves, and
provide the concrete implementation of the generate() method.

Click here to view code image
class Circle extends Shape {

 Circle() {

 super(ShapeType.CIRCLE);

 generate();

 }

 @Override

 protected void generate() {

 System.out.println("Generating a Circle");

 }

}

class Square extends Shape {

 Square() {

 super(ShapeType.SQUARE);

 generate();

 }

 @Override

 protected void generate() {

 System.out.println("Generating a Square");

 }

}

class Triangle extends Shape {

 Triangle() {

 super(ShapeType.TRIANGLE);

 generate();

 }

 @Override

 protected void generate() {

 System.out.println("Generating a Triangle");

 }

}

The ShapeFactory class, as the name implies, is the actual factory. Focus on
the generate() method. While a Factory provides many advantages, note that
the generate() method is the only location within the application that actually instantiates
a Shape.

Click here to view code image
class ShapeFactory {

 public static Shape generateShape(ShapeType sType) {

 Shape shape = null;

 switch (sType) {

 case CIRCLE:

 shape = new Circle();

 break;

 case SQUARE:

 shape = new Square();

 break;

 case TRIANGLE:

 shape = new Triangle();

 break;

 default:

 // throw an exception

 break;

 }

 return shape;

 }

}

The traditional approach to instantiating these individual objects is to have the programmer
directly instantiate the objects using the new keyword as follows:

Click here to view code image
public class TestFactoryPattern {

 public static void main(String[] args) {

 Circle circle = new Circle();

 Square square = new Square();

 Triangle triangle = new Triangle();

 }

}

However, properly using the factory requires that the programmer use the ShapeFactoryclass to
obtain any Shape object:

Click here to view code image
public class TestFactoryPattern {

 public static void main(String[] args) {

 ShapeFactory.generateShape(ShapeType.CIRCLE);

 ShapeFactory.generateShape(ShapeType.SQUARE);

 ShapeFactory.generateShape(ShapeType.TRIANGLE);

 }

}

Structural Patterns

Structural patterns are used to create larger structures from groups of objects. The following
seven design patterns are members of the structural category:

• Adapter

• Bridge

• Composite

• Decorator

• Facade

• Flyweight

• Proxy

As an example from the structural category, let’s take a look at the adapter pattern. The adapter
pattern is also one of the most important design patterns. This pattern is a good example of how
the implementation and interface are separated.

The Adapter Design Pattern
The adapter pattern is a way for you to create a different interface for a class that already exists.
The adapter pattern basically provides a class wrapper. In other words, you create a new class
that incorporates (wraps) the functionality of an existing class with a new and—ideally—better
interface. A simple example of a wrapper is the Java class Integer. The Integer class wraps a
single Integer value inside it. You might wonder why you would bother to do this. Remember
that in an object-oriented system, everything is an object. In Java, primitives, such as ints,
floats, and so on, are not objects. When you need to perform functions on these primitives, such
as conversions, you need to treat them as objects. Thus, you create a wrapper object and “wrap”
the primitive inside it. Thus, you can take a primitive like the following:
int myInt = 10;

and wrap it in an Integer object:
Integer myIntWrapper = new Integer (myInt);

Now you can do a conversion, so you can treat it as a string:

String myString = myIntWrapper.toString();

This wrapper enables you to treat the original integer as an object, thus providing all the
advantages of an object.

As for the adapter pattern itself, consider the example of a mail tool interface. Let’s assume you
have purchased some code that provides all the functionality you need to implement a mail
client. This tool provides everything you want in a mail client, except you would like to change
the interface slightly. In fact, all you want to do is change the API to retrieve your mail.

The following class provides a very simple example of a mail client for this example:

Click here to view code image
package MailTool;

public class MailTool {

 public MailTool () {

 }

 public int retrieveMail() {

 System.out.println ("You've Got Mail");

 return 0;

 }

}

When you invoke the retrieveMail() method, your mail is presented with the very original
greeting “You’ve Got Mail.” Now let’s suppose you want to change the interface in all your
company’s clients from retrieveMail() to getMail(). You can create an interface to enforce
this:
package MailTool;

interface MailInterface {

 int getMail();

}

You can now create your own mail tool that wraps the original tool and provide your own
interface:

Click here to view code image
package MailTool;

class MyMailTool implements MailInterface {

 private MailTool yourMailTool;

 public MyMailTool () {

 yourMailTool= new MailTool();

 setYourMailTool(yourMailTool);

 }

 public int getMail() {

 return getYourMailTool().retrieveMail();

 }

 public MailTool getYourMailTool() {

 return yourMailTool ;

 }

 public void setYourMailTool(MailTool newYourMailTool) {

 yourMailTool = newYourMailTool;

 }

}

Inside this class, you create an instance of the original mail tool that you want to retrofit. This
class implements MailInterface, which will force you to implement a getMail()method. Inside
this method, you literally invoke the retrieveMail() method of the original mail tool.
To use your new class, you instantiate your new mail tool and invoke the getMail()method.

Click here to view code image
package MailTool;

public class Adapter

{

 public static void main(String[] args)

 {

 MyMailTool myMailTool = new MyMailTool();

 myMailTool.getMail();

 }

}

When you invoke the getMail() method, you are using this new interface to invoke
the retrieveMail() method from the original tool. This is a very simple example; however, by

creating this wrapper, you can enhance the interface and add your own functionality to the
original class.

The concept of an adapter is quite simple, but you can create new and powerful interfaces using
this pattern.

Behavioral Patterns

The behavioral patterns consist of the following categories:

• Chain of response

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template method

• Visitor

As an example from the behavioral category, let’s take a look at the iterator pattern. This is one
of the most commonly used patterns and is implemented by several programming languages.

The Iterator Design Pattern

Iterators provide a standard mechanism for traversing a collection, such as a vector.
Functionality must be provided so that each item of the collection can be accessed one at a time.
The iterator pattern provides information hiding, keeping the internal structure of the collection
secure. The iterator pattern also stipulates that more than one iterator can be created without
interfering with each other. Java provides its own implementation of an iterator. The following
code creates a vector and then inserts a number of strings into it:

Click here to view code image
package Iterator;

import java.util.*;

public class Iterator {

 public static void main(String args[]) {

 // Instantiate an ArrayList.

 ArrayList<String> names = new ArrayList();

 // Add values to the ArrayList

 names.add(new String("Joe"));

 names.add(new String("Mary"));

 names.add(new String("Bob"));

 names.add(new String("Sue"));

 //Now Iterate through the names

 System.out.println("Names:");

 iterate(names);

 }

 private static void iterate(ArrayList<String> arl) {

 for(String listItem : arl) {

 System.out.println(listItem.toString());

 }

 }

}

Then we create an enumeration so that we can iterate through it. The method iterate() is
provided to perform the iteration functionality. In this method, we use the Java enumeration
method hasMoreElements(), which traverses the vector and lists all the names.

ANTIPATTERNS

Although a design pattern evolves from experiences in a positive manner, antipatterns can be
thought of as collections of experiences that have gone awry. It is well documented that most
software projects are ultimately deemed unsuccessful. In fact, as indicated in the article
“Creating Chaos” by Johnny Johnson, fully one-third of all projects are cancelled outright. It
would seem obvious that many of these failures are caused by poor design decisions.

The term antipattern derives from the fact that design patterns are created to proactively solve a
specific type of problem. An antipattern, on the other hand, is a reaction to a problem and is
gleaned from bad experiences. In short, whereas design patterns are based on solid design
practices, antipatterns can be thought of as practices to avoid.

In the November 1995 C++ Report, Andrew Koenig described two facets of antipatterns:

• Those that describe a bad solution to a problem, which result in a bad situation.

• Those that describe how to get out of a bad situation and how to proceed from there
to a good solution.

Many people believe that antipatterns are more useful than design patterns. This is because
antipatterns are designed to solve problems that have already occurred. This boils down to the
concept of root-cause analysis. A study can be conducted with data that might indicate why the
original design, perhaps an actual design pattern, did not succeed. It might be said that
antipatterns emerge from the failure of previous solutions. Thus, antipatterns have the benefit
of hindsight.

For example, in his article “Reuse Patterns and Antipatterns,” Scott Ambler identifies a pattern
called a robust artifact and defines it as follows:

An item that is well-documented, built to meet general needs instead of project-specific needs,
thoroughly tested, and has several examples to show how to work with it. Items with these
qualities are much more likely to be reused than items without them. A Robust Artifact is an
item that is easy to understand and work with.

However, there are certainly many situations when a solution is declared reusable and then no
one ever reuses it. Thus, to illustrate an antipattern, he writes:

Someone other than the original developer must review a Reuseless Artifact to determine
whether or not anyone might be interested in it. If so, the artifact must be reworked to become a
Robust Artifact.

Thus, antipatterns lead to the revision of existing designs, and the continuous refactoring of
those designs until a workable solution is found.

Some Good Examples of Antipatterns

• Singleton

• Service locator

• Magic strings/magic numbers

• Interface bloat

• Coding by exception

• Error hiding/swallowing

CONCLUSION

In this chapter, we explored the concept of design patterns. Patterns are part of everyday life,
and this is just the way you should be thinking about object-oriented designs. As with many
things pertaining to information technology, the roots for solutions are founded in real-life
situations.

Although this chapter covered design patterns only briefly, you should explore this topic in
greater detail by picking up one of the books referenced at the end of this chapter.

REFERENCES

Alexander, Christopher, et al. 1977. A Pattern Language: Towns, Buildings, Construction.
Cambridge, UK: Oxford University Press.

Ambler, Scott. “Reuse Patterns and Antipatterns.” 2000 Software Development Magazine.

Gamma, Erich, et al. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Boston, MA: Addison-Wesley.

Grand, Mark. 2002. Patterns in Java: A Catalog of Reusable Design Patterns Illustrated with
UML, Second Edition, volume 1. Hoboken, NJ: Wiley.

Jaworski, Jamie. 1999. Java 2 Platform Unleashed. Indianapolis, IN: Sams Publishing.

Johnson, Johnny. “Creating Chaos.” American Programmer, July 1995.

Larman, Craig. 2004. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, Third Edition. Hoboken, NJ: Wiley.

11. Avoiding Dependencies and Highly Coupled

Classes
As presented in Chapter 1, “Introduction to Object-Oriented Concepts,” the traditional criteria of
classical object-oriented programming are encapsulation, inheritance, and polymorphism.
Theoretically, to consider a programming language as an object-oriented language, it must
follow these three principles. In addition, as also covered in Chapter 1, I like to include
composition.

Thus, when I teach object-oriented programming, my list of fundamental concepts looks like
this:

• Encapsulation

• Inheritance

• Polymorphism

• Composition

Tip

Perhaps I should add interfaces to this list, but I have always considered interfaces to be a specific type of
inheritance.

Adding composition to this list is even more important in today’s development environment
because of the debate over how to use inheritance appropriately. Concerns about using
inheritance are not a recent phenomenon. In the past several years, this debate has heated up.
Many developers I talk to advocate for using composition rather than inheritance (often called
composition over inheritance). In fact, some avoid using inheritance at all, or at least limit the
use of inheritance to a single hierarchical level.

The reason for focusing on how to use inheritance revolves around the issue of coupling. The
arguments for using inheritance are, most certainly, reusability, extensibility, and
polymorphism; however, inheritance can cause problems by creating dependencies between
classes—in effect, coupling the classes. These dependencies create potential problems for
maintenance and testing. Chapter 7, “Mastering Inheritance and Composition,” discussed how
inheritance might actually weaken encapsulation, which seems counterintuitive because they
are both fundamental concepts. Nevertheless, this is actually part of the fun, and requires that
we really think about how we should use inheritance.

Caution

Be aware that I am not advocating avoiding inheritance. The discussion here is actually about avoiding
dependencies and highly coupled classes. When to use inheritance is an important part of this
discussion.

This debate leads to the following question: if not inheritance, then what? The short answer is to
use composition. This should not be surprising because throughout the book I contend that
there are really only two ways to reuse classes: using inheritance and using composition. You
can either create a child from a parent class via inheritance or contain one class within another
class using composition.

If, as some people advocate, inheritance is to be avoided, why do we spend time learning it? The
answer is simple: A lot of code utilizes inheritance. As most developers soon come to
understand, the vast majority of the code encountered appears in maintenance mode. Thus, it is
imperative to understand how to fix, enhance, and maintain code written using inheritance. You
may even write some new code using inheritance. In short, a programmer needs to cover all the
possible bases and learn the entire developers’ toolkit. However, this also means that we have to
keep adding tools to that kit as well as rethink how we use them.

Again, please understand that I am not making any value judgments here. I am not claiming
that inheritance is problematic and to avoid it. What I am saying is that it is important to fully
grasp how inheritance is used, carefully study alternative ways of design, and then decide for
yourself. Thus, the intent of the examples in this chapter is not necessarily to describe the
optimal way to design your classes; they are educational exercises meant to get you thinking
about the issues associated with deciding between inheritance and composition. Remember that
it is important for all technologies to evolve, keep the good, and refine the not-so good.

Moreover, composition poses its own coupling issues. In Chapter 7 I discussed the various types
of composition: associations and aggregations. Aggregations are objects that are embedded in
other objects (created with the new keyword) while associations are objects that are passed into
other objects via a parameter list. Because aggregations are embedded in objects, they are highly
coupled, which we want to avoid.

Therefore, while inheritance may have obtained a reputation as encouraging highly coupled
classes, composition (using aggregations) also can create highly coupled classes. Let’s revisit the
stereo component example used in Chapter 9, “Building Objects and Object-Oriented Design,”
to bring all of these concepts together in a specific example.

Creating a stereo with aggregations can be likened to creating a boombox, which is a product
that has all the components embedded inside a single unit. In many situations, this can be very
convenient. It can be picked up, moved easily, and requires no special assembly. However, this
design can also lead to many problems. If one component, say the MP3 player, breaks, you
must take in the entire unit for repair. Even worse, many problems may arise to render the
entire boombox unusable, such as an electrical issue.

Creating a stereo with associations can mitigate many of the problems encountered with
aggregations. Think of a component stereo system as a bunch of associations connected by patch
cords (or wireless). In this design, there is a central object called a receiver connected to several
other objects such as speakers, CD players, even turntables and cassette players. In fact, think of
this as a vendor-neutral solution because we can simply obtain a component off the shelf, which
is a major advantage.

In this situation, if the CD player breaks, you simply disconnect it, providing the opportunity to
either fix the CD player (while still enjoying the use of the other components) or swapping it out
with a new CD player that works. This is the advantage of using associations and keeping the
coupling between classes to a minimum.

Tip

As pointed out in Chapter 9, although highly coupled classes are generally frowned upon, there might be
times when you are willing to accept the risk of a highly coupled design. The boombox is one such
example. Despite the fact that it has a highly coupled design, it is sometimes the preferred choice.

Now that we have reviewed the coupling issues of both inheritance and composition, let’s
explore examples of some highly coupled designs using both inheritance and composition. As I

often do in the classroom, we will iterate through these examples until we use a technique called
dependency injection to mitigate the coupling issues.

COMPOSITION VERSUS INHERITANCE AND DEPENDENCY INJECTION

To begin, we can focus on how to take an inheritance model (gleaned from examples often used
in this book) and redesign it, not with inheritance but with composition. The second example
shows how we can redesign with composition—albeit using aggregation, which is not necessarily
an optimal solution. The third example shows how to avoid aggregations and design with
associations instead—the concept of dependency injection.

1) Inheritance

Whether or not you buy into the argument of composition over inheritance, let’s begin by
presenting a straightforward example of inheritance and explore how it might otherwise be
implemented using composition, revisiting the mammal example used throughout the book.
In this case, we introduce a bat—a mammal that can fly, as seen in Figure 11.1.

Figure 11.1 Using inheritance

to create mammals.

In this example specifically, inheritance appears to be the obvious choice. Creating a Dogclass
that inherits from Mammal is a slam dunk—isn’t it? Look at the following code, which utilizes
inheritance in this manner:

Click here to view code image
class Mammal {

 public void eat () {System.out.println("I am Eating");};

}

class Bat extends Mammal {

 public void fly () {System.out.println("I am Flying");};

}

class Dog extends Mammal {

 public void walk () {System.out.println("I am Walking");};

}

public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Composition over Inheritance");;

 System.out.println("\nDog");

 Dog fido = new Dog();

 fido.eat();

 fido.walk();

 System.out.println("\nBat");

 Bat brown = new Bat();

 brown.eat();

 brown.fly();

 }

}

In this design, a Mammal has a single behavior, eat(), assuming that all mammals must eat.
However, we start to see the problem with inheritance immediately when we add
two Mammal subclasses, Bat and Dog. While a dog can walk, not all mammals walk. In addition,
while a bat can indeed fly, not all mammals fly. So the question is, where do these methods go?
Just like in our earlier penguin example, because not all birds fly, deciding where to place
methods in an inheritance hierarchy can be tricky.
Separating the Mammal class into FlyingMammals and WalkingMammals is not a very elegant
solution because this is only the tip of the proverbial iceberg. Some mammals can swim, some
mammals even lay eggs. Moreover, there are likely countless other behaviors that individual
mammal species possess, and it might be impractical to create a separate class for all of these
behaviors. Thus, rather than approaching this design as an is-a relationship, perhaps we should
explore it using a has-a relationship.

2) Composition

In this strategy, rather than embedding the behaviors in the classes themselves, we create
individual classes for each behavior. Therefore, rather than placing behaviors in an inheritance
hierarchy, we can create classes for each behavior and then build individual mammals by
including just the behaviors that they require (via aggregation).

Thus, we create a class called Walkable and a class called Flyable, as seen in Figure 11.2.

Figure

11.2 Using composition to create mammals.

For example, look at the following code. We still have the Mammal class with its eat()method,
and we still have the Dog and Bat classes. The major design difference here is that
the Dog and Bat classes obtain their behaviors via aggregation using composition.

Caution

Be aware that the term aggregation is used in the preceding paragraph. This example illustrates how
composition can be used in lieu of inheritance; however, in this example, we are using aggregation, which
still contains significant coupling. Thus, consider this an intermediate, educational step moving toward
the next example using interfaces.

Click here to view code image
class Mammal {

 public void eat () {System.out.println("I am Eating");};

}

class Walkable {

 public void walk () {System.out.println("I am Walking");};

}

class Flyable {

 public void fly () {System.out.println("I am Flying");};

}

class Dog {

 Mammal dog = new Mammal();

 Walkable walker = new Walkable();

}

class Bat {

 Mammal bat = new Mammal();

 Flyable flyer = new Flyable();

}

public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Composition over Inheritance");;

 System.out.println("\nDog");;

 Dog fido = new Dog();

 fido.dog.eat();

 fido.walker.walk();

 System.out.println("\nBat");;

 Bat brown = new Bat();

 brown.bat.eat();

 brown.flyer.fly();

 }

}

Note

The intent of this example is to illustrate how to use composition in lieu of inheritance; that does not
mean that you cannot use inheritance at all in your designs. If you determine that absolutely all
mammals eat, then, for example, perhaps you would decide to place the eat() method in the Mammal
class and have Dog and Bat inherit from Mammal. As always, this is a design decision.

Perhaps the heart of this discussion lies in the concept we covered earlier, that inheritance
breaks encapsulation. This is easy to understand because a change in the Mammal class would
require a recompilation (and perhaps even a redeployment) of all the Mammal subclasses. This
means that the classes are highly coupled, and this is counter to our stated goal of uncoupling
classes as much as possible.
In our composition example, if we wanted to add a Whale class, none of the previously written
classes would need a rewrite. You would add a class called Swimmable and a class called Whale.
Then the Swimmable class could be reused for, say, a Dolphin class.

Click here to view code image
class Swimmable {

 public void fly () {System.out.println("I am Swimming");};

}

class Whale {

 Mammal whale = new Mammal();

 Walkable swimmer = new Swimmable ();

}

The main application can add this functionality with no changes to the classes that previously
existed.

System.out.println("\nWhale");

Whale shamu = new Whale();

shamu.whale.eat();

shamu.swimmer.swim();

One rule of thumb is to use inheritance in only truly polymorphic situations.
Thus, Circlesand Rectangles inheriting from Shape may well be a legitimate use of inheritance.
On the other hand, behaviors such as walking and flying might not be good candidates for
inheritance because overriding them could be problematic. For example, if you overrode
the fly()method in Dog, the only obvious option would be a no-op (do nothing). Again, as we
have seen with the earlier Penguin example, you don’t want a Dog to run over a cliff, execute the
available fly()method and then, to Fido’s great chagrin, find that the fly()method doesn’t do
anything.
While this example does indeed implement this solution using composition, there is a serious
flaw to the design. The objects are highly coupled, since the use of the new keyword is obvious.
class Whale {

 Mammal whale = new Mammal();

 Walkable swimmer = new Swimmable ();

}

To complete our exercise of decoupling the classes, we introduce the concept of dependency
injection. In short, rather than creating objects inside other objects, we will inject the objects
from the outside via parameter lists. The discussion focuses solely on the concept of injecting
dependencies.

Dependency Injection
The example in the previous section uses composition (with aggregation) to provide the Dogwith
a behavior called Walkable. The Dog class literally created a new Walkable object within
the Dog class itself, as the following code fragment illustrates:
class Dog {

 Walkable walker = new Walkable();

}

Although this does in fact work, the classes remain highly coupled. To completely decouple the
classes in the previous example, let’s implement the concept of dependency injection mentioned
previously. Dependency injection and inversion of control are often covered together. One
definition of inversion of control (IOC) is to make it someone else’s responsibility to make an
instance of the dependency and pass it to you. This is exactly what we will implement in this
example.

Because not all mammals walk, fly, or swim, to begin the decoupling process, we create
interfaces to represent the behaviors for our various mammals. For this example, I will focus on
the walking behavior by creating an interface called IWalkable as seen in Figure 11.3.

Figure 11.3 Using interfaces to

create mammals.

The code for the IWalkable interface is as follows:
interface IWalkable {

 public void walk();

}

The only method in this interface is walk(), which is left to the concrete class to provide the
implementation.

Click here to view code image
class Dog extends Mammal implements IWalkable{

 Walkable walker;

 public void setWalker (Walkable w) {

 this.walker=w;

 }

 public void walk () {System.out.println("I am Walking");};

}

Note that the Dog class extends the Mammal class and implements the IWalkable interface. Also
note that the Dog class provides a reference and a constructor that provides the mechanism to
inject the dependency.
Walkable walker;

public void setWalker (Walkable w) {

 this.walker=w;

}

In a nutshell, this is what dependency injection is. The Walkable behavior is not created inside
the Dog class using the new keyword; it is injected into the Dog class via the parameter list.

Here is the complete example:

Click here to view code image
class Mammal {

 public void eat () {System.out.println("I am Eating");};

}

interface IWalkable {

 public void walk();

}

class Dog extends Mammal implements IWalkable{

 Walkable walker;

 public void setWalker (Walkable w) {

 this.walker=w;

 }

 public void walk () {System.out.println("I am Walking");};

}

public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Composition over Inheritance");

 System.out.println("\nDog");

 Walkable walker = new Walkable();

 Dog fido = new Dog();

 fido.setWalker(walker);

 fido.eat();

 fido.walker.walk();

 }

}

While this example uses injection by constructor, it is not the only way to handle dependency
injection.

Injection by Constructor
One way to inject the Walkable behavior is to create a constructor within the Dog class that, when
invoked, will accept an argument from the main application as follows:
class Dog {

 Walkable walker;

 public Dog (Walkable w) {

 this.walker=w;

 }

}

In this approach, the application instantiates a Walkable object and inserts it into the Dogvia the
constructor.

Walkable walker = new Walkable();

Dog fido = new Dog(walker);

Injection by Setter
Although a constructor will initialize attributes when an object is instantiated, there is often a
need to reset values during the lifetime of an object. This is where accessor methods come into
play—in the form of setters. The Walkable behavior can be inserted into the Dog class by using a
setter, here called setWalker():
class Dog {

 Walkable walker;

 public void setWalker (Walkable w) {

 this.walker=w;

 }

}

As with the constructor technique, the application instantiates a Walkable object and inserts it
into the Dog via the setter:
Walkable walker = new Walkable();

Dog fido = new Dog();

fido.setWalker(walker);

CONCLUSION

Dependency injection decouples your class’s construction from the construction of its
dependencies. It is like buying something off the shelf (from a vendor) rather than building it on
your own each time.

This plays to the heart of the discussion of Inheritance and composition. It is very important to
note that this is simply a discussion. The purpose of this chapter is not necessarily to describe
the “optimal” way to design your classes but to get you thinking about the issues associated with
deciding between Inheritance and composition. In the next chapter, we explore The SOLID
principles of object-oriented design, concepts highly regarded and accepted by the software
development community.

REFERENCES

Martin, Robert, et al. Agile Software Development, Principles, Patterns, and Practices. 2002.
Boston: Pearson Education, Inc.

Martin, Robert, et al. Clean Code. 2009. Boston: Pearson Education, Inc.

12. The SOLID Principles of Object-Oriented Design
One of the most common statements that many developers make regarding object-oriented
programming is that a primary advantage of OOP is that it models the real world. I admit that I
use these words a lot when I discuss classical object-oriented concepts. According to Robert
Martin (in at least one lecture that I viewed on YouTube), the idea that OO is closer to the way
we think is simply marketing. Instead, he states that OO is about managing dependencies by
inverting key dependencies to prevent rigid code, fragile code, and non-reusable code.

For example, in classical object-oriented programming courses, the practice often models the
code directly to real-life situations. For example, if a dog is-a mammal, then this relationship is
an obvious choice for inheritance. The strict has-a and is-a litmus test has been part of the OO
mindset for years.

However, as we have seen throughout this book, trying to force an inheritance relationship can
cause design problems (remember the barkless dog?). Is trying to separate barkless dogs from
barking dogs, or flying birds from flightless birds, a smart inheritance design choice? Was this
all put in place by object-oriented marketers? OK; forget the hype. As we saw in the previous
chapter, perhaps focusing on a strict has-a and is-a decision is not necessarily the best
approach. Perhaps we should focus more on decoupling the classes.

In the lecture I mentioned previously, Robert Martin, often referred to as Uncle Bob, defines
these three terms to describe non-reusable code:

• Rigidity—When a change to one part of a program can break another part

• Fragility—When things break in unrelated places

• Immobility—When code cannot be reused outside its original context

SOLID was introduced to address these problems and strive to attain these goals. It defines five
design principles that Robert Martin introduced to “make software designs more
understandable, flexible, and maintainable.” According to Robert Martin, though they apply to
any object-oriented design, the SOLID principles can also form a core philosophy for
methodologies such as agile development or adaptive software development. The SOLID
acronym was introduced by
Michael Feathers.

The five SOLID principles are

• SRP—Single Responsibility Principle

• OCP—Open/Close Principle

• LSP—Liskov Substitution Principle

• IPS—Interface Segregation Principle

• DIP—Dependency Inversion Principle

This chapter focuses on covering these five principles and relates them to the classical object-
oriented principles that have been in place for decades. My goal in covering SOLID is to explain
the concepts in very simple examples. There is a lot of content online, including several very
good YouTube videos. Many of these videos target developers, not necessarily students new to
programming.

As I have attempted to do with all the examples in this book, my intent is not to get overly
complicated but to distill the examples to the lowest common denominator for educational
purposes.

THE SOLID PRINCIPLES OF OBJECT-ORIENTED DESIGN

In Chapter 11, “Avoiding Dependencies and Highly Coupled Classes,” we discussed some of the
fundamental concepts leading up to our discussion of the five SOLID principles. In this chapter,
we dive right in and cover each of the SOLID principles in more detail. All SOLID definitions are
from the Uncle Bob site: http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

1) SRP: Single Responsibility Principle

The Single Responsibility Principle states that a class should have only a single reason to
change. Each class and module in a program should focus on a single task. Thus, don’t put
methods that change for different reasons in the same class. If the description of the class
includes the word “and,” you might be breaking the SRP. In other words, every module or class
should have responsibility over a single part of the functionality provided by the software, and
that responsibility should be entirely encapsulated in the class.

Creating a shape hierarchy is one of the classic illustrations of inheritance. It is used often as a
teaching example, and I use it a lot throughout this chapter (as well as the book). In this
example, a Circle class inherits from an abstract Shape class. The Shape class provides an
abstract method called calcArea() as the contract for the subclass. Any class that inherits
from Shape must provide its own implementation of calcArea():
abstract class Shape{

 protected String name;

 protected double area;

 public abstract double calcArea();

}

In this example, we have a Circle class that inherits from Shape and, as required, provides its
implementation of calcArea():
class Circle extends Shape{

 private double radius;

 public Circle(double r) {

 radius = r;

 }

 public double calcArea() {

 area = 3.14*(radius*radius);

 return (area);

 };

}

Caution

In this example, we are only going to include a Circle class to focus on the Single Responsibility Principle
and keep the example as simple as possible.

A third class called CalculateAreas sums the areas of different shapes contained in
a Shape array. The Shape array is of unlimited size and can contain different shapes, such as
squares and triangles.

Click here to view code image
class CalculateAreas {

 Shape[] shapes;

 double sumTotal=0;

 public CalculateAreas(Shape[] sh){

 this.shapes = sh;

 }

 public double sumAreas() {

 sumTotal=0;

 for (inti=0; i<shapes.length; i++) {

 sumTotal = sumTotal + shapes[i].calcArea();

 }

 return sumTotal;

 }

 public void output() {

 System.out.println("Total of all areas = " + sumTotal);

 }

}

Note that the CalculateAreas class also handles the output for the application, which is
problematic. The area calculation behavior and the output behavior are coupled—contained in
the same class.
We can verify that this code works with the following test application called TestShape:

Click here to view code image
public class TestShape {

 public static void main(String args[]) {

 System.out.println("Hello World!");

 Circle circle = new Circle(1);

 Shape[] shapeArray = new Shape[1];

 shapeArray[0] = circle;

 CalculateAreas ca = new CalculateAreas(shapeArray);

 ca.sumAreas();

 ca.output();

 }

}

Now with the test application in place, we can focus on the issue of the Single Responsibility
Principle. Again, the issue is with the CalculateAreas class and that this class contains
behaviors for summing the various areas as well as the output.
The fundamental point (and problem) here is this: If you want to change the functionality of
the output() method, it requires a change to the CalculateAreas class regardless of whether the
method for summing the areas changes. For example, if at some point we want to present the
output to the console in HTML rather than in simple text, we must recompile and redeploy the
code that sums the area because the responsibilities are coupled.

According to the Single Responsibility Principle, the goal is that a change to one method would
not affect the other method, thus preventing unnecessary recompilations. “A class should have
one, and only one, reason to change—a single responsibility to change.”

To address this, we can put the two methods in separate classes, one for the original console
output and one for the newly included HTML output:

Click here to view code image
class CalculateAreas {

 Shape[] shapes;

 double sumTotal=0;

 public CalculateAreas(Shape[] sh){

 this.shapes = sh;

 }

 public double sumAreas() {

 sumTotal=0;

 for (inti=0; i<shapes.length; i++) {

 sumTotal = sumTotal + shapes[i].calcArea();

 }

 return sumTotal;

 }

}

class OutputAreas {

 double areas=0;

 public OutputAreas(double a){

 this.areas = a;

 }

 public void console() {

 System.out.println("Total of all areas = " + areas);

 }

 public void HTML() {

 System.out.println("<HTML>");

 System.out.println("Total of all areas = " + areas);

 System.out.println("</HTML>");

 }

}

Now, using the newly written class, we can add functionality for HTML output without
impacting the code for the area summing:

Click here to view code image
public class TestShape {

 public static void main(String args[]) {

 System.out.println("Hello World!");

 Circle circle = new Circle(1);

 Shape[] shapeArray = new Shape[1];

 shapeArray[0] = circle;

 CalculateAreas ca = new CalculateAreas(shapeArray);

 CalculateAreas sum = new CalculateAreas(shapeArray);

 OutputAreasoAreas = new OutputAreas(sum.sumAreas());

 oAreas.console(); // output to console

 oAreas.HTML(); // output to HTML

 }

}

The main point here is that you can now send the output to various destinations depending on
requirements. If you want to add another output possibility, such as JSON, you can add it to
the OutputAreas class without having to change the CalculateAreas class. As a result, you can
redistribute the CalculateAreas class independently without having to do anything to the other
classes.

2) OCP: Open/Close Principle

The Open/Close Principle states that you should be able to extend a class’s behavior, without
modifying it.

Let’s revisit the shape example yet again. In the following code, we have a class
called ShapeCalculator that accepts a Rectangle object, calculates the area of that object, and
then returns that value. It is a simple application but it works only for rectangles.

Click here to view code image
class Rectangle{

 protected double length;

 protected double width;

 public Rectangle(double l, double w) {

 length = l;

 width = w;

 };

}

class CalculateAreas {

 private double area;

 public double calcArea(Rectangle r) {

 area = r.length * r.width;

 return area;

 }

}

public class OpenClosed {

 public static void main(String args[]) {

 System.out.println("Hello World");

 Rectangle r = new Rectangle(1,2);

 CalculateAreas ca = new CalculateAreas ();

 System.out.println("Area = "+ ca.calcArea(r));

 }

}

The fact that this application works only for rectangles brings us to a constraint that illustrates
the Open/Closed Principle: If we want to add a Circle to the CalculateAreaclass (change what it
does), we must change the module itself. Obviously, this is at odds with the Open/Closed
Principle, which stipulates that we should not have to change the module to change what it does.
To comply with the Open/Closed Principle, we can revisit our tried and true shape example,
where an abstract class called Shape is created and then all shapes must inherit from
the Shape class, which has an abstract method called getArea().
At this point, we can add as many different classes as we want without having to change
the Shape class itself (for example, a Circle). We can now say that the Shape class is closed.

The following code implements this solution for a rectangle and a circle, and allows for the
creation of unlimited shapes:

Click here to view code image
abstract class Shape {

 public abstract double getArea();

}

class Rectangle extends Shape

{

 protected double length;

 protected double width;

 public Rectangle(double l, double w) {

 length = l;

 width = w;

 };

 public double getArea() {

 return length*width;

 }

}

class Circle extends Shape

{

 protected double radius;

 public Circle(double r) {

 radius = r;

 };

 public double getArea() {

 return radius*radius*3.14;

 }

}

class CalculateAreas {

 private double area;

 public double calcArea(Shape s) {

 area = s.getArea();

 return area;

 }

}

public class OpenClosed {

 public static void main(String args[]) {

 System.out.println("Hello World");

 CalculateAreas ca = new CalculateAreas();

 Rectangle r = new Rectangle(1,2);

 System.out.println("Area = " + ca.calcArea(r));

 Circle c = new Circle(3);

 System.out.println("Area = " + ca.calcArea(c));

 }

}

Note that in this implementation, the CalculateAreas() method does not have to change when
you add a new Shape.

You can scale your code without having to worry about legacy code. At its core, the Open/Closed
Principle states that you should extend your code via subclasses and the original class does not
need to be changed. However, the word extension is problematic in several discussions relating
to SOLID. As we will cover in detail, if we are to favor composition over inheritance, how does
this affect the Open/Closed Principle?

When following one of the SOLID principles, code may also comply with one of the other SOLID
principles. For example, when designing to follow the Open/Closed Principle, the code may also
comply with the Single Responsibility Principle.

3) LSP: Liskov Substitution Principle

The Liskov Substitution Principle states that the design must provide the ability to replace any
instance of a parent class with an instance of one of its child classes. If a parent class can do
something, a child class must also be able to do it.

Let’s examine some code that might look reasonable but violates the Liskov Substitution
Principle. In the following code, we have the typical abstract class called Shape. Rectanglethen
inherits from Shape and overrides its abstract method calcArea(). Square, in turn, inherits
from Rectangle.

Click here to view code image
abstract class Shape{

 protected double area;

 public abstract double calcArea();

}

class Rectangle extends Shape{

 private double length;

 private double width;

 public Rectangle(double l, double w){

 length = l;

 width = w;

 }

 public double calcArea() {

 area = length*width;

 return (area);

 };

}

class Square extends Rectangle{

 public Square(double s){

 super(s, s);

 }

}

public class LiskovSubstitution {

 public static void main(String args[]) {

 System.out.println("Hello World");

 Rectangle r = new Rectangle(1,2);

 System.out.println("Area = " + r.calcArea());

 Square s = new Square(2);

 System.out.println("Area = " + s.calcArea());

 }

}

So far so good: a rectangle is-a shape so everything looks fine. Because a square is-a rectangle
we are still fine—or are we?

Now we enter into a somewhat philosophical discussion: Is a square really a rectangle? Many
people would say yes. However, while the square may well be a specialized type of a rectangle, it
does have different properties than a rectangle. A rectangle is a parallelogram (opposite sides
are congruent), as is a square. Yet, a square is also a rhombus (all sides are congruent), whereas
a rectangle is not. Therefore, there are some differences.

The geometry is not really the issue when it comes to OO design. The issue is how we build
rectangles and squares. Here is the constructor for the Rectangle class:
public Rectangle(double l, double w){

 length = l;

 width = w;

}

The constructor obviously requires two parameters. However, the Square constructor requires
just one, even though its parent class, Rectangle, is expecting two.
class Square extends Rectangle{

 public Square(double s){

 super(s, s);

 }

In actuality, the functionality to compute area is subtly different for the two classes. In fact,
the Square is kind of faking the Rectangle out by passing it the same parameter twice. This may
seem like an acceptable workaround, but it really is something that may confuse someone
maintaining the code and could very well cause unintended maintenance headaches down the
road. This is an inconsistency at minimum and, perhaps, a questionable design decision. When
you see a constructor calling another constructor, it might be a good idea to pause and
reconsider the design—it might not be a proper child class.

How do you address this specific dilemma? Simply put, a square is not a substitute for a
rectangle and should not be a child class. Thus, they should be separate classes.

Click here to view code image
 abstract class Shape {

 protected double area;

 public abstract double calcArea();

}

class Rectangle extends Shape {

 private double length;

 private double width;

 public Rectangle(double l, double w) {

 length = l;

 width = w;

 }

 public double calcArea() {

 area = length*width;

 return (area);

 };

}

class Square extends Shape {

 private double side;

 public Square(double s){

 side = s;

 }

 public double calcArea() {

 area = side*side;

 return (area);

 };

}

public class LiskovSubstitution {

 public static void main(String args[]) {

 System.out.println("Hello World");

 Rectangle r = new Rectangle(1,2);

 System.out.println("Area = " + r.calcArea());

 Square s = new Square(2);

 System.out.println("Area = " + s.calcArea());

 }

}

4) IPS: Interface Segregation Principle

The Interface Segregation Principle states that it is better to have many small interfaces than a
few larger ones.

In this example, we are creating a single interface that includes multiple behaviors for
a Mammal, eat() and makeNoise():

Click here to view code image
interface IMammal {

 public void eat();

 public void makeNoise();

}

class Dog implements IMammal {

 public void eat() {

 System.out.println("Dog is eating");

 }

 public void makeNoise() {

 System.out.println("Dog is making noise");

 }

}

public class MyClass {

 public static void main(String args[]) {

 System.out.println("Hello World");

 Dog fido = new Dog();

 fido.eat();

 fido.makeNoise();

 }

}

Rather than creating a single interface for Mammal, we can create separate interfaces for all the
behaviors:

Click here to view code image
interface IEat {

 public void eat();

}

interface IMakeNoise {

 public void makeNoise();

}

class Dog implements IEat, IMakeNoise {

 public void eat() {

 System.out.println("Dog is eating");

 }

 public void makeNoise() {

 System.out.println("Dog is making noise");

 }

}

public class MyClass {

 public static void main(String args[]) {

 System.out.println("Hello World");

 Dog fido = new Dog();

 fido.eat();

 fido.makeNoise();

 }

}

In reality, we are decoupling the behaviors from the Mammal class. Thus, rather than creating a
single Mammal entity via inheritance (actually interfaces) we are moving to a composition-based
design, similar to the strategy taken in the previous chapter.
In short, by using this approach, we can build Mammals with composition rather than being
forced to utilize behaviors contained in a single Mammal class. For example, suppose someone
discovers a Mammal that doesn’t eat but instead absorbs nutrients through its skin. If we were
inheriting from a single Mammal class that contains the eat() behavior, the new mammal would
not need this behavior. However, if we separate all the behaviors into separate, single interfaces,
we can build each mammal in exactly the way it presents itself.

5) DIP: Dependency Inversion Principle

The Dependency Inversion Principle states that code should depend on abstractions. It often
seems like the terms dependency inversion and dependency injection are used interchangeably;
however, here are some key terms to understand as we discuss this principle:

• Dependency inversion—The principle of inverting the dependencies

• Dependency injection—The act of inverting the dependencies

• Constructor injection—Performing dependency injection via the constructor

• Parameter injection—Performing dependency injection via the parameter of a
method, like a setter

The goal of dependency inversion is to couple to something abstract rather than concrete.

Although at some point you obviously have to create something concrete, we strive to create a
concrete object (by using the new keyword) as far up the chain as possible, such as in
the main() method. Perhaps a better way of thinking of this is to revisit the discussion presented
in Chapter 8,
“Frameworks and Reuse: Designing with Interfaces and Abstract Classes,” where we discuss
loading classes at runtime, and in Chapter 9, “Building Objects and Object-Oriented Design,”
where we talk about decoupling and creating small classes with limited responsibilities.

In the same vein, one of the goals of the Dependency Inversion Principle is to choose objects at
runtime, not at compile time. (You can change the behavior of your program at runtime.) You
can even write new classes without having to recompile old ones (in fact, you can write new
classes and inject them).

Much of the foundation for this discussion was put forth in Chapter 11, “Avoiding Dependencies
and Highly Coupled Classes.” Let’s build on that as we consider the Dependency Inversion
Principle.

Step 1: Initial Example
For the first step in this example, we revisit yet again one of the classical object-oriented design
examples used throughout this book, that of a Mammal class, along with a Dog and a Cat class that
inherit from Mammal. The Mammal class is abstract and contains a single method
called makeNoise().
abstract class Mammal

{

 public abstract String makeNoise();

}

The subclasses, such as Cat, use inheritance to take advantage of Mammal’s
behavior, makeNoise():
class Cat extends Mammal

{

 public String makeNoise()

 {

 return "Meow";

 }

}

The main application then instantiates a Cat object and invokes the makeNoise() method:
Mammal cat = new Cat();;

System.out.println("Cat says " + cat.makeNoise());

The complete application for the first step is presented in the following code:

Click here to view code image
 public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Hello World\n");

 Mammal cat = new Cat();;

 Mammal dog = new Dog();

 System.out.println("Cat says " + cat.makeNoise());

 System.out.println("Dog says " + dog.makeNoise());

 }

}

abstract class Mammal

{

 public abstract String makeNoise();

}

class Cat extends Mammal

{

 public String makeNoise()

 {

 return "Meow";

 }

}

class Dog extends Mammal

{

 public String makeNoise()

 {

 return "Bark";

 }

}

Step 2: Separating Out Behavior
The preceding code has a potentially serious flaw: It couples the mammals and the behavior
(makingNoise). There may be a significant advantage to separating the mammal behaviors from
the mammals themselves. To accomplish this, we create a class called MakingNoisethat can be
used by all mammals as well as non-mammals.
In this model, a Cat, Dog, or Bird can then extend the MakeNoise class and create their own
noise-making behavior specific to their needs, such as the following code fragment for a Cat:
abstract class MakingNoise

{

 public abstract String makeNoise();

}

class CatNoise extends MakingNoise

{

 public String makeNoise()

 {

 return "Meow";

 }

}

With the MakingNoise behavior separated from the Cat class, we can use the CatNoiseclass in
place of the hard coded behavior in the Cat class itself, as the following code fragment
illustrates:
abstract class Mammal

{

 public abstract String makeNoise();

}

class Cat extends Mammal

{

 CatNoise behavior = new CatNoise();

 public String makeNoise()

 {

 return behavior.makeNoise();

 }

}

The following is the complete application for the second step:

Click here to view code image
public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Hello World\n");

 Mammal cat = new Cat();;

 Mammal dog = new Dog();

 System.out.println("Cat says " + cat.makeNoise());

 System.out.println("Dog says " + dog.makeNoise());

 }

}

abstract class MakingNoise

{

 public abstract String makeNoise();

}

class CatNoise extends MakingNoise

{

 public String makeNoise()

 {

 return "Meow";

 }

}

class DogNoise extends MakingNoise

{

 public String makeNoise()

 {

 return "Bark";

 }

}

abstract class Mammal

{

 public abstract String makeNoise();

}

class Cat extends Mammal

{

 CatNoise behavior = new CatNoise();

 public String makeNoise()

 {

 return behavior.makeNoise();

 }

}

class Dog extends Mammal

{

 DogNoise behavior = new DogNoise();

 public String makeNoise()

 {

 return behavior.makeNoise();

 }

}

The problem is that although we have decoupled a major part of the code, we still haven’t
reached our goal of dependency inversion because the Cat is still instantiating the Cat noise-
making behavior.
CatNoise behavior = new CatNoise();

The Cat is coupled to the low-level module CatNoise. In other words, the Cat should not be
coupled to CatNoise but to the abstraction for making noise. In fact, the Cat class should not
instantiate its noise-making behavior but instead receive the behavior via injection.

Step 3: Dependency Injection

In this final step, we totally abandon the inheritance aspects of our design and examine how to
utilize dependency injection via composition. You do not need inheritance hierarchies, which is
one of the major reasons why the concept of composition over inheritance is gaining
momentum. You compose a subtype rather than creating a subtype from a hierarchical model.

To illustrate, in the original implementation, the Cat and the Dog basically contain the same
exact code; they simply return a different noise. As a result, a significant percentage of the code
is redundant. Thus, if you had many different mammals, there would be a lot of noise-making
code. Perhaps a better design is to take the code to make noise out of the mammal.
The major leap here would be to abandon the specific mammals (Cat and Dog) and simply use
the Mammal class as shown here:
class Mammal

{

 MakingNoise speaker;

 public Mammal(MakingNoisesb)

 {

 this.speaker = sb;

 }

 public String makeNoise()

 {

 return this.speaker.makeNoise();

 }

}

Now we can instantiate a Cat noise-making behavior and provide it to the Animal class, to make
a mammal that behaves like a Cat. In fact, you can always assemble a Cat by injecting behaviors
rather than using the traditional techniques of class building.
Mammal cat = new Mammal(new CatNoise());

The following is the complete application for the final step:

Click here to view code image
public class TestMammal {

 public static void main(String args[]) {

 System.out.println("Hello World\n");

 Mammal cat = new Mammal(new CatNoise());

 Mammal dog = new Mammal(new DogNoise());

 System.out.println("Cat says " + cat.makeNoise());

 System.out.println("Dog says " + dog.makeNoise());

 }

}

class Mammal

{

MakingNoise speaker;

 public Mammal(MakingNoisesb)

 {

 this.speaker = sb;

 }

 public String makeNoise()

 {

 return this.speaker.makeNoise();

 }

}

interface MakingNoise

{

 public String makeNoise();

}

class CatNoise implements MakingNoise

{

 public String makeNoise()

 {

 return "Meow";

 }

}

class DogNoise implements MakingNoise

{

 public String makeNoise()

 {

 return "Bark";

 }

}

When discussing dependency injection, when to actually instantiate an object is now a key
consideration. Even though the goal is to compose objects via injection, you obviously must
instantiate objects at some point. As a result, the design decisions revolve around when to do
this instantiation.

As stated earlier in this chapter, the goal of dependency inversion is to couple to something
abstract rather than concrete, even though you obviously must create something concrete at
some point. Thus, one simple goal is to create a concrete object (by using new) as far up the chain
as possible, such as in the main() method. Always evaluate things when you see a newkeyword.

CONCLUSION

This concludes the discussion of SOLID. The SOLID principles are one of the most influential
sets of object-oriented guidelines used today. What is interesting about studying these principles
is how they relate to the fundamental object-oriented encapsulation, inheritance,
polymorphism, and composition, specifically in the debate of composition over inheritance.

For me, the most interesting point to take away from the SOLID discussion is that nothing is cut
and dried. It is obvious from the discussion on composition over inheritance that even the age-
old fundamental OO concepts are open for reinterpretation. As we have seen, a bit of time, along
with the corresponding evolution in various thought processes, is good for innovation.

REFERENCES

Martin, Robert, et al. Agile Software Development, Principles, Patterns, and Practices. 2002.
Boston: Pearson Education, Inc.

Martin, Robert, et al. Clean Code. 2009. Boston: Pearson Education, Inc.

	The Object-Oriented Thought Process
	The Object-Oriented Thought Process
	Acknowledgments
	About the Author
	We Want to Hear from You!
	Reader Services
	Introduction
	THIS BOOK’S SCOPE
	WHAT’S NEW IN THE FIFTH EDITION
	THE INTENDED AUDIENCE
	THE BOOK’S APPROACH
	SOURCE CODE USED IN THIS BOOK

	1. Introduction to Object-Oriented Concepts
	THE FUNDAMENTAL CONCEPTS
	OBJECTS AND LEGACY SYSTEMS
	PROCEDURAL VERSUS OO PROGRAMMING
	MOVING FROM PROCEDURAL TO OBJECT-ORIENTED DEVELOPMENT
	Procedural Programming
	OO Programming

	WHAT EXACTLY IS AN OBJECT?
	Object Data
	Object Behaviors

	WHAT EXACTLY IS A CLASS?
	Creating Objects
	Attributes
	Methods
	Messages

	USING CLASS DIAGRAMS AS A VISUAL TOOL
	ENCAPSULATION AND DATA HIDING
	Interfaces
	Implementations
	A Real-World Example of the Interface/Implementation Paradigm
	A Model of the Interface/Implementation Paradigm

	INHERITANCE
	Superclasses and Subclasses
	Abstraction
	Is-a Relationships

	POLYMORPHISM
	COMPOSITION
	Abstraction
	Has-a Relationships

	CONCLUSION

	2. How to Think in Terms of Objects
	KNOWING THE DIFFERENCE BETWEEN THE INTERFACE AND THE IMPLEMENTATION
	The Interface
	The Implementation
	An Interface/Implementation Example

	USING ABSTRACT THINKING WHEN DESIGNING INTERFACES
	PROVIDING THE ABSOLUTE MINIMAL USER INTERFACE POSSIBLE
	Determining the Users
	Object Behavior
	Environmental Constraints
	Identifying the Public Interfaces
	Identifying the Implementation

	CONCLUSION
	REFERENCES

	3. More Object-Oriented Concepts
	CONSTRUCTORS
	When Is a Constructor Called?
	What’s Inside a Constructor?
	The Default Constructor
	Using Multiple Constructors
	Overloading Methods
	Using UML to Model Classes
	How the Superclass Is Constructed

	The Design of Constructors

	ERROR HANDLING
	Ignoring the Problem
	Checking for Problems and Aborting the Application
	Checking for Problems and Attempting to Recover
	Throwing an Exception

	THE IMPORTANCE OF SCOPE
	Local Attributes
	Object Attributes
	Class Attributes

	OPERATOR OVERLOADING
	MULTIPLE INHERITANCE
	OBJECT OPERATIONS
	CONCLUSION
	REFERENCES

	4. The Anatomy of a Class
	THE NAME OF THE CLASS
	COMMENTS
	ATTRIBUTES
	CONSTRUCTORS
	ACCESSORS
	PUBLIC INTERFACE METHODS
	PRIVATE IMPLEMENTATION METHODS
	CONCLUSION
	REFERENCES

	5. Class Design Guidelines
	MODELING REAL-WORLD SYSTEMS
	IDENTIFYING THE PUBLIC INTERFACES
	The Minimum Public Interface
	Hiding the Implementation

	DESIGNING ROBUST CONSTRUCTORS (AND PERHAPS DESTRUCTORS)
	DESIGNING ERROR HANDLING INTO A CLASS
	Documenting a Class and Using Comments
	Building Objects with the Intent to Cooperate

	DESIGNING WITH REUSE IN MIND
	DESIGNING WITH EXTENSIBILITY IN MIND
	Making Names Descriptive
	Abstracting Out Nonportable Code
	Providing a Way to Copy and Compare Objects
	Keeping the Scope as Small as Possible

	DESIGNING WITH MAINTAINABILITY IN MIND
	Using Iteration in the Development Process
	Testing the Interface

	USING OBJECT PERSISTENCE
	Serializing and Marshaling Objects

	CONCLUSION
	REFERENCES

	6. Designing with Objects
	DESIGN GUIDELINES
	Performing the Proper Analysis
	Developing a Statement of Work
	Gathering the Requirements
	Developing a System Prototype
	Identifying the Classes
	Determining the Responsibilities of Each Class
	Determining How the Classes Collaborate with Each Other
	Creating a Class Model to Describe the System
	Prototyping the User Interface in Code

	OBJECT WRAPPERS
	Structured Code
	Wrapping Structured Code
	Wrapping Nonportable Code
	Wrapping Existing Classes

	CONCLUSION
	REFERENCES

	7. Mastering Inheritance and Composition
	REUSING OBJECTS
	INHERITANCE
	Generalization and Specialization
	Design Decisions

	COMPOSITION
	Representing Composition with UML

	WHY ENCAPSULATION IS FUNDAMENTAL TO OO
	How Inheritance Weakens Encapsulation
	A Detailed Example of Polymorphism
	Object Responsibility
	Abstract Classes, Virtual Methods, and Protocols

	CONCLUSION
	REFERENCES

	8. Frameworks and Reuse: Designing with Interfaces and Abstract Classes
	CODE: TO REUSE OR NOT TO REUSE?
	WHAT IS A FRAMEWORK?
	WHAT IS A CONTRACT?
	Abstract Classes
	Interfaces
	Tying It All Together
	The Compiler Proof
	Making a Contract
	System Plug-in Points

	AN E-BUSINESS EXAMPLE
	An E-Business Problem
	The Non-Reuse Approach
	An E-Business Solution
	The UML Object Model

	CONCLUSION
	REFERENCES

	9. Building Objects and Object-Oriented Design
	COMPOSITION RELATIONSHIPS
	BUILDING IN PHASES
	TYPES OF COMPOSITION
	Aggregations
	Associations
	Using Associations and Aggregations Together

	AVOIDING DEPENDENCIES
	CARDINALITY
	Multiple Object Associations
	Optional Associations

	TYING IT ALL TOGETHER: AN EXAMPLE
	CONCLUSION
	REFERENCES

	10. Design Patterns
	WHY DESIGN PATTERNS?
	SMALLTALK’S MODEL/VIEW/CONTROLLER
	TYPES OF DESIGN PATTERNS
	Creational Patterns
	The Factory Method Design Pattern
	Factory Method Pattern

	Structural Patterns
	The Adapter Design Pattern

	Behavioral Patterns
	The Iterator Design Pattern

	ANTIPATTERNS
	CONCLUSION
	REFERENCES

	11. Avoiding Dependencies and Highly Coupled Classes
	COMPOSITION VERSUS INHERITANCE AND DEPENDENCY INJECTION
	1) Inheritance
	2) Composition
	Dependency Injection
	Injection by Constructor
	Injection by Setter

	CONCLUSION
	REFERENCES

	12. The SOLID Principles of Object-Oriented Design
	THE SOLID PRINCIPLES OF OBJECT-ORIENTED DESIGN
	1) SRP: Single Responsibility Principle
	2) OCP: Open/Close Principle
	3) LSP: Liskov Substitution Principle
	4) IPS: Interface Segregation Principle
	5) DIP: Dependency Inversion Principle
	Step 1: Initial Example
	Step 2: Separating Out Behavior
	Step 3: Dependency Injection

	CONCLUSION
	REFERENCES

