Pythagorean Theorem Problem Solving Worksheet

Use the Pythagorean theorem to solve the following problems.

Show all your work.

A ladder is leaning against a wall. The top of the ladder touches the wall at a height of 20 feet. If the ladder is 25 feet long, how far must the base of the ladder be from the wall to ensure it is securely placed?

A rectangular garden measures 60 feet in length and 25 feet in width. What is the diagonal distance across the garden?

A square playground has a perimeter of 160 meters. If a diagonal path is to be constructed from one corner to the opposite corner, how long will this path be?

Pythagorean Theorem Problem Solving Worksheet

Use the Pythagorean theorem to solve the following problems.

Show all your work.

A ladder is leaning against a wall. The top of the ladder touches the wall at a height of 20 feet. If the ladder is 25 feet long, how far must the base of the ladder be from the wall to ensure it is securely placed?

•
$$c^2 = 25^2 - 20^2 = 625 - 400 = 225$$

- $b = \sqrt{225} = 15$ feet
- The base of the ladder must be 15 feet from the wall.

A rectangular garden measures 60 feet in length and 25 feet in width. What is the diagonal distance across the garden?

•
$$c^2 = 60^2 + 25^2 = 3600 + 625 = 4225$$

- $c = \sqrt{4225} = 65$ feet
- The diagonal distance across the garden is 65 feet.

A square playground has a perimeter of 160 meters. If a diagonal path is to be constructed from one corner to the opposite corner, how long will this path be?

- Side = 160 meters / 4 = 40 meters
- $c^2 = 2 * 40^2 = 2 * 1600 = 3200$
- $c = \sqrt{3200} \approx 56.57$ meters
- The length of the diagonal path is approximately 56.57 meters.